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Abstract

This paper investigates cache-enabled physical-layer secure communication in a no-orthogonal multiple access

(NOMA) network with two users, where an intelligent unmanned aerial vehicle (UAV) is equipped with attack module

which can perform as multiple attack modes. We present a power allocation strategy to enhance the transmission

security. To this end, we propose an algorithm which can adaptively control the power allocation factor for the source

station in NOMA network based on reinforcement learning. The interaction between the source station and UAV is

regarded as a dynamic game. In the process of the game, the source station adjusts the power allocation factor

appropriately according to the current work mode of the attack module on UAV. To maximize the benefit value, the

source station keeps exploring the changing radio environment until the Nash equilibrium (NE) is reached. Moreover,

the proof of the NE is given to verify the strategy we proposed is optimal. Simulation results prove the effectiveness of

the strategy.
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1 Introduction

In recent years, ultra-reliable and low-latency have

been a very important requirement for supporting the

wireless services for the B5G wireless communications

[1–4]. To support this requirement, caching technique

can pre-store the wireless data during non-peak traf-

fic time and hence reduce the load traffic significantly

[5–8]. In addition, non-orthogonal multiple access

(NOMA) can provide much higher capacity and spectrum

efficiency than that of orthogonal multiple access, and

hence, it is one of the most promising candidate for sup-

porting ultra-reliable and low-latency services. Moreover,

NOMA protocol enables the source station to allocate the

same spectrum and time resource to multiple users with

power-domain multiplexing. In particular, NOMA proto-

col can serve different kinds of users, and it can flexibly

support ultra-reliable and low-latency services for both far

and near users.
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Although NOMA technology can provide a reliable per-

formance in enhancing wireless transmission, its trans-

mission security is threatened by the eavesdroppers due

to the broadcasting nature of wireless communications

[9–13]. The authors in [14] have studied the protec-

tion of physical-layer security and proposed strategies

for wireless communication networks which have been

confirmed to perform efficiently. In [15], the authors stud-

ied the antenna selection algorithm to protect physical-

layer security in NOMA network with an eavesdrop-

per. However, the conventional strategies for protecting

the physical-layer security in NOMA system work well,

only when the attacker just has one work mode. Intel-

ligent attacker with multiple work mode is proposed in

[16–20] to reduce the data rate of communication sys-

tems by freely switching between eavesdropping, jam-

ming, deception, and silent. If the networks continue to

adopt the conventional strategies, the intelligent attacks

will not be suppressed.

To tackle this problem, the authors in [21–24] proposed

a transmission policy based on reinforcement learning.

As a special branch of artificial intelligence, the rein-

forcement learning proposed in [25] can be regarded as
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a Markov decision-making process. The agent trained

by reinforcement learning can decide the action to be

executed according to the environment state at the cur-

rent moment, and maximize the long-term cumulative

rewards to obtain the optimal action set. However, the

state transition probability is generally unknowable for

the agent. The Q-learning is proposed in [26] to solve

the problem. Combining dynamic programming with the

Monte Carlo method, Q-learning can make the agent

learn optimal strategies without knowing the state tran-

sition probability. As far as we know, no previous work

has used the Q-learning algorithm to protect secure trans-

mission in the NOMA system, which is threatened by the

intelligent attacker.

Due to mobility and ease of deployment, unmanned

aerial vehicles (UAVs) have arisen as a new type of com-

munication nodes in the wireless networks, for example,

the UAVs can perform as a relay or base station under

extreme natural conditions. However, a UAV can be a

mobile intelligent attacker if it is equipped with attack

module. In this paper, we investigate a NOMA network

with two users in the presence of an UAV attacker which

can execute multiple attack modes. The source station

sends the composite signals to two users at the same time;

therefore, the total transmit power is divided into two

parts.We dynamically allocate the proportions of transmit

power to confront the intelligent attacker. In the wireless

communication process, it is hard to know the work mode

transition probability of intelligent attacker. As a model-

free learning method without depending on the state

transition probability, the Q-learning is adopted to obtain

a learning-based adaptive policy. Furthermore, we for-

mulate the confrontation between the source station and

intelligent attacker as a dynamic game, and we derive the

Nash equilibrium (NE) of the dynamic game. Simulation

results show that the strategy we proposed significantly

improved the data rate of NOMA system.

