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Cache Memory Organization to Enhance the Yield 
of High-Performance VLSI Processors 

Abstract-High-performance VLSI processors make extensive 
use of on-chip cache memories to sustain the memory bandwidth 
demands of the CPU. As the amount of chip area devoted to on- 
chip caches increases, we can expect a substantial portion of the 
defects/faults to occur in the cache portion of a VLSI processor 
chip. considerably. 

This paper studies the tolerance of defects/faults in cache 
memories. We argue that, even though the major components of 
a cache are linear RAM’s, traditional techniques used for fault/ 
defect tolerance in RAM’s may neither be appropriate nor 
necessary for cache memories. We suggest a scheme that allows a 
cache to continue operation in the presence of defective/faulty 
blocks. We then present the results of an extensive trace-driven 
simulation analysis that evaluates the performance degradation 
of a cache due to defective blocks. From the results we see that 
the on-chip caches of VLSI processors can be organized such that 
the performance degradation due to a few defective blocks is 
negligible. We conclude that by tolerating such defects without a 
noticeable performance degradation, the yield of VLSI proces- 
sors can be enhanced considerably. 

presented in [lo]) suggests that, if defectdfaults in the area 
occupied by the on-chip cache can be tolerated without 

the yield of single-chip vLsI processors can be enhanced 

The crux of defect- and fault-tolerance techniques is the use 
of redundancy. Generally some form of redundancy is 
provided explicitly for defect/fault tolerance. Sometimes, 
redundancy may be introduced in a processor not for defect’ 
fault tolerance but for performance enhancement. A cache 
memory is an example of such a “redundant” resource. Cache 
memory is “redundant” because the correctness of processor 
operation is not dependent upon the presence of the cache. A 
processor can still operate correctly, albeit with severely 
degraded performance, in the absence of an architecturally- 
invisible cache memory. 

When “redundant” components are present in a processor, 

performance degradation and/or increase in 

two important and interesting questions arise: 1) what defect/ 
fault-tolerance technique should be used for ‘ ‘redundant” Index Terms-Cache performance, defect/fault conditions, 

vLsI proces- onehip cache memories, trace-driven . -  . 

sors. portions of a processor such as the cache memory and 2) what 

I. INTRODUCTION 
DVANCES in semiconductor technology have led to the A development of high-performance single-chip VLSI 

processors. For such processors, an increase in CPU speed 
must be coupled with an increase in memory bandwidth. By 
far the most popular technique for improving memory band- 
width in general purpose processors is the use of cache 
memories. For a single-chip processor, this translates into the 
use of on-chip cache memories. Many recent single-chip 
processors use some form of on-chip cache to provide 
adequate memory bandwidth and reduced memory latency for 
the CPU [3], 141, [6], [7], [9], [12], [14], [17]. For example, 
the MIPS-X processor devotes more than half its chip area 
to an on-chip instruction cache [9]. We expect that, in the 
future, most single-chip VLSI processors will devote a 
sizeable fraction of their chip resources to cache memories. 

An increase in the circuit density of single-chip processors 
is coupled with an increase in defects. Since a large fraction of 
chip area will be devoted to cache memories in the near future, 
we expect that a large fraction of defects in a VLSI processor 
chip will be present in the cache memory portion of the chip. 
Application of yield improvement models (such as the model 
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are the performance implications of such a scheme? The focus 
of this paper is to evaluate the effects of defectdfaults in a 
cache memory and provide answers to the above questions in 
the context of a cache memory. 

The outline of this paper is as follows. We start off by 
discussing the nature of defects in cache memories and see 
how they affect cache operation. We discuss the use of 
techniques that use additional redundancy to tolerate defects 
and see why their use may not be a good choice for cache 
memories, especially for the on-chip caches of VLSI proces- 
sors. We present a technique that allows a cache to continue 
operation even though some of its blocks may be defective. 
Then we evaluate the performance of cache memories to 
determine if defective blocks cause any appreciable loss in 
performance. Next, we present a discussion of the related 
issues of a sector cache organization and operational faults. 
Finally, we present concluding remarks. 

