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Abstract

We consider a network model where small base stations (SBSs) have caching capabilities as a means to alleviate the

backhaul load and satisfy users’ demand. The SBSs are stochastically distributed over the plane according to a Poisson

point process (PPP) and serve their users either (i) by bringing the content from the Internet through a finite rate

backhaul or (ii) by serving them from the local caches. We derive closed-form expressions for the outage probability

and the average delivery rate as a function of the signal-to-interference-plus-noise ratio (SINR), SBS density, target file

bitrate, storage size, file length, and file popularity. We then analyze the impact of key operating parameters on the

system performance. It is shown that a certain outage probability can be achieved either by increasing the number of

base stations or the total storage size. Our results and analysis provide key insights into the deployment of

cache-enabled small cell networks (SCNs), which are seen as a promising solution for future heterogeneous cellular

networks.
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1 Introduction
Increasing traffic demand from mobile users due to the

rich media applications, video streaming, and social net-

works [1] is pushing mobile operators to make their

mobile cellular networks evolve continuously (see long-

term evolution [2]). small cell network [3,4] and their

integration with WiFi [5], heterogeneous network [6],

together with many other ideas from both industry and

academia, have now started being deployed and integrated

in current cellular networks. In Europe, projects such

as NewCom# [7] in the 7th Framework Program of the

European Commission are focusing on the design of next

generation cellular networks, and a new framework, called

Horizon 2020 [8], is going to take place to support these

efforts.

At the same time, content providers are moving their

users’ content to the intermediate nodes in the network,

namely caching, yielding less delays for the access. Con-

tent delivery network such as Akamai [9] are for that

purpose. In this context, information-centric network are

emerging [10]. Mixing these infrastructural concepts with
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cellular networks is also of interest [11,12]. Predicting

users’ behavior, and proactively caching the users’ content

in the edge of the network, namely base stations and user

terminals, also shows that further gains can be obtained in

terms of backhaul savings and user satisfaction [13].

Even though the idea of caching in mobile cellular net-

works is somewhat recent, the origin of caching dates

indeed back to the 1960s, where caching mechanisms are

proposed to boost the performance of operating systems

[14]. Additionally, in past decades, many web caching

schemes such as [15] have appeared to sustain the data

flow of the Internet. In the context of mobile cellular net-

works, there have been recent attempts on design of intel-

ligent caching schemes by taking into account the wireless

environment of mobile cellular networks. Due to its noto-

rious non-tractability, these proposals are mainly based

on approximate or heuristic solutions [16-18]. Besides

these solutions, novel formulations and system models

have been proposed to assess the performance of caching.

For instance, information theoretical formulation of the

caching problem is studied in [19]. The expected cost

of uncoded and coded data allocation strategies is given

in [20], where stochastically distributed cache-enabled

nodes in a given area are assumed and the cost is defined
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as a function of distance. A game theoretical formulation

of the caching problem as a many-to-many game is stud-

ied in [21] by taking into account data dissemination in

social networks. The performance of caching in wireless

device-to-device networks is studied in [22] in a scenario

where nodes are placed on a grid and cache the content

randomly. An alternative device-to-device caching sce-

nario with randomly located nodes is given in [23], and

relevant tradeoffs curves are derived.

The contribution of this work is to formulate the

caching problem in a scenario where stochastically dis-

tributed small base station are equipped with storage units

but have the limited backhaul capacity. In particular, we

build on a tractable system model and define its per-

formance metrics (outage probability and average deliv-

ery rate) as functions of signal-to-interference-plus-noise

ratio, number of small base station, target file bitrate, stor-

age size, file length, and file popularity distribution. By

coupling the caching problem with a physical layer in this

way and relying on recent results from [24], we show that

a certain outage probability can be achieved either by 1)

increasing number of small base station while the total

storage size budged is fixed or 2) increasing the total stor-

age size while the number of small base station is fixed.

To the best of our knowledge, our work differs from the

aforementioned works in terms of studying deployment

aspects of cache-enabled small base station. Similar lines

of work in terms of analysis with stochastic geometry tools

can be found in [20,23]. However, the system model and

performance metrics are different than what is studied

herea.

The rest of this paper is structured as follows. We

describe our system model in Section 2. The perfor-

mance metrics and main results are given in Section 3. In

the same section, much simpler expressions are obtained

by making specific assumptions on the system model.

We validate these results via numerical simulations in

Section 4 and discuss the impact of parameters on the

performance metrics. Then, a tradeoff between the num-

ber of deployed small base station and total storage size

is given in Section 5. Finally, our conclusions and future

perspectives are given in Section 6b.