2 Methods/experimental

Consider one cache-enabled source station S can pre-

store a certain amount of information. There exists one

cell-edge user U1 and one central user U2 in the coverage

of S, whereU2 is closer to S thanU1.When the request sig-

nals from users are received, S transmits cached messages

based on NOMA protocol to users. Furthermore, there

exists a UAVwhich performs as an intelligent attacker E in

this area.We suppose that the UAV is more likely to attack

cell-edge user U1, and the UAV remains in the same posi-

tion when attacking. Programmable radio equipment on E

can flexibly select to overheard information from S, send

jamming or deception signals to U1, or keep silent. We

denote these four work modes of E as m = 0, 1, 2, and 3,

respectively. In the experiment, the purpose of E is to

attempt to decrease the system data rate and reduce the

correctness of user decoding. For simplicity, all the devices

in this experiment are equipped with single antenna.

3 NOMA networks

Now, we depict the NOMA network system model which

is shown in Fig. 1. We suppose that S transmits a com-

posite signal consisting of x1 and x2, which contains mes-

sages requested by U1 and U2, respectively. According to

NOMA protocol, S divides the total transmit power PS
into two portions, i.e., αPS and βPS, where α and β are

the power allocation factors for x1 and x2, respectively. In

order to satisfy the requirements of different transmission

Fig. 1 Cache-assisted NOMA network of two users in different locations against intelligent attacks from UAV
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distance, the two factors αPS and βPS have to meet the

following constraint conditions:
{

α ≫ β ,

α + β ≤ 1.
(1)

In order to fight against the intelligent UAV attacker

E, S works on improving system data rate by consciously

changing its power allocation factor α. For the first step of

the transmission process, S chooses a value for the power

allocation factor α to transmit the mixture signal x1, x2,

and then, the received signal at U1 denoted by yU1 can be

given as:

yU1 = hSU1(
√

αPSx1 +
√

βPSx2) + nU1
(2)

where hSU1 ∼ CN (0, ν2) is the instantaneous channel

coefficient of S − U1 link. nU1
∼CN (0, σ 2) represents the

additive white Gaussian noise (AWGN) received at U1

[27–30]. The resultant SINR for x1 atU1 can be written as:

SINR
x1
U1

=
αPS|hSU1 |

2

βPS|hSU1 |
2 + σ 2

. (3)

whenm = 0 holds, i.e., E shuts down radio equipment and

stays silent. In this case, the achievable rates of x1 at U1

denoted by CU1
is exactly the system data rate Csys,0. Thus,

the system data rate is acquired by [31]:

Csys,0 = log2(1 +
αPS|hSU1 |

2

βPS|hSU1 |
2 + σ 2

)

= log2(1 +
αP̃S|hSU1 |

2

βP̃S|hSU1 |
2 + 1

), (4)

where P̃S = PS/σ
2. When m = 1 holds, E executes to

overhear information from S; the received signal at E can

be given as:

yE = hSE(
√

αPSx1 +
√

βPSx2) + nE , (5)

we assume that perfect SIC receiver is applied at E; thus,

according to [32], the achievable rate of x1 at E denoted by

CE can be written as:

CE = log2(1 +
αP̃S|hSE|

2

βP̃S|hSE|2 + 1
), (6)

where hSE∼CN (0,μ2) is the instantaneous channel coef-

ficient of S − E link. nE∼CN (0, σ 2) represents AWGN

received at E. Consequently, according to [17], the system

data rate Csys,1 can be computed by:

Csys,1 =[Csys,0 − CE ]
+ , (7)

where [X]+ returns X if X is positive, while returns 0

otherwise. When m = 2 holds, E selects to transmit a

jamming signal to U1; the received signal yU1 at U1 can be

acquired by:

yU1,J =hSU1(
√

αPSx1+
√

βPSx2) + hEU1

√
PJxJ +nU1

(8)

where hEU1∼CN (0, λ2) is the instantaneous channel coef-

ficient of E − U1 link. PJ is the jamming power of E,

and xJ represents the jamming signal transmitted by E.

