
Cache Miss Equations:

An Analytical Representation of Cache Misses

Somnath Ghosh Margaret Martonosi Sharad Malik

Department of Electrical Engineering, Princeton University

{sghosh,martonosi,sharad}@ee.princeton.edu

Abstract

With the widening performance gap between processors and

main memory, efficient memory accessing behavior is neces-

sary for good program performance. Both hand-tuning and

compiler optimization techniques are often used to trans-

form codes to improve memory performance. Effective trans-

formations require detailed knowledge about the frequency

and causes of cache misses in the code.

This paper describes methods for generating and solving

Cache Miss equations that give a detailed representation

of the cache misses in loop-oriented scientific code. Imple-

mented within the SUIF compiler framework, our approach

extends on traditional compiler reuse analysis to generate

linear Diophantine equations that summarize each loop’s

memory behavior. Mathematical techniques for msnipulat-

ing Diophantine equations allow us to compute the num-

ber of possible solutions, where each solution corresponds

to a potential cache miss. These equations provide a gen-

eral framework to guide code optimizations for improving

cache performance. The paper gives examples of their use

to determine array padding and offset amounts that mini-

mize cache misses, and also to determine optimal blocking

factors for tiled code. Overall, these equations represent
an analysis framework that is more precise than traditional

memory behavior heuristics, and is also potentially fazter

than simulation.

1 introduction

Over the past two decades, improvements in DRAM speeds

have not kept pace with increases in processor speeds. As a

result, data caches are now widely used for hiding memory

latency. Although caches generally work well, some pro-

grams fail to USC them effectively. Programmers often hand-
tune their code in order to improve its memory behavior,

but this process can be time-consuming and error-prone.

In other cases, automatic compiler transformations can im-

prove memory behavior and reduce the programmer’s bur-

den. Either way, programmers or compilers need detailed,

accurate assessments of when, why, and how many cache

misses occur. Prior approaches for analyzing cache behavior

have been hazed either on simulation, which can be slow, or

on compiler heuristics which can be imprecise. In this paper

we present an analysis technique that is more precise than

many existing compiler heuristics and that is faster than

simulation.

PrmGaion to IIX&Z digitaklxard copies ofall or pati ofthis material for

Fmonal or ~.WWCW~ USC is ranted without fee provided hat the copim

are not nlde w dibhuted for profit or conw~er&I ndvar,L3.1ge, he copy-

@t not& the title ofthr puhlicntion and its date appear. and llotice is

!Zive~l that copyright is hy perksion ofthe ACh{, lnc ‘~0 copy ou,er+se.

to rTJuhlish. to post 011 SUWIT or to redistrihutr to I&, rqclircs sp~~ilic
pennission and/or fee

K’S 97 Vienna Austria

COPYiriglll 1997 AC’LI (I-8979 I-902-5 9717 $3 50

There has been extensive research on improving the cache

performance of numerical programs [4, 7, 9, 16, 171. Most
of thiz work targets loop nests with predictable and reg-

ular data accesses. Loop optimization plays a significant

role in compiler optimization az scientific programs spend a

considerable amount of time processing large arrays within

loops. Tiling, strip-mining, interchanging, skewing and WI-

ious combinations of them are widely used to transform a

loop for better temporal and spatial locality for a given

cache size. However, such analysis primarily targets cspac-

ity mizses that occur when the working set of the loop ex-

ceeds the cache size. The loops can also suffer heavily due

to conflict misses [7, 9, 12, 141, thereby precluding effective
cache utilization. Conflict misses can be significant in caches

with low nssociativity. In such situations programmers of-

ten rely on time-consuming cache profiling and performance

tuning [lo, 111. There has also been compiler work in tailor-

ing code to reduce conflict misses [l, 6, 91. Unfortunately,

conflict misses are highly sensitive to slight variations in

problem size and base addresses [l, 91 and hence we need

more precise characterization to understand the underlying

cause behind such conflict misses.

Most previous compiler techniques to optimize loop nests

either use ad hoc cost models to guide loop transforma-
tions [4, 161 or are targeted towards some specific optimiza-

tion [l, 91. There has also been some initial work on esti-

mating the number of cache misses in numerical code (7, 141.

Though the strategies given in previous papers help in re-

ducing cache misses, they give little insight about the causes

of such misses. Their limited focus or approximate modeling

restricts their applicability. This paper attempts to fill thiz

gap by finding precise relationships among the loop indices,

array ties and base addresses, and the cache parameters for

the cache mizses in a loop nest. Those relationships are used

to generate a set of equations-called the Cache Miss Equa-

tions (or CM equations)-representing all the cache misses

in a ioop nest. This simple, precise characterization allows

one to better understand the cause behind such misses, and

helps reduce cache misses in a methodical way.

The CM equations provide a general framework that can

be used to: (i) guide a programmer on efficient tuning of

the code, (ii) help a compiler in performing code transfor-

mations to improve cache usage, (iii) improve the simulation

speeds of toolz that simulate caches, (iv) tighten bounds on

program performance estimates and even (iv) help in bct-

ter instruction scheduling in super-scalar processors. This

paper focuses on the first two of these applications; we dis-

cuss how our equations can guide programmers or compilers

towards memory optimizations without going through time-

consuming cache-profiling. Our ultimate goal is to automate

the analysis of the equations to build an efficient code opti-

mizer.

