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Abstract 

With the widening performance gap between processors and 

main memory, efficient memory accessing behavior is neces- 

sary for good program performance. Both hand-tuning and 

compiler optimization techniques are often used to trans- 

form codes to improve memory performance. Effective trans- 

formations require detailed knowledge about the frequency 

and causes of cache misses in the code. 

This paper describes methods for generating and solving 

Cache Miss equations that give a detailed representation 

of the cache misses in loop-oriented scientific code. Imple- 

mented within the SUIF compiler framework, our approach 

extends on traditional compiler reuse analysis to generate 

linear Diophantine equations that summarize each loop’s 

memory behavior. Mathematical techniques for msnipulat- 

ing Diophantine equations allow us to compute the num- 

ber of possible solutions, where each solution corresponds 

to a potential cache miss. These equations provide a gen- 

eral framework to guide code optimizations for improving 

cache performance. The paper gives examples of their use 

to determine array padding and offset amounts that mini- 

mize cache misses, and also to determine optimal blocking 

factors for tiled code. Overall, these equations represent 
an analysis framework that is more precise than traditional 

memory behavior heuristics, and is also potentially fazter 

than simulation. 

1 introduction 

Over the past two decades, improvements in DRAM speeds 

have not kept pace with increases in processor speeds. As a 

result, data caches are now widely used for hiding memory 

latency. Although caches generally work well, some pro- 

grams fail to USC them effectively. Programmers often hand- 
tune their code in order to improve its memory behavior, 

but this process can be time-consuming and error-prone. 

In other cases, automatic compiler transformations can im- 

prove memory behavior and reduce the programmer’s bur- 

den. Either way, programmers or compilers need detailed, 

accurate assessments of when, why, and how many cache 

misses occur. Prior approaches for analyzing cache behavior 

have been hazed either on simulation, which can be slow, or 

on compiler heuristics which can be imprecise. In this paper 

we present an analysis technique that is more precise than 

many existing compiler heuristics and that is faster than 

simulation. 
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There has been extensive research on improving the cache 

performance of numerical programs [4, 7, 9, 16, 171. Most 
of thiz work targets loop nests with predictable and reg- 

ular data accesses. Loop optimization plays a significant 

role in compiler optimization az scientific programs spend a 

considerable amount of time processing large arrays within 

loops. Tiling, strip-mining, interchanging, skewing and WI- 

ious combinations of them are widely used to transform a 

loop for better temporal and spatial locality for a given 

cache size. However, such analysis primarily targets cspac- 

ity mizses that occur when the working set of the loop ex- 

ceeds the cache size. The loops can also suffer heavily due 

to conflict misses [7, 9, 12, 141, thereby precluding effective 
cache utilization. Conflict misses can be significant in caches 

with low nssociativity. In such situations programmers of- 

ten rely on time-consuming cache profiling and performance 

tuning [lo, 111. There has also been compiler work in tailor- 

ing code to reduce conflict misses [l, 6, 91. Unfortunately, 

conflict misses are highly sensitive to slight variations in 

problem size and base addresses [l, 91 and hence we need 

more precise characterization to understand the underlying 

cause behind such conflict misses. 

Most previous compiler techniques to optimize loop nests 

either use ad hoc cost models to guide loop transforma- 
tions [4, 161 or are targeted towards some specific optimiza- 

tion [l, 91. There has also been some initial work on esti- 

mating the number of cache misses in numerical code (7, 141. 

Though the strategies given in previous papers help in re- 

ducing cache misses, they give little insight about the causes 

of such misses. Their limited focus or approximate modeling 

restricts their applicability. This paper attempts to fill thiz 

gap by finding precise relationships among the loop indices, 

array ties and base addresses, and the cache parameters for 

the cache mizses in a loop nest. Those relationships are used 

to generate a set of equations-called the Cache Miss Equa- 

tions (or CM equations)-representing all the cache misses 

in a ioop nest. This simple, precise characterization allows 

one to better understand the cause behind such misses, and 

helps reduce cache misses in a methodical way. 

The CM equations provide a general framework that can 

be used to: (i) guide a programmer on efficient tuning of 

the code, (ii) help a compiler in performing code transfor- 

mations to improve cache usage, (iii) improve the simulation 

speeds of toolz that simulate caches, (iv) tighten bounds on 

program performance estimates and even (iv) help in bct- 

ter instruction scheduling in super-scalar processors. This 

paper focuses on the first two of these applications; we dis- 

cuss how our equations can guide programmers or compilers 

towards memory optimizations without going through time- 

consuming cache-profiling. Our ultimate goal is to automate 

the analysis of the equations to build an efficient code opti- 

mizer. 

We have implemented our algorithm to automatically 

generate the CM Equations within the SUIF compiler sys- 

tem [l!i]. It successfully generates the equations for numer- 
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ical loop nerrts including matrix-multiply, Gaussian elimina- 
tion, successive over-relaxation (SOR), and many loops from 
the SPECfp benchmarks. The statistics generated using the 
equations help focus attention on the badly behaving loop 
nests and the causes of their poor performance. 

In Section 2 the algorithm to generate CM equations 
is given. Section 3 presents the algorithm to generate the 
cache misses of a loop nest from all its CM equations. Sec- 
tion 4 shows how these equation8 can be used to choose 
data padding/offset amounts or to choose a blocking factor 
in tiled code. Section 5 describes the future extensions to 

this work and Section 6 contains our conclusions. 

2 Generating the CM Equation8 

This section describes the algorithm for generating mi88 
equations. For our algorithm we need the reuse vector8 ob- 
tained from relatively standard reuee analysis [16]. We will 
explain the information needed from reuse analysis as we 
describe our algorithm. 