Therefore, in this case, the system data rate Csys,2 can be

computed by:

Csys,2 = log 2(1 +
αP̃S|hSU1 |

2

βP̃S|hSU1 |
2 + P̃J |hEU1 |

2 + 1
) (9)

where P̃J = PJ/σ
2. When m = 3 holds, S does not send

signal toU1 while E transmits the deception signal xD . The

received signal at U1 becomes:

yU1,D = hEU1

√
PDxD + nU1

, (10)

where PD is the deception power. The increase of the

deception signal received by U1 is bound to cause more

loss in the achievable rate atU1. Thus, the system data rate

Csys,3 can be formulated as a linear function and given by:

Csys,3 = Csys,0 − γ log2(1 + P̃D|hEU1 |
2), (11)

where P̃D = PJ/σ
2. γ ∈ (0, 1) is the deception factor

which quantifies the probability of the influence of each

deception signal.

4 Secure game in NOMA network

The interaction between S and E in the NOMA network

performs in a rivalry way, which is formulated as a secure

game. To discuss the process of the secure game, we need

to first quantify the variety range of α. While ensuring

that U1 can decode the received information correctly,

we must also ensure that U2 can correctly decode x2. We

denote the minimum data rate requirement for U1 and

U2 as C
U1
min and C

U2
min. Thus, α and β satisfy the following

constraint:

log2(1 +
αP̃S|hSU1 |

2

βP̃S|hSU1 |
2 + 1

) ≥ C
U1
min, (12)

log2(1 + βP̃S|hSU2 |
2) ≥ C

U2
min, (13)

according to (1), the threshold value of α is given by:
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⎧
⎪⎪⎨
⎪⎪⎩

αmax = 1 − 2
C
U2
min−1

P̃S|hSU2 |2
,

αmin =
(2

C
U1
min−1)(βP̃S|hSU1 |2+1)

P̃S|hSU1 |2
.

(14)

where αmax and αmin are the maximum power allocation

factor for x1. We now turn to discuss the process of the

secure game. S is adaptively adjusting its power allocation

factor in the range of [αmin,αmax], while E selects to exe-

cute an attack modes m ∈ {0, 1, 2, 3}, which represents

keeping silent, eavesdropping, jamming, or deception,

respectively. In each time slot, E attempts to reduce the

system data rate, i.e., Csys,1, Csys,2, or Csys,3. S devotes to

increase the system data rate by controlling α and mean-

while suppressing the probability of attacking. In view of

this, we regard the confrontation between S and E as a

zero-sum game. Depending on the system data rate and

power consumption, the reward function of S denoted by

RS in the zero-sum game is formulated as:

RS(α,m) = ln 2Csys,m − αθ , (15)

where θ is the total power consumption. We introduce

coefficient ln 2 to simplify the subsequent derivation pro-

cess. According to the distinguishing feature of zero-

sum game, the reward function of E denoted by RE is

defined as:

RE(α,m) = − ln 2Csys,m − ϕm, (16)

where ϕm=0,1,2,3 denotes the consumption of E in mode

m. In the secure game, S tries to find an optimal power

allocation factor in [αmin,αmax] to maximize RS, and E

is dynamically adjusting its work modes to maximize

RE . The purpose of the game between S and E is to

achieve their own optimal strategies α∗ and m∗, respec-

tively. Then, we define the set of strategies {α∗,m∗} as the

Nash equilibrium (NE) of the secure game, where S and E

gain the maximize reward value. Thus, the NE strategy is

given by:

RS(α
∗,m∗) ≥ RS(α,m

∗), (17)

RE(α
∗,m∗) ≥ RE(α

∗,m). (18)

Through analytical derivation, we obtain one NE solu-

tion {α∗, 0}. That is to say, if S keeps choosing a power

allocation factor α∗, E will obtain the maximized reward

value by keeping silent, and it has no motivation to exe-

cute any attack modes. Specifically, the NE solution is

given and proved in the following Lemma 1 and Proof.