11. DEFECTS IN CACHE MEMORIES AND THEIR TOLERANCE 
A cache memory consists of several blocks or lines of data. 

Each cache block is occupied by data elements from a block of 
the memory. A block consists of several contiguous bytes of 
memory. As data are referenced by the processor, they are 
brought from the memory into the cache. Data from a memory 
block are present in the data memory or data array portion of 
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the cache. Each block in the cache has an associated tag which 
is kept in the tag memory or tag array portion of the cache. 
The tag is used to distinguish between one of several memory 
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blocks that map onto a cache block. A simplified description of 
cache operation follows; a detailed description can be found in 
a survey paper by Smith [19]. 

When the CPU generates a memory request, a portion of the 
address is used as a tag and is compared to the tag(s) stored in 
appropriate locations in the tag array. If a match results, we 
have a cache hit and the data are accessed from the 
corresponding location in the data array. If no match results, 
we have a cache miss. On a cache miss, the entire memory 
block is transferred from the memory to the cache and is then 
accessed from the cache. In more sophisticated sector cache 
organizations, a block could be subdivided into several 
transfer blocks [ll], [19]. To simplify the discussion, we 
shall initially assume a nonsector cache organization (indeed, 
this is the more common case). Then, in Section IV-A, we 
shall discuss the implications of a sector cache organization. 

A. Types of Cache Defects 
Components of a processor such as registers, buses, control 

logic, and the ALU are critical to the functioning of the 
processor. Defects in such components are critical defects 
because the defect will lead to incorrect processor operation 
unless some action is taken to tolerate and/or correct such 
defects. Consider, for example, a defect in a register. 
Instructions that utilize the defective register have no alternate 
modes of operation without violating the architectural defini- 
tion of the instruction and will fail unless means are provided 
to tolerate the defect. Likewise, an ability to tolerate defects in 
the main memory must also be provided. As mentioned 
earlier, cache memory is not an “essential” component of the 
processor as far as correct operation is concerned. Cache 
memory is present in a processor mainly for performance 
reasons. The processor will be able to operate in a correct, but 
degraded, fashion if parts (or all) of the cache memory are 
unavailable and if alternate means are provided to recover and 
access correct data. If data cannot be accessed from a defective 
cache block, it can always be recovered from the memory 
without violating the architectural definition of the instruction. 
We call defects in noncritical components, such as the cache, 
noncritical defects. 

A majority of fabrication defects can be classified as 
random spot defects [20]. Our defect model assumes random 
spot defects. We also assume that the defective area is small 
enough so that a single defect affects only one block of the 
cache (though more than one bit in each block may be 
defective). If the defect occurs in the tag array of the cache, we 
call it a cache tag defect and if it occurs in the cache data 
array, we call it a cache data defect. A cache tag defect will 
not pollute the data stored in the cache, i.e., it will not pollute 
the contents of the cache data array, but it will affect the cache 
hit operation. Examples of incorrect operation due to a cache 
tag defect include: 1) a miss indication even though data for 
the block are present in the cache, 2) a hit indication even 
though the block is not present in the cache, and 3) a 
“multiple” hit resulting from several tags matching. A cache 
data defect does pollute the data in the cache data array but 
does not affect the tag array. Such a defect does not affect the 
cache hit operation but results in the access of incorrect data. 

B. Use of Redundancy to Tolerate Defects in Cache 
Memories 

Since redundancy is a popular way of enhancing the yield 
and reliability in several contexts, one might be tempted to use 
redundancy in the cache portion of the VLSI processor to 
enhance the yield. Both the major portions of the cache, i.e., 
the tag and the data arrays are linear RAM’s and redundancy 
techniques that are useful for RAM’s could easily be applied to 
a cache. These techniques fall into two broad categories: 1) 
spare resources and a reconfiguration mechanism to substitute 
the defective resource with a defect-free resource and 2) use of 
error checking and correction (ECC) codes to mask out defects 
within a resource. Below, we discuss both of these options in 
some more detail. 

I) Spare Cache Blocks and Reconfiguration: A cache 
memory could be designed with spare cache blocks in the data 
and tag arrays. If a block is defective, it can be switched out 
and a spare block substituted in its place using electrical or 
laser fuses [13]. The overhead for doing so includes the 
additional chip area for the spare blocks and the additional 
logic needed to implement the reconfiguration. 

While this overhead is not very significant, we would like to 
emphasize that there is no reason to have a “full” cache in 
order to ensure correct operation of the processor. A “full” 
cache is a cache with the same number of defect-free blocks 
available for use in the caching operation as a completely 
defect-free cache. If the cache can be designed to operate in 
the presence of defective blocks with a negligible performance 
degradation, the use of spare cache blocks is wasteful. 