2 SystemModel
The cellular network under consideration consists of small

base station, whose locations are modeled according to a

Poisson point process � with density λ. The broadband

connection to these small base station is provided by a

central scheduler via wired backhaul links. We assume

that the broadband connection is finite and fixed; thus,

the backhaul link capacity of each small base station is

a decreasing function of λ. This in practice means that

deploying more small base station in a certain area yields

sharing the total broadband capacity among backhaul

links. We will define this function more precisely in the

next sections.

We suppose that every small base station has a stor-

age unit with capacity S nats (1 bit = ln(2) = 0.693

nats); thus, they cache users’ most popular files given

in a catalog. The size of each file in the catalog has a

length of L nats and bitrate requirement of T nats/s/Hz.

We note that the assumption on file length is for ease

of analysis. Alternatively, the files in the catalog can

be divided into chunks with the same length. The file

popularity distribution of this catalog is a right con-

tinuous and monotonically decreasing probability distri-

bution function, denoted as fpop(f , γ ). The parameter

f here corresponds to a point in the support of a

file and γ is the shape parameter of the distribution.

We assume that this distribution is identical among all

users.

Every user equipped with a mobile user terminal is

associated with the nearest small base station, where its

location falls into a point in a Poisson-Voronoi tessella-

tion on the plane. In this model, we neglect the overhead

introduced by the file requests of users in the uplink,

thereby only focus on the downlink transmission. In the

downlink transmission, a tagged small base station trans-

mits with the constant transmit power 1/μ Watts, and

the standard unbounded power-law pathloss propagation

model with exponent α > 2 is used for the environment.

The tagged small base station and tagged user experience

Rayleigh fading with mean 1. Hence, the received power

at the tagged user, located r-meters away from its tagged

small base station, is given by hr−α . The random variable

h here follows an exponential distribution with mean 1/μ,

represented as h ∼ Exponential(μ).

Once users are associated with their closest small base

station, we assume that they request some files (or chunks)

randomly according to the file popularity distribution

fpop(f , γ ). When requests reach to the small base station

via uplink, the users are served immediately, either get-

ting the file from the Internet via backhaul or being served

from the local cache, depending on the availability of the

file therein. If a requested file is available in the local

cache of the small base station, a cache hit event occurs;

otherwise, a cache miss event is said to have occurred.

According to what we have explained so far, a sketch of the

network model is given in Figure 1.

In general, the performance of our system depends on

several factors. Tomeet the quality-of-experience require-

ments, the downlink rate provided to the requested user

has to be equal or higher than the file bitrate T so that the

user does not observe any interruption during its experi-

ence. Although this requirement can be achieved in the

downlink, yet another bottleneck can be the rate of the

backhaul in case of cache misses. In the following, we

define our performance metrics which take into account
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Figure 1 An illustration of the considered network model. The top right side of the figure shows a snapshot of PPP per unit area where the SBSs

are randomly located. A closer look at communication structure of a cache-enabled SBS is shown in the main figure.

the aforementioned situations. We then present our main

results in the same section.

3 Performancemetrics andmain results
Performance metrics of interest in our system model are

the outage probability and average delivery rate. We start

by defining these metrics for the downlink. From now on,

without loss of generality, we refer to the user o as typical

user, which is located at the origin on the plane.

We know that the downlink rate depends on the

signal-to-interference-plus-noise ratio. The signal-to-

interference-plus-noise ratio of user o which is located at

a random distance r far away from its small base station bo
is given by:

SINR � hr−α

σ 2+Ir
, (1)

where

Ir �
∑

i∈�/bo
giR

−α
i , (2)

is the total interference experienced from all other small

base station at a distance Ri from the typical user (except

the connected small base station bo) which have fading

value gi. Assume that the success probability is the prob-

ability of the downlink rate exceeding the file bitrate T

and the probability of requested file being in the local

cache. Then, the outage probability can be given as the

complementary of the success probability as follows:

pout(λ,T ,α, S, L, γ ) � 1 − P

[

ln(1+SINR) >T , fo∈�bo

]

︸ ︷︷ ︸

success probability

,

(3)

where fo is the requested file by the typical user, and�bo is

the local cache of the serving small base station bo. Indeed,

such a definition of the outage probability comes from

a simple observation. Ideally, if a requested file is in the

cache of the serving small base station (thus, the limited

backhaul is not used) and if the downlink rate is higher

than the file bitrate T (thus, the user does not observe

any interruption during the playback of the file), we then

expect the outage probability to be close to zero. Given

this explanation and the assumptions made in the pre-

vious section, we state the following theorem for outage

probability.

Theorem 1 (Outage probability). The typical user has an

outage probability from its tagged base station which can

be expressed as:

pout(λ,T ,α, S, L, γ ) =1 − πλ

∫ ∞

0

∫ S/L

0

× e−πλvβ(T ,α)−μ(eT−1)σ 2vα/2
fpop( f , γ)d f dv,

(4)

where β(T ,α) is given by:

β(T ,α) =
2
(

μ(eT − 1)
)

α
Eg

[

g
2
α

(

Ŵ

(

−
2

α
,μ
(

eT − 1
)

g

)

−Ŵ

(

−
2

α

))]

,

(5)

where Ŵ(a, x) =
∫∞
x ta−1e−tdt is the upper incomplete

Gamma function and Ŵ(x) =
∫∞
0 tx−1e−tdt is the Gamma

function.
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Proof. The proof is provided in Appendix A.