We have implemented our algorithm to automatically

generate the CM Equations within the SUIF compiler sys-

tem [l!i]. It successfully generates the equations for numer-

317

ical loop nerrts including matrix-multiply, Gaussian elimina-
tion, successive over-relaxation (SOR), and many loops from
the SPECfp benchmarks. The statistics generated using the
equations help focus attention on the badly behaving loop
nests and the causes of their poor performance.

In Section 2 the algorithm to generate CM equations
is given. Section 3 presents the algorithm to generate the
cache misses of a loop nest from all its CM equations. Sec-
tion 4 shows how these equation8 can be used to choose
data padding/offset amounts or to choose a blocking factor
in tiled code. Section 5 describes the future extensions to

this work and Section 6 contains our conclusions.

2 Generating the CM Equation8

This section describes the algorithm for generating mi88
equations. For our algorithm we need the reuse vector8 ob-
tained from relatively standard reuee analysis [16]. We will
explain the information needed from reuse analysis as we
describe our algorithm.

2.1 Program and Architecture Model

We consider only perfectly nested loops such that all array

references are contained within the innermost 1OOpS. The
algorithm can be extended to handle even Borne imperfectly
neated loops if they have only a single basic block in be-
tween the loops in a nest. The loop neet is a88umed to
consist entirely of for loops or DO loops. We assume BUb-
script expressions of array references and the bounds of a
loop index to be affine combinations of the enclosing loop
indices. These restrictions are not too stringent in practice
as most array reference8 and loop bounds satisfy this. We
have also assumed that the loops contain no conditional ex-
pressions. We consider loops with only constant etep values
as is true for virtually all loope found in practice. Finally,
we have considered each loop nest separately ignoring any
inter-nest effects. We plan to do inter-nest analysis in the
future.

The basic architecture considered is a uniprocessor model
with a memory hierarchy. We assume a direct-mapped cache,
but we believe the work could be extended to other degrees
of set associativity as described briefly in Section 5.

In Table 1, we report the number of loope which can be
analyzed in a collection of programs taken from the SPECfp
benchmarks baeed on our assumptions given above. For
each program, Table 1 first gives the total number of for or
DO loope found. It 8.lso lists the number of loops that are
declared non-analyzable due to (i) function call (denoted by
“Fen c8.W’ in the table) or (ii) return instruction (“Ret”)
inside the loop body, (iii) non-affine loop bounds, (iv) non-
constant step value, or (v) non-perfect loops. The “non-
perfect loops” entry counts all the non-perfectly nested loop8
including those with conditional etatements inside them.
The “variable bound” entry shows the number of loops which
have variables in their loop bounds that cannot be deter-
mined at compile time. A eingle loop can be counted under
more than one of the above categoriee. Non-affine array ac-
ceases are not listed here as we have not found a single ca8e

falling in that category.
Table 1 shows that loops with non-fine bounds and

non-constant step are negligibly small. Non-perfectly nested
loops and loope with function call8 each constitute a small
fraction of the total number of loops. Loops with function
calls could sometimes be made analyzable ifinterprocedural
analysis were ueed. The last category shows that many of
the loops have variable bounds. The “analyzable” column
lists the number of loops and the aseociated loop nests that

for (i=O; i<32; i++)

for (k=O; k<32; k++)

for (j=O; j<32; j++)

Z[i, j] += X[i, k] * Y[k, j];

Figure 1: Matrix multiply loop nest.

Figure 2: Iteration space of the matrix multiply loop nest.
Bold arrow8 denote reuses of Z[i,j].

are analyzable with all loop bounds known at compile time.
Loops that fall exclusively under the variable bounds claseifi-
cation are declared as parametrically analyzable. (We do not
consider analyzable loops also a8 parametrically analyzable
loops.) We can form our equation8 for such loops with the
variable8 in the bounds represented by separate parameters.

By treating theee parameter8 8s another equation variable,
our analysis can make headway even though the loop bound
may not be known until runtime.

Overall, the loop statistice show that ecientific loop neets
are mostly 8imple and regular, and we can analyze, abe.o-
lutely or parametrically, a significant number of loops ap
pearing in the SPECfp benchmarks (3 72% of the total
number of loops found).

2.2 Equation Forming Algorithm

This subsection describes the steps to generate the CM equa-
tione. We use the matrix multiplication example given in
Figure 1 to illustrate our algorithm.

In order to describe our analyeiz steps in a concise math-

ematical form we represent a loop nest of depth n (~8 a finite

convex polyhedron of the n-dimensional iteration space Z”,
bounded by the loop bounds [5, 161. Each iteration in the
loop corresponds to a node in the polyhedron and is called
an iteration point. Every iteration point is identified by its

index vector ; = (il, ia , . . . , i,), where it is the loop index of

the lth loop in the nest with the outermoet loop represented
by the first dimension. Figure 2 shows the iteration space
of the matrix-multiply loop nest. c’is an iteration point and
corresponds to the iteration i = 0, k = 1, and j = 2. In this

representation, if iteration $8 execute8 after iteration P; we
write $2 + $1 and eay that 5 is lexicographically greater
than $1. For example in Figure 2, t + $.

In order to find out whether a reference n&sea in the
cache in a particular loop iteration we need to know whether
the memory line is being acceseed for the first time or whether
it i8 reusing a previously acceeeed memory line.’ If it i8
reusing a previously acceesed line we need to know when it

‘We refer to a static read or write in the program sa a reference,
while s particulsr execution of that read or write at runtime is s
memory OCCCII. A memory line refers to s cache line rised block in
the memory, while s cache line refers to the actual cache block to
which a memory line ir mapped to.