2) Error Checking and Correction (ECC): ECC tech- 
niques have been used widely to tolerate faults in memory 
systems [18]. A typical memory system uses a single error 
correcting double error detecting (SECDED) Hamming code 
to correct single errors and detect double errors in the memory 
system. To carry out the detection and correction process, 
redundancy in the form of check bits must be incorporated into 
the memory data word. The fault-tolerance capability of an 
ECC technique is determined by the number of check bits 
used. 

ECC techniques can also be used to enhance the yield of 
memories by masking out defective bits [ 131. Since the tag and 
data arrays of the cache are essentially linear RAM’s, one 
might be tempted to use an ECC scheme to tolerate cache 
defects. However, ECC techniques have two forms of 
overhead: 1) the time penalty introduced by the ECC logic and 
2) the additional RAM required to store the check bits. Let us 
consider the implications of these overheads. 

Since the degradation in memory access time is a good 
indicator of the degradation in performance of a VLSI 
processor, let us consider the degradation in memory access 
time due to the ECC logic. A typical processing system that 
uses a high-performance VLSI processor would have at least 
three levels in its memory hierarchy (excluding backing store). 
These levels are: 1) the on-chip or level 1 cache that serves to 
reduce the latency of CPU requests, 2) an off-chip or level 2 
cache that serves both to reduce the latency of off-chip 
memory requests and, in the case of a multiprocessor, to 
reduce the traffic on the interconnect [8], and 3) the main 
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memory. For such a three-level memory hierarchy, the 
effective memory access time as seen by the CPU is 

T=hl ti + (1 - hl)h2f2 + (1 - hi ) ( l -  h2)tm (1) 

where hl is the hit ratio and tl is the access time of the level 1 
cache, hz is the hit ratio‘and tz is the access time of the level 2 
cache, and tm is the access time of the main memory. 

Using (l), let us see how the use of ECC at various levels in 
the memory hierarchy affects the overall effective memory 
access time. Let us consider a processing system built using 
high-performance VLSI processors in which the relative 
access times of the level 1 cache, the level 2 cache, and the 
main memory are 1, 3, and 10 time units, respectively. These 
values are typical of processing systems built using single-chip 
processors such as the NS32532 processor [3]. To determine 
the time penalties due to ECC at various levels, we carried out 
a VLSI layout of an on-chip cache and a paper design of a level 
2 cache and a main memory. A timing analysis indicated that 
SECDED ECC degraded the the access time of level 1 cache, 
the level 2 cache, and the memory by 20, 15, and 10 percent, 
respectively. Assuming these degradations in access times to 
be representative of a large class of high-performance process- 
ing systems, we computed the average memory access time as 
seen by the CPU. 

Table I presents the average access time as seen by the CPU 
for three cases: 1) a small level 1 cache (h,  = 0.6), 2) a 
medium level 1 cache (hl = 0.8), and 3) a relatively large 
level 1 cache (hl = 0.9). In all cases, the on-chip level 1 cache 
is backed up by a typical medium-sized off-chip level 2 cache 
(hz = 0.95). The results in Table I are presented for varying 
degrees of ECC usage. 

From Table I we can see that, in all cases, the use of ECC in 
the main memory does not affect the overall memory access 
time to any appreciable extent (a degradation of about 1 
percent). If ECC is used in the level 2 cache, the overall 
memory access time is degraded slightly (3.9-9.8 percent over 
the no-ECC case) but the degradation is less severe if the level 
1 cache is larger and has a higher hit ratio. Note that the level 2 
cache and the main memory are built from several chips and 
ECC would be necessary for fault tolerance. Indeed, the use of 
ECC for the main memory is very desirable. The use of ECC 
is also desirable for the level 2 cache especially if the level 2 
cache is a copy-back cache and is built from DRAM’S. 