Yet another useful metric in our system model is the

delivery rate, which we define as follows:

τ �

⎧

⎨

⎩

T , if ln(1 + SINR) > T and fo ∈ �bo ,

C(λ), if ln(1 + SINR) > T and fo �∈ �bo , nats/s/Hz

0, otherwise,

(6)

where C(λ) is the backhaul capacity provided to the small

base station for single frequency in the downlinkc. The

definition above can be explained as follows. If the down-

link rate is higher than the thresholdT (namely, the bitrate

of the requested file) and the requested file is available in

the local cache, the rate T is dedicated to the user by the

tagged small base station, which in turn is sufficient for

quality-of-experience. On the other hand, if the downlink

rate is higher thanT but the requested file does not exist in

the local cache of the tagged small base station, the deliv-

ery rate will be limited by the backhaul link capacity C(λ),

for which we assume that C(λ) < T . Given this definition

for the delivery rate, we state the following theorem.

Theorem 2 (Average delivery rate). The typical user has

an average delivery rate from its tagged base station which

can be expressed as:

τ̄ (λ,T ,α, S, L, γ ) = πλ

∫ ∞

0
e−πλvβ(T ,α)−μ(eT−1)σ 2vα/2

dv

×

(

C(λ) + (T − C(λ))

∫ S/L

0
fpop( f , γ )d f

)

,

(7)

where β(T ,α) has the same definition as in Theorem 1.

Proof. The proof is deferred to Appendix B.

What we provided above are the general results. The

exact values of outage probability and average delivery

rate can be obtained by specifying the distribution of the

interference, the backhaul link capacity C(λ), and the file

popularity distribution fpop( f , γ ). If this treatment does

not yield closed form expressions, numerical integration

can be done as a last resort for evaluating the functions.

In the next section, as an example, we derive special cases

of these results after some specific assumptions, which in

turn yield much simpler expressions.

3.1 Special Cases

Assumption 1. The following assumptions are given for

the system model:

1. The noise power σ 2 is higher than 0, and the pathloss

component α is 4.

2. Interference is Rayleigh fading, which in turn

gi ∼ Exponential(μ).

3. The capacity of backhaul links is given by:

C (λ) �
C1

λ
+ C2, (8)

where C1 > 0 and C2 ≥ 0 are some arbitrary

coefficients such that C(λ) < T holds.

4. The file popularity distribution of users is

characterized by a power law [25] such as:

fpop
(

f , γ
)

�

{

(γ − 1) f −γ , f ≥ 1,

0, f < 1,
(9)

where γ > 1 is the shape parameter of the

distribution.

The assumption C(λ) < T comes from the observa-

tion that the high-speed fiber-optic backhaul links might

be very costly in densely deployed small base station sce-

narios. Therefore, we assume that C(λ) is lower than the

bitrate of the file. On the other hand, we characterize the

file popularity distribution with a power law. Indeed, this

comes from the observation that many real-world phe-

nomena can be characterized by power laws (i.e., distri-

bution of files in web proxies, distribution of word counts

in natural languages) [25]. According to our systemmodel

and the specific assumptions made in Assumption 1, we

state the following results.

Proposition 1 (Outage probability). The typical user has

an outage probability from its tagged base station which

can be expressed as:

pout(λ,T , 4, S, L, γ ) = 1 −
π

3
2 λ

√

eT−1
SNR

exp

(

(λπ(1 + ρ(T , 4)))2

4(eT −1)/SNR

)

× Q

(

λπ(1 + ρ(T , 4))
√

2(eT −1)/SNR

)(

1 −
(

L

L+S

)γ−1
)

,

(10)

where ρ(T , 4) =
√
eT − 1

(

π
2 − arctan

(

1√
eT−1

))

and

the standard Gaussian tail probability is given as Q (x) =
1√
2π

∫∞
x e−y2/2dy.

Proof. The proof is given in Appendix C.

Proposition 2 (Average delivery rate). The typical user

has an average delivery rate from its tagged base station

which can be expressed as:
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τ̄ (λ,T , 4, S, L, γ ) =
π

3
2 λ

√

eT−1
SNR

exp

(

(λπ(1 + ρ(T , 4)))2

4(eT − 1)/SNR

)

× Q

(

λπ(1 + ρ(T , 4))
√

2(eT − 1)/SNR

)
(

T+
(
C1

λ
+ C2 −T

)

×
(

L

L + S

)γ−1
)

,

(11)

where ρ(T , 4) and Q (x) have the same definition as in

Proposition 1.