318

Program

Non Non Non Parametrically N
Total Fen affhe constant perfect Variable Analyzable Analyzable Anal;kble

#L call Ret bound step loop5 bound #L 1 #N #L] #N #L

Algorithm GENERATE:

Generate the CM equations for a loop neat

Input:

Information about the loop nest, array reference5 in
the nest, reu5e vector5 and the sequence in which
those references appear in the generated code.

Output: A set of CM equations for each reference.

Algorithm:

For each reference in the loop nest

For each reuse vector of this reference

1. Generate a cold miss equation
(described in Section 2.2.1).

2. For each reference in the loop nest

Generate a replacement miss equation

(described in Section 2.2.2).

Table 1: Statistics on the number of SPECfp loops amenable to our analysis. (#L refers to the number of loops. #N refers

to the number of loop nests.)

was last accessed and the reference accessing it. Once we

have the information about the reuse we can check if any

intervening memory access evicts the memory line from the

cache before it can be reused; this would result in a cache

miss. If a reuse results in a cache hit we say that the reuse

is realized. The central idea behind our CM equations is

to find the loop instances at which reuse does not result in

cache hits.

If a reference accesses the same memory line in iterations

h and &., where zz >- ;I, we say that there is reuse in di-

rection 7’ = lz - li and 7’is called a reuse vector [16]. For

now, let us assume only one reuse vector of a reference is

present. We denote all the misses represented by the equa-

tions for a reuse vector as misses along that reuse vector.’

In Section 3 we show how all the reuse vectors interact to

decide the cache misses for a reference.

The CM equations’ generated here are of two types,

namely, the cold misa equations and the replacement miss

equations. The cold miss equations represent the cold or

compulsory misses-misses that occur on the first reference

to a memory line. The replacement miss equations represent

all other misses including both capacity and conflict misses

[8]. Figure 3 summarizes the process to generate the CM

equations.

Figure 3: Algorithm to generate all the CM equations.

pression:

To generalize our discussion, we will consider generat-

ing the CM equations for an arbitrary array reference Ra

accessing A[fdA -L, . . , fi, fo], where da is the number of

dimensions of the array A. For any dimension k of the ar-

ray, the index function is written as fk and is of the form

f(ii, ir , , in) where f is a linear function of the loop in-

dices il , iz, , i,. For the sake of uniformity in the analysis

presented here, we assume that all arrays are laid out in

memory in a row-major order as in C. Here we have also

assumed that all the load/ store references inside a nest cor-

respond to only the array references. This algorithm can be

easily extended to handle scalars resulting in a load/store,

by considering scalars as a special case of 1-D arrays. While

generating the equations, we repeatedly need to find the

cache line of an array reference of the form given above.

Considering addresses in terms of array element size, the

cache line of the reference RA is given by the following ex-

Memory-Address-of-AVdA-t,. . . , ft , fo] = MemR,

dA-1

2.2.1 Cold Miss Equations

= ofiset + fo + c (dim-sizek-1 x fh)

k=l

CacheLineR, = lMemR,/LJ mod Nl (1)

where ojgset = Base address of the array A; fk = Value of

the index expression along the dimension k, evaluated with

the current values of the loop indices; dim-sizeh = Size of

A below the kth dimension; L, = Cache line size; N1 =

Number of cache lines.

2A miss is said to occur along a reuse vector at those iteration
points where, ignoring other reuse vectors, the data reuse is not

rcaliaed.

‘The term equation has been used loosely to represent a set of
simultaneous equalities or inequalities.

Cold miss equations are formed by investigating the situa-

tions when a memory line is brought into the cache for the

first time. As each loop nest is treated in i5olation, we as-

sume none of the data accessed in a loop nest is already

present in the cache before it starts execution. For each ref-

erence, we form a cold miss equation which captures all the

cold misses along each reuse vector. In our analysis below

&(i,,i,,-. ,&,) is the current iteration point.

319

(a) Negative Stride (b) Positive Stride

ep=foO; %=fdH-Loa- 1 e,,=f&h e, =fdtO+C4-Lo~)

Figure 4: Cold miss examples along an array row aligned on
a cache line boundary. If en is the row element accessed in
the previous iteration, the access of row element e, in the
current iteration will result in a cold miss.

l Spatial reuse (self or group): There can be a cold
miss along a spatial reuse vector for either of two reasons
given below:

1. There is a cold miss when the present access is the
first access along this vector. That means the previous iter-
ation point along this vector lies outside the iteration space.
For example, in Figure 2, Z[;,j] has spatial locality along
the vector (O,O, 1). So the access of Z[;, j] in the iteration
(0, 1,0) is a cold miss along that reuse vector, because the
previous iteration point along this vector (0, 1, -1) is out-
side the iteration space. If the reuse vector is given by
r’= (Tl,l&..., r,,), an access is a cold miss if the corre-
sponding iteration point satisfies any of the following in-
equalities:

il - 71 < 11, il - t1 > Ul , . . . , i, - 2, < I,, i, - 711 > 7Ln (2)

where li,ls,... , I, are the lower bounds and ~1, UQ, . . . , u,,
are the upper bounds of the previous iteration point along
Fwhichisp’=(ii -~~,i2-r~,.~.,in-r,)