However, the use of ECC in the level 1 cache degrades the 
overall memory access time significantly (17- 18 percent over 
the no-ECC case). Therefore, the use of ECC in the on-chip 
cache for yield enhancement does not seem to be an attractive 
option for high-performance VLSI processors. Furthermore, 
in the absence of adequate cache-coherence algorithms for on- 
chip caches, the on-chip caches are generally used to cache 
read-only information (such as instructions) or are write- 
through caches. For a read-only or a write-through cache, 
correct information always exits elsewhere in the system (the 
level 2 cache or the memory) at all times. Therefore, a simple 
error-detection capability is all that is needed even for fault- 

’ For a justification of the hit ratios of the level 1 caches, see Section IU-B 
and for a justification of the hit ratios of the level 2 cache, see [19]. 

TABLE I 
AVERAGE MEMORY ACCESS TIME FOR VARYING ECC USAGE 

Ecconlyia 

ECCU(111 
1-1. 

tolerant operation of the level 1 cache (see discussion in 
Section IV-B) and a more complex ECC scheme for fault 
tolerance is wasteful. 

It is possible that the degradation in memory access time due 
to ECC could be reduced for the on-chip cache [15]. For 
example, data could be read from the on-chip cache assuming 
that no error exists and supplied directly to the CPU. The ECC 
computation could be carried out in parallel with the CPU’s 
use of the data. If the ECC computation indicates an error, the 
CPU would be informed and the computation aborted. 
However, the additional RAM overhead still exists and let us 
consider that. 

Ideally, ECC must be provided on the smallest writeable 
unit [15]. Since the smallest writeable unit in most processors 
is a byte, this implies the use of 1 parity bit for single error 
detection, 4 check bits for single error correction, and 5 check 
bits for SECDED for each byte in the cache. This per bit 
overhead can be reduced by maintaining ECC check bits at the 
word (16-bit) or double word (32-bit) level. However, doing 
so can complicate the access of data in the cache when only a 
byte needs to be accessed since ECC information must be 
computed for more than a byte [ 151. 

Because of the time and space overheads associated with it, 
ECC techniques to tolerate defects in an on-chip cache may be 
of limited utility. Indeed, if a defect affects more than a single 
bit in a cache block (as our defect model allows), the RAM 
overhead for storing the check bits for a multiple-error- 
correcting ECC code can be very large. Even if the overheads 
are tolerable, we would like to know if they are worthwhile. 
Therefore, we would like to see how a cache can operate in the 
presence of defective blocks and how the performance of the 
cache would be degraded in such a case. 

C. Operation with Defective Blocks 
To operate in the presence of defective blocks, the cache 

control logic must be able to distinguish between defective and 
defect-free blocks. To do so, we append to each block of the 
cache an availability bit. This bit is similar to the fault- 
tolerance bit proposed for the RISC-II instruction cache [ 161. 
When the cache is tested, the availability bit for a block is set if 
the block is free of defects and is reset if a defect exists in the 
block. The defect can either be a cache data defect or a cache 
tag defect (in Section IV-A, we shall see how these bits and 
their setting change for a sector cache organization). The 
cache control logic makes use of the availability bit when it 
makes decisions during cache operation. The defective block 
is excluded from cache operation, that is, it is never chosen as 
the target block by the cache placement algorithm. If a 
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reference maps onto a defective block, the reference is treated 
as a miss. 

When data are fetched from the memory, they are normally 
supplied to the CPU through the cache. If the cache is set 
associative and there is at least one defect-free block in each 
set of the cache, data transfer between the CPU and the 
memory can be carried out through a defect-free block. 
However, if all the blocks in a particular set are defective, data 
references that map onto the defective set cannot be carried out 
through the cache. This problem is particularly significant in a 
direct mapped cache where there is only one block in each set. 
To overcome this problem, selective bypass of the cache must 
be possible. We believe that this selective bypass capability is 
not a significant problem. Most processors have an option to 
turn off the on-chip cache thereby bypassing the cache for all 
memory references. Since the basic data paths already exist, 
extending the capabilities to allow selective bypass is straight- 
forward. 

The approach of using an availability bit to allow cache 
operation has little overhead-a single bit for each cache 
block. The cache can continue operation in the presence of 
cache tag and cache data defects. However, correct operation 
cannot be guaranteed in the rare case in which the defect exists 
in an availability bit. If the cache can be organized so that the 
degradation in performance due to defective blocks is negligi- 
ble, this approach can be used profitably to enhance the yield 
of a VLSI processor with an on-chip cache. 