Proof. The proof is given in Appendix D.

The expressions obtained for special cases are cum-

bersome but fairly easy to compute and do not require

any integration. Note that the Q (x) function given in

the expressions is a well-known function and can be

computed by using lookup tables or standard numerical

packages.

4 Validation of the proposedmodel
So far, we have provided the results for outage probabil-

ity and average delivery rate. In this section, we validate

these results via Monte Carlo simulations. The numeri-

cal results shown here are obtained by averaging out over

1,000 realizations. In each realization, the small base sta-

tion are distributed according to a Poisson point process.

The file requests, signal, and interfering powers of the

typical user are drawn randomly according to the corre-

sponding probability distributions. The outage probability

and average delivery rate are then calculated by consid-

ering signal-to-interference-plus-noise ratio and cache hit

statistics. We note that all simulation curves match the

theoretical ones. However, a slight mismatch is observed

due to the fact that more precise discretization of contin-

uous variables is avoided for affordable simulation times.

As alluded to previously, the target file bitrate as well as

average delivery rate are in units of nats/s/Hz. On the

other hand, the storage size and file lengths are in units of

nats.

4.1 Impact of storage size

The storage size of small base station is one critical param-

eter in our system model. The effect of the storage size on

the outage probability and the average delivery rate is plot-

ted in Figures 2 and 3, respectively. Each curve represents

a different value of target file bitrate. We observe that the

outage probability reduces whereas the average delivery

rate increases as we increase the storage size. Such behav-

ior, observed both in theoretical and simulation curves,

confirms our initial intuition.

Figure 2 The evolution of outage probability with respect to the

storage size. SNR = 10 dB, λ = 0.2, γ = 2, L = 1 nats, α = 4,

C1 = 0.0005, C2 = 0.

4.2 Impact of the number of base stations

The evolution of outage probability with respect to the

number of base stations is depicted in Figure 4. As the base

station density increases, the outage probability decreases.

This decrement in outage probability can be improved

further by increasing the storage size of SBSs.

4.3 Impact of target file bitrate

Yet, another important parameter in our setup is the tar-

get file bitrate T. Figure 5 shows its impact on the outage

probability for different values of storage size. Clearly,

increasing the target file bitrate results in higher outage

probability. However, this performance reduction can be

Figure 3 The evolution of average delivery rate with respect to

the storage size. SNR = 10 dB, λ = 0.2, γ = 2, L = 1 nats, α = 4,

C1 = 0.0005, C2 = 0.
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Figure 4 The evolution of outage probability with respect to the

base station density. SNR = 10 dB, T = 0.2, γ = 2, L = 1 nats,

α = 4, C1 = 0.0005, C2 = 0.

compensated by increasing the storage size of small base

station. The impact of storage size reduces, as T increases.

4.4 Impact of file popularity shape

Another crucial parameter in our setup is the shape of

the file popularity distribution, parameterized by γ . The

impact of the parameter γ on the outage probability, for

different storage sizes, is given in Figure 6. Generally, a

higher value of γ means that only a small portion of files

is highly popular compared to the rest of the files. On the

contrary, lower values of γ correspond to a more uniform

behavior on the popularity distribution. Therefore, as γ

Figure 5 The evolution of outage probability with respect to the

target file bitrate. SNR = 10 dB, λ = 0.2, γ = 2, L = 1 nats, α = 4,

C1 = 0.0005, C2 = 0.

Figure 6 The evolution of outage probability with respect to the

popularity shape parameter γ . SNR = 10 dB, λ = 0.2, γ = 2, L = 1

nats, α = 4, C1 = 0.0005, C2 = 0.

increases, the outage probability reduces due to reduced

requirement in terms of storage size. However, in very low

and high values of γ , the impact on the outage probability

is not high compared to the intermediate values.

5 David vs. Goliath: more SBSs with less storage
or less SBSs withmore storage?

In the previous section, we have validated our results via

numerical simulations and discussed the impact of several

parameters on the outage probability and average delivery

rate. On top of those, we are interested in finding a trade-

off between the small base station density and the total

storage size for a fixed set of parameters. We start by mak-

ing an analogy with the well-known David and Goliath

story to examine the tradeoff between the small base sta-

tion density and total storage size.d More precisely, we aim

to answer the following question: should we increase stor-

age size of current small base station (David) or deploy

more small base station with less storage (Goliath) in

order to achieve a certain success probability? The answer

is indeed useful for the realization of such a scenario.

Putting more small base station in a given area may not

be desirable due to increased deployment and opera-

tion costs (Evil). Therefore, increasing the storage size of

already deployed small base station may incur less cost

(Good). To characterize this tradeoff, we first define the

optimal region as follows:

Definition 1 (Optimal region). An outage probability p†

is said to be achievable if there exist some parameters

λ,T ,α, S, L, γ satisfying the following condition:

pout(λ,T ,α, S, L, γ ) ≤ p†.
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The set of all achievable p† forms the optimal region.