2. There can also be a cold miss along a spatial reuse
vector when a new cache line is accessed along that vec-
tor. This means that the cache line accessed in the present

iteration point : by the reference RA is different from the
cache line accessed in the previous iteration point p’ along
that vector by the same reference (if self reuse) or a different
reference (if group reuse). Hence, there is a cold miss along

this reuse vector in the iteration points 7 which satisfy the
following relation:

Cache line accessed at 7# Cache line accessed at p’ (3)

But, if we assume that the beginning of each row (or the
least significant dimension) of arrays are aligned to the cache
line boundary, we can further simplify the above equation.
Now we can have spatial reuse only if the same row of the

same array is accessed at : and 3. When we access the same
row, all dimensions, except the least significant one, remain
the same. We can express this as the two inequalities in
Equation 4. This is illustrated in Figure 4.

a(;> < fo(P’) - Log if fo(T) < fo(P”) (neg. skde)

f0(3 > fo(p’) t (L, - 1 - Log) if fo(l) > fo(p’) (pos.stide)

where L,,n = fo(p”) mod Ii., L. = Cache Line Size (4)

When the array is accessed with unit stride we can fur-
ther simplify Equation 4 to the more familiar form: f~(p’)

mod L. = 0 since f0(3 - fo(p’) = 1 for unit stride. For ex-
ample, in Figure 2 the cold misses of Z[i, j] along the spatial
reuse vector (O,O, 1) can be represented as (j mod 4) = 0,

assuming the cache line size is 4 array elements.
l Temporal reuse (self or group): Cold misses along

a temporal reuse vector occur only for the iteration points
which lie first along a temporal reuse vector. This is similar
to the first case given for spatial reuse vectors and so all the

cold misses along thii vector are given by the same equations
as in Equation 2.

2.2.2 Replacement Miss Equations

All replacement miss equations are formed by a single method,

irrespective of whether it is due to self or cross interference
and whether the reuse vector is temporal or spatial.

Let us say we want to find the replacement miss equac
tions for the reference RA accessing A[fdA-l,. . . , fl, fc] along
the reuse vector 7’ = (ti, r2,. s., rn). Here we show how to
form the replacement miss equation representing the inter-
ferences with an arbitrary reference RB accessing B[gd,-1,

..‘I gr , go]. (da and dg denote the number of dimensions of
the arrays A and B respectively.) For the self-interference
equation, references RA and RB are identical. If the current

iteration point is 7 = (ii, is,. . . , in) and the reuse vector is
r’ then the last iteration point where RA accessed the same

memory line isp’= 5-g= (il -tl,il -?2,“‘,a, - TV%>.

The iteration points at which we can have an interference

with RB, preventing RA from realising the reuse at l, are

all the points lying between p’and : which are considered as
the set of potential interfering points. Whether we include

the points @and ; also in that set depends on the relative
access order of RA and RB in a loop nest iteration. If RA

occurs before Rg in the nest, only p’has to be considered,

otherwise, only 7 needs to be considered. In our implemen-
tation, we extract access order information from the code
generation phase automatically. We represent all points in

the set of interfering points as ; = (ji, jr, . . . , j,,), where

i E cp’, i) if access of RA is before RB,

E (p’,iJ othenuise

There is an interference if the cache line accessed by RA in

l(which is the same as accessed in p’due to the reuse) is the

same as any of the cache lines accessed by Rg at every ;.
Equating the appropriate cache lines accessed gives the con-

dition for an interference miss along r’: Cache-LineRA =

CacheLineR,(Substituting in the expressions from Equa-
tion 1, we can simplify the resulting equation to the linear
Diophantine equation shown in Equation 5.

hfemR,(i) = !demR,(j) + nC. + b (5)

where C. is the cache sise and n is any integer. The variable
b can take on values in the range -L,o 5 b <_ L. - 1 - L,p

where ,S Memn,(;) mod L,. Thus, L shows the

offset oft e reference Rg in its cache line, and T = “% bounds the
search for an interference within that cache line. Since the
loop indices are bounded, the equality holds for a bounded
region.

For the matrix multiply example shown in Figure 1, con-
sider generating replacement miss equations for Z[;, j] along

the spatial reuse vector r’ = (O,O, 1). If ; = (i, k, j) then

p’= z-t= (i,k,j-1). F or an 8KB cache with 256 cache lines
and 4 array elements per cache line, Equation 6 shows the
replacement miss equation for the interferences with X[i, k]

along ?. (Here the access of Z[i, j] ia after X[i,k] in each
loop nest iteration.)

Cache-Line-Z[i,j] = Cache-LinesX[i’, k’]

where (i’,k’,j’)E((i,k,j-l),(i,k,j)]

+](4192 + 32i + j)/4] mod 256

=](2136 + 32i + k)/4J mod 256

+ 4192 + 32i + j = 2136 + 32i + k + 1024n + b (6)

320

IB a l 0) a ‘3 0)

j j

(a) Considering one reuse vector (b) Considering multiple reuse vectors

Figure 5: Illustration of (a) Theorem 1 and (b) Theorem 2

in the iteration space of a 2D loop nest.

where n > 0, (&j) E [(0,0),(31,31)], b E [-3,3]. 1024 is

the cache size. 4192 and 2136 are the base addresses of the

arrays 2 and X respectively, and 32 is the row siee of both

the arrays (All numbers are in units of data element size.)

3 Finding Cache Misses from CM Equations

CM equations arc useful because they allow a systematic

way to generate all the cache misses of a loop nest from

them. This section describes the algorithm to generate all

the cache misses of a loop nest from its CM equations. This

helps us to understand how the solutions to the CM equa-

tions are related to the cache miss instances of a loop nest.