III. CACHE PERFORMANCE UNDER DEFECT CONDITIONS 

In this section, we evaluate the performance of various 
cache organizations in the presence of defective blocks, where 
cache performance is measured by the miss ratio. First, we see 
how sensitive a cache organization is to a defective or missing 
block and then we carry out a detailed performance evaluation 
using trace-driven simulation. 

A .  The Sensitivity of a Cache Organization to Defective 
Blocks 

Let us suppose that the memory consists of M blocks, the 
cache consists of C blocks, and the set associativity (number 
of blocks per set) of the cache is S. For this organization, there 
are (M x S) /C  blocks in an equivalence or congruence 
class. All blocks from the same equivalence class are mapped 
onto the same set of the cache, i.e., the (M x S) /C  blocks of 
an equivalence class are mapped onto one of S blocks in the 
cache. 

In a direct mapped cache, the set associativity is one (S = 
1) and if a cache block is defective, M / C  memory blocks are 
excluded from the cache. Consider, for example, the cache- 
memory system of Fig. 1. The cache has four blocks (C = 4) 
and the memory has 16 blocks (M = 16). If the cache were 
direct mapped (S = l), under normal operation four memory 

So far we have assumed the presence of two levels of cache in the memory 
hierarchy. The reader should note that if the caches in the hierarchy have 
inclusion properties [5 ] ,  that is, the contents of the level 1 cache are a subset of 
the contents of the level 2 cache, the presence of the level 2 cache does not 
affect the mapping of memory blocks in the level 1 cache. Therefore, to 
simplify our examples in this section, we shall use a single level cache in the 
memory hierarchy. 
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Fig. 1 .  An example cache-memory system. 

blocks, namely {MO,  M4,  Ms, M I 2 } ,  map onto cache block 
Co. If cache block CO is defective, four memory blocks {MO,  
M4, Ms ,   MI^} will be excluded from the cache. 

Since memory blocks {MO,  M4, Ms ,  Mlz}  cannot be 
present in the cache, references to these blocks must be 
serviced by the CPU-memory interface directly without 
passing the data through the cache. Therefore, any reference 
to these blocks would be a miss. In general, if there are D 
defective blocks in the direct mapped cache, (D x M ) / C  
memory blocks would be excluded from the cache. Therefore, 
we can expect the m i s s  ratio of a direct mapped cache to 
degrade linearly with the number of defective blocks. 

A set associative cache is less restrictive. A single defective 
block does not automatically exclude any memory block from 
the cache. In fact, as long as every set in the cache has at least 
one defect-free block, no memory block is excluded from the 
cache. Blocks from a congruence class are excluded only if all 
the cache blocks of the corresponding set are defective. 
However, the miss ratio will degrade because the probability 
of interference among the blocks that map onto a set with 
defective blocks increases. For example, suppose that the 
cache of Fig. 1 were two-way set associative (S = 2) and 
cache blocks {CO, C , }  comprised set 0 of the cache. Under 
normal operation, memory blocks {MO,  Mz, M4, M6, Ms, 
MIO,  M12, M14} could be present in either cache blocks CO or 
C1. A defect in cache block CO will not exclude any memory 
block from the cache completely; however, the probability of 
interference among the memory blocks that map onto set 0 of 
the cache will increase. Since no memory block is excluded 
from the cache unless all blocks in a set are defective, we can 
expect the degradation in m i s s  ratio for a set associative cache 
to be less than the degradation in miss ratio for an equivalent 
direct mapped cache. 

A fully associative cache (S = C) always allows every 
memory block to be cached (unless the entire cache is 
defective). Furthermore, all memory blocks are treated 
uniformly and no set of memory blocks experiences a greater 
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Fig. 2. Miss ratios; cache size = 256 bytes. 

interference than another set. The degradation in the miss 
ratio, therefore, will be due solely to the increased probability 
of interference. The probability of interference is small, 
especially for larger cache sizes. Therefore, we expect a fully 
associative cache to have little degradation in miss ratio 
because of defective blocks, especially if the number of 
available defect-free blocks is large. 

In summary, based on our understanding of cache operation 
in the presence of defective blocks, we expect that a direct 
mapped cache will be more sensitive to defects than a set 
associative cache with the same cache and block size. 
Furthermore, we also expect a cache with a larger number of 
blocks to be less sensitive to defective blocks than a cache with 
fewer number of blocks. 