The optimal region can be tightened by restricting

parameters λ,T ,α, S, L, γ to some intervals. A detailed

analysis on this is left for future work. Hereafter, we

restrict ourselves to find the optimal small base station

density for a fixed set of parameters. In such a case, opti-

mal small base station density can be readily obtained by

plugging these fixed parameters into pout and solving the

equation either analytically or numerically (i.e., bisection

method [26]). In the following, we obtain a tradeoff curve

between the small base station density and total storage

size, by solving these equations systematically in the form

of an optimization problem.

Definition 2 (small base station density vs. total storage

size tradeoff ). Define the average total storage as Stotal =
λS, and fix T, α, L, and γ to some values in the optimal

region given in Definition 1. Denote also λ⋆ as the opti-

mal small base station density for a given Stotal. Then, λ
⋆ is

obtained by solving the following optimization problem:

minimize
λ

λ (12)

subject to pout(λ,T ,α, Stotal/λ, L, γ ) ≤ p†.

(12a)

The set of all achievable pairs (λ⋆, Stotal) characterizes a

tradeoff between the small base station density and total

storage size.

Figures 7 and 8 show two different configurations of the

tradeoff. In these plots, to achieve a certain outage proba-

bility (i.e., p† = 0.3), we see that it is sufficient to decrease

Figure 7 The trade-off between SBSs density and total storage

size for different file target bitrates. SNR = 10 dB, α = 4, L = 1

nats, γ = 3, and p† = 0.3.

Figure 8 The trade-off between SBSs density and total storage

size for different file lengths. SNR=10 dB, α=4, T=0.2 nats/s/Hz,

γ = 3, and p† = 0.3.

the number of small base station by increasing the total

storage size. Alternatively, the total storage size can be

decreased by increasing the number of small base station.

Moreover, for different values of parameter of interest

(i.e., T ∈ {0.1, 0.2} or L ∈ {1, 2}), there is also a scaling

and shifting in this tradeoff. Regardless of this scaling and

shifting, we see that David wins victory against Goliath.

6 Conclusions
We have studied the caching problem in a scenario where

small base station are stochastically distributed and have

finite-rate backhaul links. We derived expressions for the

outage probability and average delivery rate and vali-

date these results via numerical simulations. The results

showed that significant gains in terms of outage prob-

ability and average delivery rate are possible by having

cache-enabled small base station.We showed that telecom

operators can either deploy more base stations or increase

the storage size of existing deployment in order to achieve

a certain quality-of-experience level.

Endnotes
aAdditionally, the related work [27] was made public

after the submission of this work.
bCompared to [28], this work contains more

comprehensive mathematical treatment, proofs, and the

trade-off analysis conducted in Section 5.
cWithout loss of generality, more realistic values of

delivery rate can be obtained by making a proper signal-

to-interference-plus-noise ratio gap approximation and

considering the total wireless bandwidth instead of 1 Hz.
dDavid vs. Goliath refers to the underlying resource

sharing problem which arises in a variety of scenarios

including massive MIMO vs. Small Cells [29].
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A Proof of Theorem 1

In order to prove Theorem 1, we modify some useful

results from [24]. Conditioning on the nearest base station

at a distance r from the typical user, the outage probability

can be written as:

pout(λ,T ,α, S, γ ) = Er
[

1− P
[

ln(1+ SINR) >T , fo ∈ �bo |r
]]

.

Since expectation is a linear operator and these two

events are independent, the above expression can be

decomposed as:

pout(λ,T ,α, S, γ ) = 1 − Er [P [ln(1 + SINR) > T | r]]
︸ ︷︷ ︸

(i)

Er

[

P
[

fo ∈ �bo | r
]]

︸ ︷︷ ︸

(ii)

.

(13)

Proceeding term by term, we first write (i) as:

Er[P[ ln(1 + SINR) > T | r] ]

=
∫

r>0
P [ln(1+SINR)>T |r] fr(r)dr

(14)

(a)=
∫

r>0
P [ln(1+SINR)>T |r] e−πλr22πλrdr

(b)=
∫

r>0
P

[
hr−α

σ 2 + Ir
>eT −1 |r

]

e−πλr22πλrdr

(c)=
∫

r>0
P

[

h>rα
(

eT−1
)

(σ 2+ Ir) |r
]

× e−πλr22πλrdr,

(15)

where fr(r) = e−πλr22πλr is the probability distribu-

tion function of r for Poisson point process [24], hence

(a) follows from its substitution. The expression in (b)

is obtained by plugging the signal-to-interference-plus-

noise ratio formula and letting it on the left hand side

of the inequality and (c) is the result of some algebraic

manipulations for keeping fading variable h alone.