Lemma 1 : The secure game in the NOMA network has

one NE solution {α∗, 0}, which is acquired by

α∗ =
P̃S|hSU1 |

2 − θ

P̃S|hSU1 |
2θ

− β αmin < α∗ ≤ αmax. (19)

if the following constraints are met:

P̃S|hSU1 |
2

(αmax+β)̃PS|hSU1 |
2+1

< θ <
P̃S|hSU1 |

2

(αmin+β)̃PS|hSU1 |
2+1

,

(20a)

ϕ1 ≥ ln(1 +
α∗P̃S|hSE|

2

βP̃S|hSE|2 + 1
), (20b)

ϕ2 ≥ ln (20c)

− ln(1 +
α∗P̃S|hSU1 |

2

βP̃S|hSU1 |
2 + P̃J |hEU1 |

2 + 1
), (20d)

ϕ3 ≥ γ ln(1 + P̃D|hEU1 |
2). (20e)

Proof The proof of this Lemma is given in the Appendix

5 NOMA power allocation algorithm

In order to suppress the attack probability efficiently in

the secure game, S must adopt appropriate power allo-

cation strategy. However, because of the complexity and

variability of radio signals in the NOMA network, S can

barely predict the channel state information and the work

modes of E. For this reason, we propose a power allo-

cation algorithm based on Q-learning. By incorporating

the Monte Carlo and dynamic programming methods,

Q-learning is regarded as one of the most effective

algorithms inmodel-free reinforcement learning.Without

knowing the state of the environment and its transition

probability, the agent is constantly exploring the envi-

ronment and making trial-and-error experiments. After

many independent repetitive experiments and the average

is obtained, the Q-learning-based agent will acquire the

optimal strategy.

Based on above ideas, we propose the power allocation

algorithm of NOMA for the secure game. In considera-

tion of the inherent relation between S and E, the work

mode of E determines the state of S; similarly, S can influ-

ence the environment of E by adjusting α. In the first

step of the algorithm, we initialize the Q-table denoted

by Q(m,α) which is used for updating the reward values

of state-action pairs. For each experiment, E first selects

a work mode randomly, which determines S to adopt an

instantaneous αt accordingly, where αt denotes the power

allocation factor at time t. It should be emphasized that

we do not expect that S always selects the appropriate

power allocation factor by searching in the Q-table. To

avoid getting the local optimal solution, we use ǫ − greedy

policy when S chooses a value of α. Specifically, S searches

for the current optimal α in Q-table with probability ǫ,

otherwise chooses a value in the range of [αmin,αmax] ran-

domly. At this time slot, S transmits a signal with power

αtPS and computes the system data rate as reward value

RS from the environment. Then, E changes the workmode

from m to mt+1 according to the system data rate. By

incorporating the instantaneous reward value RS and the

accumulated experience in Q-table, the update process of
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Q-table presented by the authors in [33] can be formu-

lated as:

Q(mt ,αt)←Q(mt ,αt)+ζ [RS (21)

+ρ maxQ(mt+1,α) − Q(mt ,αt)] ,

where ζ ∈ (0, 1] is the parameter to control the rate of

learning. ρ ∈[ 0, 1] represents the proportion of accumu-

lated experience. To solve the problem of not knowing the

state transition probability, we repeat the experimentmul-

tiple times and compute the average reward value. After

enough updates and repeated experiments, the Q-table

converges to be optimal. From the optimal Q-table, S can

obtain a learning-based optimal power allocation strategy.