B. Simulation Methodology 
To get an accurate estimate of degradation in cache 

performance (as measured by the miss ratio) due to defective 
blocks, we carried out an extensive trace-driven simulation 
analysis. Trace-driven simulation is the most popular way of 
evaluating cache memory performance. We simulated three 
different cache sizes: 1) a 256 byte cache which is a typical on- 
chip cache size for VLSI processors of the early- to mid- 
1980’s (such as the Motorola 68020), 2) a 1K byte cache 
which is a typical on-chip cache size for VLSI processors of 

the mid- to late-l980’s, and 3) an 8K byte cache which we 
expect be a typical on-chip cache size for high-performance 
VLSI processors of the near future. A direct mapped, a two- 
way set associative, and a fully associative organization were 
simulated for each cache size. A least recently used (LRU) 
replacement strategy was used for the set and fully associative 
organizations. The block size was also varied for each cache. 

The benchmark programs used to simulate the caches were 
taken from the widely-used traces generated for a VAX-111 
780 using the ATUM trace technique [l]. Each cache 
organization was simulated for approximately 1 million 
references. The caches were unified instruction and data 
caches. The simulations were carried out using a software 
cache simulator. We assume that the defects in the cache occur 
randomly, i.e., there is no clustering of defects. The simulator 
injects defects at random. A defect has the effect of preventing 
any data from being cached in the defective block. Since 
various blocks of the cache are not accessed precisely in the 
same fashion, two different caches with the same number of 
defective blocks (but different defective blocks) may differ 
slightly in performance. In order to overcome this problem, 
we simulated each cache organization several times for the 
same number of defective blocks but with a different set of 
defective blocks for each run and averaged the miss ratios. 

The results of our simulation are presented in Figs. 2-4. 
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Fig. 3.  Miss ratios; cache size = 1K bytes. 

The figures plot the cache miss ratio (averaged over all traces) 
versus the percentage of blocks that are defective for direct- 
mapped (DM), two-way set associative (TW), and fully 
associative (FA) caches with various block sizes (in bytes). 
For the 256 byte and 1K byte caches, we have plotted the 
complete range of defective blocks. For the 8K byte cache, we 
have truncated the curves at 50 percent defective blocks to 
allow for a better look at the miss ratio degradation, especially 
for a fully associative cache. 

C. Discussion of the Simulation Results 
Consider the results for a 256 byte cache (see Fig. 2). If the 

cache is organized as a direct mapped cache, the m i s s  ratio 
would degrade almost linearly with the number of defective 
blocks. This is indeed what we had expected. Thus, if the 
block size was 16 bytes (BS = 16), four defective blocks 
would imply that 25 percent of the blocks were defective and 
the miss ratio would degrade from about 0.325 to about 0.493. 
If, on the other hand, the cache were organized as a fully 
associative cache, the miss ratio would degrade only from 
about 0.259 to about 0.304. The degradation in miss ratio for 
other set associative organizations would be in between the 
two limits. For a two-way set associative organization, the 

miss ratio would degrade from about 0.307 to about 0.397. If 
the block size is small (4 bytes) and there is only a single 
defective block (1.56 percent of all blocks are defective), the 
miss ratio would degrade by only 0.002 (from 0.357 to 0.359) 
for a fully associative cache and by 0.01 (from 0.42 to 0.43) 
for a direct-mapped cache. 

The results for cache sizes of 1K and 8K bytes (Figs. 3 and 
4) follow a similar pattern. However, because of a large 
number of total blocks, more defect-free blocks are available 
for caching operation and the absolute degradation in miss 
ratio is much smaller. For example, in a direct mapped 8K 
byte cache with a block size of 8 bytes, four defective blocks 
(1.56 percent of all blocks) would degrade the miss ratio by 
only 0.0037 (from 0.0689 to 0.0726). If the 8K byte cache is 
two-way set associative with 8 byte blocks, the degradation in 
miss ratio due to four defective blocks would have only been 
0.001. For a fully associative organization, the degradation is 
negligibly small. 

An interesting point to note from Fig. 4 is that for a fully 
associative 8K byte cache, a loss of 50 percent of its blocks 
would only degrade the miss ratio from 0.054 to 0.064 if the 
block size is 8 bytes. Since a fully associative 8K byte cache 
with 50 percent of its blocks defective is essentially the same 
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Fig. 4. Miss ratios; cache size = 8K bytes. 