Conditioning on Ir and using the fact that h ∼
Exponential(μ), the probability of random variable h

exceeding rα(eT − 1)(σ 2 + Ir) can be written as:

P[ h>rα
(

eT−1
)
(

σ 2+Ir
)

| r]

= EIr

[

P

[

h >rα
(

eT−1
)
(

σ 2+Ir
)

|r, Ir
]]

= EIr

[

exp
(

−μrα
(

eT−1
)
(

σ 2+Ir
)
)

|r
]

= e−μrα(eT−1)σ 2
LIr

(

μrα
(

eT−1
))

,

(16)

where L(s) is the Laplace transform of random variable Ir
evaluated at s conditioned on the distance of the nearest

base station from the origin. Substituting (16) into (15)

yields the following:

Er [P [ln(1 + SINR)>T |r]] =
∫

r>0
e−μrα

(

eT−1
)

σ 2
LIr

×
(

μrα
(

eT−1
))

e−πλr22πλrdr.

(17)

Defining gi as a random variable of arbitrary but iden-

tical distribution for all i, and Ri as the distance from

the i-th base station to the tagged receiver, the Laplace

transform is written as:

LIr (s) = EIr

[

e−sIr
]

= E�,{gi}

⎡

⎣exp

⎛

⎝−s
∑

i∈�\{bo}
giR

−α
i

⎞

⎠

⎤

⎦

= E�,{gi}

⎡

⎣

∏

i∈�\{bo}
exp

(

−sgiR
−α
i

)

⎤

⎦

(a)= E�

⎡

⎣

∏

i∈�\{bo}
E{gi}

[

exp
(

−sgiR
−α
i

)]

⎤

⎦

(b)= E�

⎡

⎣

∏

i∈�\{bo}
Eg

[

exp
(

−sgR−α
i

)]

⎤

⎦

= exp

(

−2πλ

∫ ∞

r

(

1 − Eg

[

exp
(

−sgv−α
)])

vdv

)

,

where (a) comes from the independence of gi from the

point process�, and (b) follows from the i.i.d. assumption

of gi. The last step comes from the probability-generating

functional of the Poisson point process, which basi-

cally says that for some function f (x), E
[∏

x∈� f (x)
]

=
exp

(

−λ
∫

R2 (1 − f (x))dx)
)

. Since the nearest interfering

base station is at least at a distance r, the integration limits

are from r to infinity. Denoting f (g) as the probability dis-

tribution function of g, then plugging in s = μrα(eT − 1)

and switching the integration order yields:

LIr

(

μrα
(

eT−1
))

= exp

(

−2πλ

∫ ∞

0

(∫ ∞

r

(

1−e−μrα
(

eT−1
)

v−αg
)

vdv

)

× f (g)dg

)

.

By change of variables v−α → y, the Laplace transform

can be rewritten as:

LIr

(

μrα
(

eT −1
))

=

exp

⎛

⎝λπr2 −
2πλ

(

μ(eT −1)
) 2

α r2

α

∫ ∞

0
g

2
α

[

Ŵ

(

−
2

α
,μ
(

eT − 1
)

g

)

− Ŵ

(

−
2

α

)]

f (g)dg

⎞

⎠ .

(18)
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Plugging (18) into (17), using the substitution r2 → v

and after some algebraic manipulations, the expression

becomes:

Er [P [ln(1+ SINR)>T |r]] = πλ

∫ ∞

0
e−πλvβ(T ,α)−μ

(

eT−1
)

σ 2vα/2
dv,

(19)

where β(T ,α) is given as:

β(T ,α) =
2
(

μ
(

eT−1
))

α
Eg

[

g
2
α

(

Ŵ

(

−
2

α
,μ
(

eT−1
)

g

)

−Ŵ

(

−
2

α

))]

.

So far, we have obtained (i) of (13). The term (ii) is

straightforward to derive. In the system model, as we

assume that every small base station caches the same pop-

ular files and they have the same storage size, the cache hit

probability becomes independent of the distance r. This

yields:

Er

[

P
[

fo ∈ �bo | r
]]

=
∫ S/L

0
fpop( f , γ )d f . (20)

Plugging both (19) and (20) into (13) and rearranging

the terms, we conclude the proof. �

B Proof of Theorem 2
Average achievable delivery rate is τ̄ = E [τ ], where the

average is taken over the Poisson point process and the

fading distribution. It can be shown that:

τ̄ = E[ τ ]

(a)= E
[

P [ln(1+ SINR)>T]
(

TP
[

fo ∈ �bo

]

+C (λ)P
[

fo �∈ �bo

])]

(b)= E

⎡

⎢
⎣P [ln(1+ SINR)>T | r]
︸ ︷︷ ︸

τ1

⎤

⎥
⎦

×

⎛

⎜
⎝E

⎡

⎢
⎣TP

[

fo ∈ �bo | r
]

︸ ︷︷ ︸

τ2

⎤

⎥
⎦+ E

⎡

⎢
⎣C (λ)P

[

fo �∈ �bo | r
]

︸ ︷︷ ︸

τ3

⎤

⎥
⎦

⎞

⎟
⎠

= E [τ1] (E [τ2] + E [τ3]) ,

(21)

where (a) is obtained by plugging the delivery rate as

defined in (6), and (b) follows from independence of the

events and linearity of the expectation operator.