As described in Section 2, for every reference we gener-

ate a set of equations for each of its reuse vectors. Every

reuse vector has one equation for the cold misses and other

equations that represent the conflicts with that reference

along that reuse vector. The solution set-the set of all

miss instances-can be generated with the help of two the-

orems which arc discussed below. (Formal proofs are not

given here due to space constraints.)

l THEOREM 1: The set of all misses of a reference

along a reuse vector is given by the union of all the solution

sets of the equations corresponding to that reuse vector.

As an example consider the iteration space shown in Fig-

ure 5(a). For a particular reference, assume that one of its

reuse vectors is 77, which means the reference reuses the

same cache-line at the iteration points 11 and 12. Each so-
lution of all the equations corresponds to either a cold miss

along 7; (if it is a cold miss equation) or an interference,

preventing the reuse to be realized at 4. However, it only

takes one conflicting cache line access between 1~ and II to

cause the reference to miss along 7; at 11. This means that

we have to take the unionof the solution sets of all the cqua-

tions for a particular reuse vector, ti, to get all the misses

along that vector.

l THEOREM 2: The set of all miss instances of a

reference is given by the intersection of all the miss-instance

sets along the reuse vectors.

As an example consider the iteration space in Fig 5(b).

We assume that the reference has the reuse vectors 77, 7’5,

and 7;) which means it accesses the same memory line at the

iteration points II,I~,I~, and I,. The reference can reuse

data at II if the data remains in cache after being accessed at

either 1~ or 13 or II. If at least one of the reuses are realized,

the reference will find the data in cache at II. Hence, the

reference suffers a miss at 4, if and only if, I~ is a miss along

all the reuse vectors 77, 73, and 7;.

For a reference R, say there are m reuse vectors and the

number of equations corresponding to the kth reuse vector

is given by nk. From the above two theorems, the set of

miss instances of R can be generated from the following

expression:

Miss Instances of R

= nr=, [Uyil(Solution Set of CM-eqn,j)]

‘th CM-eqnkj = 3 CM equation of the kth reuse vector (7)

If the number of array references in a loop nest of depth

n 1s n,,f and dm,z is the maximum number of dimensions of

any of those arrays, the worst case complexity of calculating

all the reuse vectors is O(n&, x (maz(n, dm,z))S). Once the

reuse vectors are calculated, the time taken to generate all

the CM equations of the loop nest is given by O(n x dmcr. x

necn), where ncqn = #Equations = n, x n,,/, n,-,, = Total

#reuse vectors of all the references.

The equations generated here represent a set of linear

equalities or inequalities. Fast methods to solve these kind

of equations for most practical loops can be found in [2, 131.

Taking unions and intersections to find the cache misses

takes polynomial time in the number of elements of the so-

lution sets. Many loop optimixations and estimations need

the total number of cache misses rather than the iteration

points where the cache misses occur. This involves finding

the number of integer solutions to the unions and intcrscc-

tions of the CM equations. The method to find the number

of integer points in unions and intersections of closed con-

vex polyhedrons defined by most practical scientific loops,

as given in [5], could be used. For the closed convex poly-

hedrons defined by the CM equations, the method takes

polynomial time for fixed loop bounds. It is also efficient for

parametric loop bounds of practical loop nests.

4 Using CM Equations to Guide Memory Optimizations

We have implemented our algorithm to generate the CM

Equations for all the analyaable loops in a program that

is integrated with the SUIF compiler system [15]. All nec-

essary information regarding analyzable loops is gathered

by a pass integrated into the SUIF analysis. Besides the

reuse vectors, our algorithm also needs the exact reference

sequence within a loop nest. We extract thii from the code

generator after register allocation is done.

In this section we describe how these equations can be

used to guide different memory optimizations through two

examples. The first example shows how the CM equations

can be used to reduce cache misses by changing the base

addresses and the row sizes (i.e. padding) of the arrays

referenced in a loop nest which is taken from the SPECfp

benchmarks. The second example shows how the equations

can be used for efficient block size selection for the blocked

matrix multiply loop nest. While these optimizations have

been addressed in isolation by past work (1, 6, 91, these cx-

amples illustrate how CM equations provide an accurate,

unifying framework to drive optimiaations.

4.1 Example 1: Padding and Changing Base Address

The code in this example is from the aiuinn program of the

SPECfp benchmarks. When we run our equation generator

on the loop nests, it generates a collection of CM equations

summarizing the memory behavior of each nest. We focus

here on one of the analysablc loop nests (shown in Figure 6)

which suffers significantly from replacement misses. In this

loop, roughly 187000 out of 306000 misses are replacement

misses. We use the CM equations to eliminate these misses.

Equation 8 and Equation 9 arc generated as the replacc-

mcnt miss equations for the reference to i-h-weights[hu][iu].

Equation 8 represents the self-interferences while Equation 9

gives the cross-interferences with the reference i-h-w-ch-sum-

321

for (iu=O; iu<1221; iu++)

for (hu=O; hu<30; hu++) {

i-h-weights[hu][iu] +=

ih-wrh-eum-array[hu][iu]* i-hlrc;

i-h-wrh-sumarray[hu][iu] *= ALPHA;

I

Figure 6: Example loop nest from the aluinn benchmark.

array/hu][iu].