TABLE II 
RELATIVE MEMORY ACCESS TIME IN THE PRESENCE OF DEFECTS 

1 1.864 1.458 1188 1743 1360 1.142 1676 1282 1.126 
2 I I I 1901 I 1.475 I 1:190 I 1:79 I 1.363 I 1.142 I 11686 1 1:284 I 1.126 I 

as a fault-free, fully associative 4K byte cache, the reader 
might be tempted to conclude that a 4K byte fully associative 
cache is adequate; additional chip resources utilized in going 
to an 8K byte cache might be better utilized elsewhere. 
However, we would like to point out that the results for the 
fully associative cache have been presented as an upper bound. 
In many cases, fully associative caches are prohibitively 
expensive to implement and most practical caches employ a set 
associative organization. 

Since the results presented in Figs. 2-4 do not indicate the 
degradation in the memory access time as seen by the 
processor, we converted the degradation in the miss ratio of 

the level 1 cache to a degradation in the relative memory 
access time as seen by the processor. We assumed the same 
system parameters as in Section 11-B-2, i.e., the level 2 cache 
has a hit ratio of 0.95 and a relative access time of three cycles 
and the main memory has a relative access time of ten cycles. 
The results for block sizes of 8 and 16 bytes and various cache 
organizations are presented in Table II. 

From the results presented in Figs. 2-4 and Table 11, we can 
make two observations about cache behavior in the presence of 
defective blocks. First, for an arbitrary cache organization, the 
performance degradation due to defect is larger if the fraction 
of cache resources that it affects is larger. For example, the 
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degradation due to a single defective block in a cache with a 
block size of 8 bytes is smaller in a 1K byte cache (0.78 
percent defective blocks) than in a 256 byte cache (3.125 
percent defective blocks). The fraction of cache blocks that are 
unavailable due to defects can be reduced by increasing the 
cache size and/or decreasing the block size. However, smaller 
block sizes mean more tags and consequently more chip area. 
As we shall see in Section IV-A, a sector cache organization 
provides a good middle ground. 

Second, for an arbitrary cache size, the performance 
degradation is smaller if the cache has a higher degree of set 
associativity. Increasing set associativity not only improves 
defect-free cache performance, it also enhances the ability of 
the cache to tolerate defects independent of or in conjunction 
with the cache size and the block size. 

IV. RELATED ISSUES 
A .  Sector Caches 

The cache organizations that we have discussed so far have 
a single block size and fetch the entire block into the cache on a 
miss. In general, large block sizes are preferable because they 
reduce the number of tags required (and consequently the size 
of the tag array RAM). However, large block sizes have two 
problems that limit their use: 1) additional traffic is generated 
on the cache-memory interconnection and 2) the time penalty 
incurred on a miss to fetch the block into the cache is larger. 
The first problem is significant for a multiprocessor with 
private cache memories [8] and the second is significant for a 
VLSI processor with an on-chip cache memory [2]. To 
alleviate these problems, a sector cache organization can be 
used. 

In a sector cache, an address block is divided into several 
transfer blocks [l l] ,  [19]. Tags for an entire address block 
are maintained in the tag array. An additional bit called a 
presence bit is maintained for each transfer block in the data 
array. A reference is a miss either if the address block is not 
present in the cache or if the desired transfer block within the 
desired address block is not present in the cache. On a miss, 
only the desired transfer block is brought into the cache. By 
having large address blocks and small transfer blocks, we can 
reduce the cache-memory traffic as well as minimize the 
penalty incurred on a miss. 

A sector cache can be made defect-tolerant in the same way 
as a regular cache-by the use of a single availability bit for 
each address block. The availability bit is reset if a defect 
exists in the tag portion (address block) or in either of the data 
portions (transfer blocks) of a particular block. However, if a 
cache data defect is confined to a small number of transfer 
blocks from a particular address block, the performance 
degradation can be reduced even further by associating an 
availability bit with each transfer block in the data array. In 
this case, there is a total of T + 1 availability bits where Tis  
the number of transfer blocks in an address block. Now, in 
case of a single cache tag defect, an entire address block (T 
transfer blocks) is unavailable for use and the performance 
degradation that we can expect would be’ similar to the 
performance degradation for a nonsector cache. However, in 

case of a single cache data defect, only a single transfer block 
is unavailable for use (the other T - 1 transfer blocks of the 
address block can still be used for caching). Since the “scope” 
of the defect is much smaller, the degradation in performance 
will also be smaller. 