Derivation of E[ τ1] can be obtained from the proof of

Theorem 1, by following the steps from (14) to (19). On

the other hand, the fact that the cache hit probability is

independent of r, Er[ τ2] can be expressed as:

Er[τ2]= T

∫ S/L

0
fpop( f , γ )df .

Using similar arguments, Er[ τ3] is written as:

Er[τ3]= C(λ)

(

1 −
∫ S/L

0
fpop(f , γ )df

)

.

Substituting these expressions into (21) concludes the

proof. �

C Proof of Proposition 1
Since Proposition 1 is a special case of Theorem 1, we

follow the similar steps. We first rewrite (13) as:

pout(λ,T ,α, S, γ ) = 1 − Er [P [ln(1 + SINR) > T | r]]
︸ ︷︷ ︸

(i)

Er

[

P
[

fo ∈ �bo | r
]]

︸ ︷︷ ︸

(ii)

.

(22)

For the proceeding of (i), the proof of Theorem 1 can

be followed starting from (14) to (17). Then, the Laplace

transform is written as:

LIr (s) = E�

⎡

⎣

∏

i∈�\{bo}
Eg

[

exp
(

−sgR−α
i

)]

⎤

⎦

(a)= E�

⎡

⎣

∏

i∈�\{bo}

μ

μ + sR−α
i

⎤

⎦

= exp

(

−2πλ

∫ ∞

r

(

1 −
μ

μ + sv−α

)

vdv

)

,

(23)

where (a) comes from the new assumption that g ∼
Exponential(μ). Then, plugging s = μrα

(

eT − 1
)

yields:

LIr

(

μrα
(

eT−1
))

= exp

(

−2πλ

∫ ∞

r

eT−1

eT−1 +
(
v
r

)α vdv

)

.

Using a change of variables u =
(

v
r(eT−1)α/2

)2
results in:

LIr

(

μrα
(

eT − 1
))

= exp
(

−πr2λρ(T ,α)
)

, (24)

where:

ρ(T ,α) = (eT − 1)2/α
∫ ∞

(eT−1)−2/α

1

1 + uα/2
du.

Substituting (24) into (17) with r2 → v gives

πλ

∫ ∞

0
e−πλv(1+ρ(T ,α))−μ(eT−1)σ 2vα/2

dv. (25)

Since α = 4 in our special case, (25) simplifies to:

πλ

∫ ∞

0
e−πλv(1+ρ(T ,4))−μ(eT−1)σ 2v2dv, (26)

where:

ρ(T , 4) = (eT − 1)2/α
∫ ∞

(eT−1)−2/α

1

1 + u2
du

= (eT − 1)2/α
(π

2
− arctan

(

(eT − 1)−2/α
))

=
√

eT − 1

(
π

2
− arctan

(
1

√
eT − 1

))

.
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From this point, (26) can be further simplified since it

has a form similar to:
∫ ∞

0
e−axe−bx2dx =

√

π

b
exp

(
a2

4b

)

Q

(
a

√
2b

)

,

where Q (x) = 1√
2π

∫∞
x e−y2/2dy is the standard Gaus-

sian tail probability. Setting a = πλ(1 + ρ(T , 4)) and

b = μ(eT − 1)σ 2 = (eT − 1)/SNR gives:

π
3
2 λ

√

eT−1
SNR

exp

(

(λπ(1+ρ(T , 4)))2

4
(

eT−1
)

/SNR

)

Q

⎛

⎜
⎝

λπ(1+ρ(T , 4))
√

2
(

eT−1
)

/SNR

⎞

⎟
⎠ .

(27)

This is the final expression for (i) of (22). The term (ii)

of (22) can be obtained by using similar arguments given

for (20) in the proof of Theorem 1, meaning that the cache

hit probability is independent of distance r. Thus:

Er

[

P
[

fo ∈ �bo | r
]]

=
∫ S/L

0
fpop

(

f , γ
)

df

(a)=
∫ 1+S/L

1
(γ − 1) f −γ df

= 1 −
(

L

L + S

)γ−1

,

(28)

where (a) follows from plugging definition of C(f , λ)

given in Assumption 1 and changing the integration lim-

its accordingly. The last term is the result of the integral.