Algorithm 1 describes the learning process:

Algorithm 1:NOMA Power Allocation Algorithm.

1: Initialize Q(m,α),

for allm ∈ 0, 1, 2, 3, α ∈[αmin,αmax] at random

2: Loop for each episode:

3: Initializem

4: loop for each time slot of episode:

5: Choose αt frommt using Q(ǫ − greedy) policy

6: Take αt , observe RS,mt+1

7: Q(mt ,αt)←Q(mt ,αt)+ζ [RS+ρ maxα Q(mt+1,α)

−Q(mt ,αt)]

8: mt ← mt+1

9: until time slot is terminal

6 Results and discussion

In this section, we simulate the communication process

to verify the effectiveness of the proposed algorithms.

The links in the network experience the Rayleigh flat fad-

ing [34–37], and the nodes are equipped with a single

antenna. We set the parameter as follows: {ν2,μ2, λ2} =

{1.2, 0.5, 2}, ϕm={0,1,2,3} = {0, 1.8, 2.0, 2.1}, γ = 0.6, P̃J = 2,

P̃D = 2.1. We set the power allocation factor α to vary

from 0.6 to 0.9 with a change interval of 0.02, and β

is set to a constant value 0.1. Specifically, we set 10,000

time slots for each experiment, and then, we repeat 5000

experiments to find the average.

Figure 2 reflects the variation of the average reward

value of S and E from 0 to 10,000 time slots. From this

figure, we can see that the average reward value of S and

E both increases rapidly between 0 and 1000 time slots.

In the subsequent process, the two curves rise slowly and

reach their peak value at 3000 time slot point, respectively.

Then, the two curves remain steady until the terminal

of the experiment. In the learning-based algorithms, we

expect agents to select specific actions to improve their

long-term cumulative rewards, which is consistent with

the experimental results.

The purpose of our proposed power allocation strategy

is to improve the average data rate of the system, which

is well reflected in Fig. 3. From 0 to 1000 time slot, the

average system data rate dramatically grows from the ini-

tial value 0.76 to a temporary value 1.23. After that, the

average system data rate continues to rise slowly until it

converges to 1.31 at 3000 time slot point, and then keeps a

steady level from 3000 to the terminal. The change trend

Fig. 2 The average reward of the power allocation algorithm
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Fig. 3 The system data rate of the power allocation algorithm

of system data rate is basically consistent with the aver-

age reward value, which also proves that the increase of

system data rate will bring more rewards to agents.

Figure 4 shows a dynamic programming process of aver-

age power allocation factor in the reinforcement learning

process. As can be seen from the figure, the power allo-

cation factor has a random initial value of 0.75. After the

start of the experiment, the work mode of E begins to

change, and S dynamically adjusts the power allocation

factor according to the environment transformation. In

the first 500 time slots, the average power allocation fac-

tor gradually decreases to a temporary value of 0.708.

Between 500 and 4000, the average power allocation grad-

ually increases and then remains stable around 0.737.

Figure 5 indicates the average attack probabilities of E

versus the time slot varying from 0 to 10,000. We find

that the average attack probabilities fall quickly from 0

to 1000. After that, the three curves decrease slowly and

Fig. 4 The average power allocation factor of the power allocation algorithm
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Fig. 5 The average attack probabilities of the power allocation algorithm with {ν2 ,μ2 , λ2} = {1.2, 0.5, 2}

tend to converge gradually. The probability of eavesdrop-

ping drops from the initial value of 0.25 to the convergence

value of 0.025, and the decline rate reaches 90%. The prob-

ability of jamming drops from the initial value of 0.26

to the convergence value of 0.02, and the decline rate is

92.3%. Similarly, the probability of deception drops from

the initial value of 0.27 to the convergence value of 0.01;

therefore, the decline rate is 96.2%. What is more, we

simulate the average attack probabilities of the power allo-

cation algorithm again with different parameters. We set

the channel parameters as {ν2,μ2, λ2} = {0.9, 0.3, 2}. That

is to say, we assume that the cell-edge user u1 is placed fur-

ther away from S. Correspondingly, E is also further away

from S. Compared with Fig. 5, Fig. 6 shows that the con-

verged eavesdropping probability becomes lower; at the

same time, the converged deception and jamming proba-

bilities grow up 2% with the condition that the jamming

and deception power are fixed. Alignment of Fig. 5 with

Fig. 6 can find that the proposed policy performs well

regardless of the location of cell-edge user and UAV.