B. Operational Faults 
So far we have focused our attention on defects that can be 

detected by a testing procedure that is applied before the VLSI 
chip is put into operation. During operation, faults can occur 
and, if tolerating such faults is important, a fault-tolerance 
mechanism must be provided. The mechanism must be able to 
detect that a fault has occurred and take corrective action. 

For our purposes, we assume that an operational fault 
manifests as a single bit error. Under this assumption, 
detecting a fault is quite straightforward and a simple parity 
scheme can be used to do so. If the cache is a copy-back cache, 
a correct copy of data is not guaranteed to exist elsewhere in 
the system at all times and, therefore, a correction capability is 
necessary if fault-tolerant operation is to be guaranteed. 
However, in the case of a cache for read-only data or a write- 
through cache, correct information can always be recovered 
from elsewhere and, therefore, a correction capability in the 
cache is not absolutely necessary in order to guarantee fault- 
tolerant operation. 

The availability bit scheme coupled with an error detection 
mechanism can be used to guarantee fault-tolerant operation in 
write-through and read-only caches. When data are accessed 
from the cache, the error detection mechanism is triggered. If 
the mechanism indicates an error, the access is treated as a 
miss. The data are read from the memory (or level 2 cache) 
into the cache and the access operation is resumed. If an error 
condition is flagged again, a permanent (or intermittent) error 
must exist in the cache block. Since a permanent error is 
functionally equivalent to a defect, the availability bit of the 
block is reset and all future references to the block are treated 
as misses. If the error is transient, it is automatically scrubbed 
by the cache miss operation. In this manner, the cache can be 
used for fault-tolerant operation and its performance degrada- 
tion due to faults is no worse than the performance degradation 
due to an equivalent number of defects. 

For copy-back caches, correct operation cannot be guaran- 
teed unless an ECC scheme is used. However, we can reduce 
the probability of an irrecoverable situation as follows. 
Organize the cache as a sector cache with a parity bit, a dirty 
bit, and an availability bit for each transfer block. A dirty bit is 
a bit which indicates if the contents of the block have been 
updated and if the contents of the block present in the cache 
differ from the contents that are present elsewhere in the 
processing system. As before, the availability bit is used to 
indicate a permanent error. Of the four possible combinations 
of the parity and dirty bits, only in one case can correct data 
not be recovered. This is the case when the dirty bit is set and 
the parity bit indicates an error. If the parity bit indicates no 
error, correct data exist in the cache block. If the parity bit 
indicates an error and the dirty bit is not set (indicating that the 
block has not been modified since it was last brought into the 
cache and a correct copy of the block exists elsewhere in the 
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system), correct data can be recovered from elsewhere. By 
having smaller transfer blocks, the probability of having an 
error in a dirty cache transfer block can be minimized and 
consequently the probability of an irrecoverable error can be 
minimized. 

V. CONCLUSIONS 
To achieve high performance in VLSI processors, the use of 

an on-chip cache memory is highly desirable. Since the on- 
chip cache is expected to consume a large portion of the chip 
area, techniques that allow a cache to continue operation in 
spite of defective blocks can profitably be used to enhance the 
yield of VLSI processors. In this paper, we investigated 
techniques to enhance the yield of on-chip cache memories. 
We saw that traditional techniques that use additional redun- 
dancy may neither be appropriate nor necessary since a cache 
can continue operation in the presence of defects. Then we 
suggested a scheme that allows a cache to continue operation 
in the presence of defective blocks. 

We evaluated the degradation in cache performance due to 
defects using an extensive trace-driven simulation analysis. 
Our evaluation indicates that the performance degradation due 
to defective blocks is small in cases where: 1) the cache is 
large, 2) the block size is small, and 3) the set associativity is 
high. In many cases, the performance degradation is insignifi- 
cant. 

Two major conclusions can be drawn from the work 
presented in this paper: 1) by choosing an appropriate cache 
organization, the need for additional redundancy in a cache to 
allow defectlfault-tolerant operation can be avoided and 2) 
defects in the on-chip cache portion of a VLSI processor can 
be tolerated with a minimum performance loss and very small 
area overhead and consequently, the yield of high-perform- 
ance VLSI processors can be enhanced considerably. 
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