Therefore, we conclude the proof by plugging (27) and

(28) into (22). �

D Proof of Proposition 2
The proposition is a special case of Theorem 2; thus, we

have the similar steps. We start by rewriting (21) as:

τ̄ = E

⎡

⎣P [ln(1 + SINR) >T | r]
︸ ︷︷ ︸

τ1

⎤

⎦

⎛

⎜
⎝E

⎡

⎢
⎣TP

[

fo ∈ �bo | r
]

︸ ︷︷ ︸

τ2

⎤

⎥
⎦

+E

⎡

⎢
⎣C (λ)P

[

fo �∈ �bo | r
]

︸ ︷︷ ︸

τ3

⎤

⎥
⎦

⎞

⎟
⎠

= E [τ1] (E [τ2] + E [τ3]) . (29)

In this expression, the term E [τ1] can be obtained from

the proof of Proposition 1. More precisely, observe that

E [τ1] is identical to (i) of (22). Thus, following the steps

from (23) to (27), we obtain:

E [τ1] = E [P [ln(1 + SINR)>T | r]]

=
π

3
2 λ

√

eT−1
SNR

exp

(

(λπ(1+ρ(T , 4)))2

4(eT −1)/SNR

)

Q

(

λπ(1+ρ(T , 4))
√

2(eT −1)/SNR

)

.

(30)

On the other hand, E [τ2] can be obtained by taking T

out of the expectation and plugging (28) into the formula,

for example:

E [τ2] = E
[

TP
[

fo ∈ �bo | r
]]

= T

(

1 −
(

L

L + S

)γ−1
)

.
(31)

Finally, E [τ3] is easy to derive as:

E [τ3] = E
[

C (λ)P
[

fo �∈ �bo | r
]]

= C (λ)

(
L

L + S

)γ−1

=
(
C1

λ
+ C2

)(
L

L + S

)γ−1

,

(32)

where definition of C(λ) follows from Assumption 1.

Substituting (30), (31), and (32) into (29) concludes the

proof. �

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This research has been supported by the ERC Starting Grant 305123 MORE

(Advanced Mathematical Tools for Complex Network Engineering), the

SHARING project under the Finland grant 128010 and the project BESTCOM.

Author details
1Large Networks and Systems Group (LANEAS), CentraleSupélec, 91192

Gif-sur-Yvette, France. 2Centre for Wireless Communications, University of

Oulu, 90014 Oulu, Finland. 3Telecommunication Department,

CentraleSupélec, 91192 Gif-sur-Yvette, France. 4Mathematical and Algorithmic

Sciences Lab, Huawei France R&D, 92100 Boulogne-Billancourt, France.

Received: 14 August 2014 Accepted: 6 January 2015

References

1. Cisco, Cisco visual networking index: global mobile data traffic forecast

update, 2013–2018. White Paper, [Online] http://goo.gl/l77HAJ (2014)

2. 3GPP, Overview of 3GPP Release 13. [Online] http://www.3gpp.org/

release-13 (2014)

3. J Hoydis, M Kobayashi, M Debbah, Green small-cell networks. IEEE

Vehicular Technol. Mag. 6(1), 37–43 (2011)

4. TQ Quek, G de la Roche, I Güvenç, M Kountouris, Small cell networks:

deployment, PHY techniques, and resourcemanagement. (Cambridge

University Press, UK, 2013)

5. M Bennis, M Simsek, W Saad, S Valentin, M Debbah, A Czylwik, When

cellular meets wifi in wireless small cell networks. IEEE Commun. Mag.

Spec. Issue HetNets. 51(6), 44–50 (2013)

6. JG Andrews, Seven ways that HetNets are a cellular paradigm shift.

IEEE Commun. Mag. 51(3), 136–144 (2013)

7. Newcom#, Network of excellence in wireless communications. [Online]

http://www.newcom-project.eu (2014)

8. Horizon 2020, The EU framework programme for research and innovation.

[Online] http://ec.europa.eu/programmes/horizon2020 (2014)

9. E Nygren, RK Sitaraman, J Sun, The Akamai network: a platform for

high-performance internet applications. ACM SIGOPS Oper. Syst. Rev.

44(3), 2–19 (2010)

10. B Ahlgren, C Dannewitz, C Imbrenda, D Kutscher, B Ohlman, A survey of

information-centric networking. IEEE Commun. Mag. 50(7), 26–36 (2012)

11. S Spagna, M Liebsch, R Baldessari, S Niccolini, S Schmid, R Garroppo,

K Ozawa, J Awano, Design principles of an operator-owned highly

distributed content delivery network. IEEE Commun. Mag. 51(4),

132–140 (2013)

http://goo.gl/l77HAJ
http://www.3gpp.org/release-13
http://www.3gpp.org/release-13
http://www.newcom-project.eu
http://ec.europa.eu/programmes/horizon2020
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