1221hu + iu = 1221hU’ + iu’ + nC. + b

82110 + 1221f~u + iu

(8)

= 45480 + 1221hu’ + iu’ + nC. + b (9)

where (iu’, hu’) E [(iu-1, hu+l), (iu, hu-1)] in Equation 8,

and (iU’, hu’) E [(iu-1, hu), (iu, hu- 1] in Equation 9. For

both the equations, hu E [0,29], iu E r’ 0,1220], b E [-3,3],

and n E [0, oo) . For this example, we assume a cache sise,

C,, of 1024 and a line size of 4 elements. In Equation 9, the

constant terms 82110 and 45480 are the base addresses of

the arrays i-h-weights and i-h-w-ch-sum-array respectively.

The coefficient 1221 is the sise of each row of the arrays.

The absolute value of the bounds of b is one less than the

cache line sise. (All the numbers given are in units of data

element size.)

Equations 8 and 9 have 232 and 269 solutions respec-

tively. Each solution corresponds to a potential cache miss.

We wish to reduce the number of solutions in order to reduce

the cache interferences represented by these equations. We

intend to do that by changing the offsets and the row sises

(i.e. padding the arrays). For this reason, we will replace

all terms related to the base addresses and the row skes

with parameters. Equations 10 and 11 are derived from

the Equations 8 and 9 respectively using standard algebraic

techniques. The parameter k is related to the baee addresses

while P is related to the row sizes. Our goal is to see which

values of k and P will result in the fewest interference misses.

Phudig - 1024n’ = (b - iud;B), n’ E [-29, m) (10)

k + Phudi8 - 1024n’ = (b - iudin), n’ E [-84, CG) (11)

In Equation 10, hUdia = (hU - hU’) E [-29, -11 if iU&fl =

(iu - iu’) = 1 and hUdi# E [l, 291 if iu&ff = 0. In Equa-

1 and-hUd,g E [1,29] if

value of hu&iff in these

eq;&ons corresponds to the upper bound of the-Lop index

hu. Though Equations 10 and 11 are independent equations,

they are connected through the parameter P. Changing P

in one equation will affect the other. We consider Equa-

tion 10 first to determine which values of P would eliminate

its solutions. We then use one of these P’s in Equation 11

to find the values of k that eliminate its solutions.

From basic number theory, we see that if the greatest

common divisor of P and 1024 represented aa CCD(P, 1024)

I does not divide (b - iU,fi#) E -4,3], then Equation 10 has

no solution [2]. When (b - iudw) = 0, GCD(P,1024) will

always divide (b - iudi#). For this case, we can again show

from number theory that the equation will have no solution

if GCD(P, 1024) < 1024/maz(hUdin) where ma%(hudig) ie

the maximum value of hUdig (in this case, 29). Choosing

4 < 1 GCD(P, 1024)) < 36, satisfies both of the above criteria

and guarantees that Equation 10 will have no solution. As

4 < IGCD(P, 1024)l < 36, we can write P = Bt, 16t, or 321

where t is any odd positive integer.

1

for (kk=O; kk<N; kk+=B-k)

for (jj=O; jj<N; jj+=B-j)

for (i=O; i<N; i++)

for (k=kk; k<min(kk+B-k-l, N); k++)

r = X[i,k];

for (j=jj; j<min(jj+B-j-1, N); j++)

Z[ij] += r * Y[kj];

Figure 7: Blocked matrix multiplication loop nest,

By similar reasoning as above, we can say that Equa-

tion 11 will have no solution if GCD(k, P, 1024) does not

divide (b - iU&#) for (b - iudiff) # 0. For (b - iudio) = 0,

rewriting the equation as PhUdin - 1024n’ = -k, the equa-

tion will have no solution if GCD(P, 1024) does not divide

k. If we choose k = 8 and P = 16t we can satisfy all the

above criteria and make both Equation 10 and 11 have no

solution. In order to have the least amount of padding we

choose P = 208, the least multiple of 16 above the original

value of P = 197. (Clearly, we cannot choose to decrease P;

that would correspond to negative padding.)

Tracing back the origin of k, it can be seen that set-

ting k = 8 corresponds to changing the offset of the ar-

ray i-h-weights from 82110 to 81328. On the other hand,
setting P = 208 corresponds to changing the sise of each

row of the arrays from 1221 to 1232. These simple changes

in the array layout eliminated all the interference misses

in the loop nest of Figure 6. (The equations for the ref-

erence i-h-w-ch-sum-arraybu][iuj are similar and required

similar changes to eliminate misses.) Overall, this example

has shown how expressing a loop nest’s cache misses in the

form of linear Diophantine equations allows us to methodi-

cally identify ways of padding and aligning data in order to

avoid interference misses.

4.2 Example 2: Selecting Block Size for Loop-Tiling

Thii case study deals with a familiar loop optimisation for

scientific code: blocking (or tiling). This technique tries to

eliminate capacity misses by reordering accesses so that ac-

cesses to reused data are closer together in the iteration

space. There has been significant research on how to re-

structure loop nests for tiling [3, 16, 1’71. This work typically

ignores the effects of conflict misses arising due to the low as-

sociativity of real caches. More recent work noted that cache

conflicts can have significant impact on performance and are

highly sensitive to the problem sise and block sise [9]. This

led to recent research on choosing appropriate tile sires that

would reduce conflict misses as well [6, 91. These papers

concentrate on eliminating the self-interference misses that

are found to dominate conflict misses in tiled code. They

develop specific algorithms for choosing a blocking factor

based on program and cache parameters. Here we will show

how to use our CM equations, a more general framework, to

find the block sise that will eliminate all the self-interference

misses in a tiled code. In fact, our fiamework can be used to
handle both self and cross-interferences, but here we focus

on the former.