Fig. 6 The average attack probabilities of the power allocation algorithm with {ν2 ,μ2 , λ2} = {0.9, 0.3, 2}
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7 Conclusions

In this paper, we investigated the cache-assisted physical-

layer security of a NOMA communication network where

there exists an intelligent attacker UAV nearby the cell-

edge user. The UAV within the coverage of the network

tries to reduce the system data rate of the NOMA network

by flexibly switching a work mode among eavesdropping,

jamming, deception, and keep silence. According to the

NOMA protocol, the transmitter in the system has to

allocate the total power to two users in a certain propor-

tion. In that way, we need an immediate strategy to adjust

the power allocation factor to suppress the attack motiva-

tion of the UAV. To tackle this problem, we proposed the

power allocation strategy based on Q-learning to control

the power allocation factor. From the simulation results,

we can see that the proposed strategy can well adjust

the power allocation factor in real time. Furthermore, we

confirmed that this strategy has excellent performance

in enhancing the system data rate and suppressing the

attack probabilities. In the future works, we will apply

the wireless caching technique[38–40] to the NOMA sys-

tems to further enhance the transmission reliability and

security. In addition, we will consider some new materials

[41–43] for enhancing the communication performance

in the practical applications. Furthermore, some intelli-

gent algorithms such as deep learning-based algorithms

[44–47] will be applied into the considered system, in

order to further enhance the network performance.

Appendix

Proof : By substitutingm = 0 into (15), we have

RS(α, 0) = ln(1 +
αP̃S|hSU1 |

2

βP̃S|hSU1 |
2 + 1

) − αθ . (22)

We take the partial derivative of RS(α, 0) with respect to

α and have

∂RS(α, 0)

∂α
=

P̃S|hSU1 |
2

(α + β)̃PS|hSU1 |
2 + 1

− θ , (23)

by making further derivative, easy to find

∂R2
S(α, 0)

∂α2
= −

P̃2S|hSU1 |
4

[ (α + β)̃PS|hSU1 |
2 + 1]2

≤ 0, (24)

showing that (22) is a convex function, i.e.,

∂RS(α, 0)/∂α = 0. So we substitute α = α∗ into (23); thus,

(19) holds on. To ensure that (23) acquires the maximum

in the range of [αmin,αmax], let the following inequalities

hold:

∂RS(α, 0)

∂α
|α=αmin=

P̃S|hSU1 |
2

(αmin + β)̃PS|hSU1 |
2 + 1

− θ >0,

(25)

∂RS(α, 0)

∂α
|α=αmax=

P̃S|hSU1 |
2

(αmax + β)̃PS|hSU1 |
2 + 1

−θ <0,

(26)

i.e., (20a) holds. Therefore, (α∗, 0) satisfies (17). To ensure

that (α∗, 0) satisfies (18), by substituting ((α∗, 0)) into (16),

we let the following inequalities hold:

RE(α
∗, 0) − RE(α

∗, 1) ≥ 0, (27a)

RE(α
∗, 0) − RE(α

∗, 2) ≥ 0, (27b)

RE(α
∗, 0) − RE(α

∗, 3) ≥ 0, (27c)

i.e., (20b)–(20d) hold. Therefore, (α∗, 0) also satisfies (18).

Above all, we prove the set of strategy (α∗, 0)meanwhile

satisfies Eqs. (17) and (18), which is the strict definition of

NE. With this, Lemma 1 is completely proved.
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