In thii example, we start with an already-blocked loop

nest. We explain our method for the blocked matrix multi-

plication loop nest given in Figure 7. Our analysis could be

easily generalised for all other tiled loops handled in previ-

ous work. In Figure 7, Bk by B-j is the block sire which

thi example works to maximise without incurring any self-

interference misses.

In order to roughly match the analysis given by Lam

322

Figure 8: Solutions to self-interference equation of Y[k, j]

4 he

Figure 10: Finding regions without integral solution points.

Figure 9: Solution plot of the self-interference equation of
Y[k, j]. The parallel lines correspond to sets of solutions for
different values of n. Dots along each line represent the in-
tegral solution points (interference misses). Shaded regions
correspond to possible blocks with no self-interference.

et al. [9], we consider a 4 KB (512 element) direct-mapped
cache with 8 Byte (1 element) lines. We assume matrices
of sire 295 by 295 double-word elements. The predomi-
nant source of misses in the tiled code is self-interference
misses in Y/k,jJ. In fact, after a certain block sine, these eelf-
interferences outweigh the performance gain expected from
increasing block sise [9]. The self-interference equation of
Yh, j] for each execution of the blocked code in Figure 7 is
given by Equation 12.

295k+j = 2958’ + j’ + nC. + b (12)

where (L, j) E [(0, O), (B-k-l, B-j-l)], (k’, j’) E [(O,O), (k, j-
l)] or [(k, j + l), (B-k - 1, B-j - l)], b E [-O,O],, C, = 512
and n is any integer except 0. As before, C, is the cache
sise, and b is the cache line sise minus one. Equation 13 is
a simplified version and includes all the solutions of Equa-
tion 12.

295kdifl + jaifi = 512n (13)

where, Jkdi

Figure %
] =)k - le’) < Bk and]j&frl =]j - j’] < B-j.

plots the number of solutrons of Equation 12
for different square block sizes. These data are consistent
with the self-interference misses of blocked matrix multipli-
cation presented in [9]. There are no self-interferences of

Yfi,j]until a block sic of 16 by 16. Thereafter, it increases
drastically with increasing block size. Our goal is to USC the
CM equations to identify the largest block sise with no self-
interference. That means WC need to find the largest value
of B-k by B-j such that Equation 13 has no solution. Lam
et al. considered only square blocks, but Coleman et al. [6]
showed that we can get better performance with rectangu-
lar blocks without restricting ourselves to square blocks. We
will show that CM equations can guide us to choose the best
block, square or rectangular.

Figure 9 illustrates the block-selection problem. The
lines in the figure are plots of Equation 13 for different
values of n. The bold dots show the self-interference in-
stances, that is the solution points for integral values of z
and y. Since]kdiB] < B1 and (jdig] < B-j, Equation 13
will have no solution if there are no mtegral solution points
in the region defined by k&f = B-k, kdig = -BJc and
jdiff = B-j, jdiff = -B-j. Thus, such an empty region
corresponds to the selection of a block of sise Bk by BJ

which would eliminate all self-interferences. For example,
the shaded region A1 in Figure 9 is one such empty region.
Our aim is to find the empty region with the largest area.

For our explanation, we only concentrate on the right-
half of Figure 9 (i.e. z 2 0) as the left half is just the
reflection of that through the origin. In order to explain our
method, consider the sane around the origin in the figure.
We start with the tallest, thinnest empty region A1 where
Bk = 1 and B-j = 216 since (z,~) = (1,217), an integral
solution point, has to be excluded. We then try to expand
that empty region along the kdig axis until we hit an integral
solution point. Now the region ~8 shrunk along the j&f axis
to just exclude that solution point and expanded again along
kdi# as much as possible without including any integral solu-
tion point. As a result of the above operation we obtain the
region Al. We repeat the above process to find the mtimol
empty regions’ until the region’s area exceeds the cache size
or reduces to sero. Table 2 lists the maximal empty regions
A1 through AT found by the above algorithm. Figure 10
depicts the formation of the first four regions. Now, each
of these regions define a block size with no self-interference.
For example, region AI defines the block sic of Bk by B-j

= 25 by 16 which clearly includes the square block solution
of 16 by 16 found experimentally from Figure 8. For the
largest block sise, we choose the region with the maximum
area which, in thii case, is the block Aa. Our algorithm
does not require finding integral solution points for all n, j,
k. Rather, we need only identify those close to the axes as
we stretch the rectangles.

4Regionr whose area cannot be increased without decreasing the

height.

323

Table 2: Blocks with no self-interference (from our tic-
rithm).

5 Future Work

One of the important extensions to our analysis is to handle
set-associative caches. AS azsociativity does not affect the
cold misses of a program, our methods for generating cold
miss equations hold for any degree of azzociativity. For re-
placement misses we need to modify the COnBtraintB given
in Equation 5. For a k-way set-associative cache with LRU
replacement policy there must be at least k interfering ac-
cesses to the same cache line before a data can be replaced

from its cache line. Hence, the constraints need to be mod-

ified such that an iteration point ; will be a solution if and

only if there are k different ?s satisfying Equation 5 for that
1
t.

The methods presented here can be followed to gener-
ate equations taking inter-nest effects into account, once
efficient methods are developed to calculate reuse vectors
across loop nests. Fortunately, most inter-nest misses occur
between adjacent nests [12]. So it should be enough to find
reuse vectors only between adjacent nests for most practical
purposes.

In order to help code optimirations, az described in Sec-
tion 4, we try to find values of parameters that would elimi-
nate or reduce the number of solutions to the CM equations.

AS one possible way to automate that analysiz, we hope to
use the extension of Pugh’s Omega test [IS] to project our
constraints on the parameters of interest and find the pos-
sible ranges of those parameters that would eliminate or
reduce the number of solutions. Another possible way is
to calculate the parametric number of solutions az given by
Clauss [5] and then find the values of the parameters that
would reduce that number. The Pugh and Clause methods

are reported to be fast for linear constraints derived from
most practical loops. The varying ability of these methods
to handle parameters would alzo help us to analyze and op-
timise loops with parametric loop bounds.

6 Conclusions

This paper has demonstrated the use of CM equations as a
means of precisely characterizing the cache misses within a
loop nest. Our method involves extending traditional reuse
analysis in order to generate a set of linear Diophantine
equations whose solutions comprise potential cache misses
for the loop nest. We then dezcribed algorithms for iden-
tifying cache misses without simulation, and we used ex-
amples from SPECfp benchmarb to demonstrate practical
applications of thiz information.

There are numerous applications of thiz work that range
from performance estimation to code optimisations. By au-
tomating CM equation analysis within the compiler, one
can guide compiler memory optimiiations. In addition to

loop optimizations, CM equations may also be useful in in-
struction scheduling to avoid stalls due to long cache miss
penalties. We also hope to use the equation framework to
improve the performance of cache simulation tools. Easen-
tidy, CM equations can accelerate simulations by identi-
fying cache misses and summarizing much of a program’s
memory behavior at compile-time, before the cache simu-
lation is run. Overall, Cache Miss Equations provide an
unique, systematic framework for accurately assessing the
frequency and causes of cache misses in loop-oriented code;
this accurate framework will support a range of future uses.

References

PI

PI

[31

[41

151

PI

[71

PI

[Ql

PI

IllI

WI

1131

[I41

PI

D. F. Bacon et al. A compiler framework for restructuring
data declarationz to enhance cache and TLB effectiveness.
ln Pwc. CASCON’94 conf., Nov. 1994.

U. Banerjee. Loop tramformations for rertructuring compil-
CII. Kluwer Academic Publishers, Boston, MA, 1993.

S. Carr and K. Kennedy. Compiler blockability of numerical

algorithms. In Pwc. Supercomputing ‘#g, Nov. 1992.

S. Carr, K. S. McKinley, and C-W. Tseng. Compiler opti-

mirsations for improving data locality. In Pwc. Sizth Int’l

Conf. on Anhitcctuml Support for Pwgramming Longuoger zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
and Operating Syrtema, Oct. 1994.

P. Clause. Counting solutions to linear and nonlinear con-

straints through Ehrhart polynomials: Applicstionz to ana-
ly5e and transform scientific programs. In Pwc. Znt’l Conf.

OR Supercomputing, May 1996.

S. Coleman and K. S. McKinley. Tile size selection using

cache organiesrion and data layout. h Pwc. SIGPLAN ‘95

Conf. on Programming Language Derign and Implemcnta-

tion, June 1995.

J. Ferzante, V. Sarkar, and W. Thrash. On estimating and

enhancing cache effectiveness (extended abstract). In Pwc.

Fourth Int’l Workshop on Languager and Compilerr for Por-

411~1 Computing, Aug. 1991.

M. D. Hill and A. J. Smith. Evaluating azsociativity in CPU

caches. IEEE !lknroctiona on Computera, 38(12):1612-

1630, Dec. 1989.

M. Lam, E. E. Rothberg, and M. E. Wolf. The cache per-

formance of blocked algorithms. In Pwc. Fourth Znt’l Conf.

on Architectural Support for Pmgmmming Language* and

Opemting Syrtems, Apr. 1991.

A. R. Lcbeck and D. A. Wood. Cache profiling and the SPEC

benchmarks: A case study. IEEE Computer, Oct. 1994.

M. Martonosi, A. Gupta, and T. Anderson. MemSpy: An-

aly5ing memory syrtem bottlenecka in programs. In Pwc.

ACM SZGMETRXCS Conf. on Mcarurement and Modeling

of Computer Syetcme, pages l-12, June 1992.

K. S. McKinley and 0. Temam. A quantitative analysis of

loop nest locality. In Pwc. Sercnth Znt’l Conf. on Anhi-

tectuml Support for Progmmming Languagea and Operating

Systemr, Oct. 1996.

W. Pugh. The Omega test: A fast and practical integer

programming algorithm for dependence analysis. Commun.

ACM, 8:102-114, Aug. 1992.

0. Temarn, C. Fricker, and W. Jalby. Cache interference

phenomena. In Pwc. ACM SZGMETRICS Conf. on Men-

rurement U Modeling Computer Syrtemr, 1994.

R. P. Wilson et al. SUIF: An infrastructure for rerewh

on parallelieing and optimiting compilers. ACM SZGPLAN

Notices, 29(12), Dec. 1994.

[16] M. E. Wolf and M. S. Lam. A data locality op&nisation
algorithm. ln Pwc. SZGPLAN ‘91 Conf. on Programming

Language Dcaign and Implementation, June 1991.

[17] M. J. Wolfe. More iteration epace tiling. In Pwc. Supercom-

puting ‘89, Nov. 1989.

324