2.1 Program and Architecture Model 

We consider only perfectly nested loops such that all array 

references are contained within the innermost 1OOpS. The 
algorithm can be extended to handle even Borne imperfectly 
neated loops if they have only a single basic block in be- 
tween the loops in a nest. The loop neet is a88umed to 
consist entirely of for loops or DO loops. We assume BUb- 
script expressions of array references and the bounds of a 
loop index to be affine combinations of the enclosing loop 
indices. These restrictions are not too stringent in practice 
as most array reference8 and loop bounds satisfy this. We 
have also assumed that the loops contain no conditional ex- 
pressions. We consider loops with only constant etep values 
as is true for virtually all loope found in practice. Finally, 
we have considered each loop nest separately ignoring any 
inter-nest effects. We plan to do inter-nest analysis in the 
future. 

The basic architecture considered is a uniprocessor model 
with a memory hierarchy. We assume a direct-mapped cache, 
but we believe the work could be extended to other degrees 
of set associativity as described briefly in Section 5. 

In Table 1, we report the number of loope which can be 
analyzed in a collection of programs taken from the SPECfp 
benchmarks baeed on our assumptions given above. For 
each program, Table 1 first gives the total number of for or 
DO loope found. It 8.lso lists the number of loops that are 
declared non-analyzable due to (i) function call (denoted by 
“Fen c8.W’ in the table) or (ii) return instruction (“Ret”) 
inside the loop body, (iii) non-affine loop bounds, (iv) non- 
constant step value, or (v) non-perfect loops. The “non- 
perfect loops” entry counts all the non-perfectly nested loop8 
including those with conditional etatements inside them. 
The “variable bound” entry shows the number of loops which 
have variables in their loop bounds that cannot be deter- 
mined at compile time. A eingle loop can be counted under 
more than one of the above categoriee. Non-affine array ac- 
ceases are not listed here as we have not found a single ca8e 

falling in that category. 
Table 1 shows that loops with non-fine bounds and 

non-constant step are negligibly small. Non-perfectly nested 
loops and loope with function call8 each constitute a small 
fraction of the total number of loops. Loops with function 
calls could sometimes be made analyzable ifinterprocedural 
analysis were ueed. The last category shows that many of 
the loops have variable bounds. The “analyzable” column 
lists the number of loops and the aseociated loop nests that 

for (i=O; i<32; i++) 

for (k=O; k<32; k++) 

for (j=O; j<32; j++) 

Z[i, j] += X[i, k] * Y[k, j]; 

Figure 1: Matrix multiply loop nest. 

Figure 2: Iteration space of the matrix multiply loop nest. 
Bold arrow8 denote reuses of Z[i,j]. 

are analyzable with all loop bounds known at compile time. 
Loops that fall exclusively under the variable bounds claseifi- 
cation are declared as parametrically analyzable. (We do not 
consider analyzable loops also a8 parametrically analyzable 
loops.) We can form our equation8 for such loops with the 
variable8 in the bounds represented by separate parameters. 

By treating theee parameter8 8s another equation variable, 
our analysis can make headway even though the loop bound 
may not be known until runtime. 

Overall, the loop statistice show that ecientific loop neets 
are mostly 8imple and regular, and we can analyze, abe.o- 
lutely or parametrically, a significant number of loops ap 
pearing in the SPECfp benchmarks (3 72% of the total 
number of loops found). 

2.2 Equation Forming Algorithm 

This subsection describes the steps to generate the CM equa- 
tione. We use the matrix multiplication example given in 
Figure 1 to illustrate our algorithm. 

In order to describe our analyeiz steps in a concise math- 

ematical form we represent a loop nest of depth n (~8 a finite 

convex polyhedron of the n-dimensional iteration space Z”, 
bounded by the loop bounds [5, 161. Each iteration in the 
loop corresponds to a node in the polyhedron and is called 
an iteration point. Every iteration point is identified by its 

index vector ; = (il, ia , . . . , i,), where it is the loop index of 

the lth loop in the nest with the outermoet loop represented 
by the first dimension. Figure 2 shows the iteration space 
of the matrix-multiply loop nest. c’is an iteration point and 
corresponds to the iteration i = 0, k = 1, and j = 2. In this 

representation, if iteration $8 execute8 after iteration P; we 
write $2 + $1 and eay that 5 is lexicographically greater 
than $1. For example in Figure 2, t + $. 

In order to find out whether a reference n&sea in the 
cache in a particular loop iteration we need to know whether 
the memory line is being acceseed for the first time or whether 
it i8 reusing a previously acceeeed memory line.’ If it i8 
reusing a previously acceesed line we need to know when it 

‘We refer to a static read or write in the program sa a reference, 
while s particulsr execution of that read or write at runtime is s 
memory OCCCII. A memory line refers to s cache line rised block in 
the memory, while s cache line refers to the actual cache block to 
which a memory line ir mapped to. 
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Program 

Non Non Non Parametrically N 
Total Fen affhe constant perfect Variable Analyzable Analyzable Anal;kble 

#L call Ret bound step loop5 bound #L 1 #N #L ] #N #L 

Algorithm GENERATE: 

Generate the CM equations for a loop neat 

Input: 

Information about the loop nest, array reference5 in 
the nest, reu5e vector5 and the sequence in which 
those references appear in the generated code. 

Output: A set of CM equations for each reference. 

Algorithm: 

For each reference in the loop nest 

For each reuse vector of this reference 

1. Generate a cold miss equation 
(described in Section 2.2.1). 

2. For each reference in the loop nest 

Generate a replacement miss equation 

(described in Section 2.2.2). 

Table 1: Statistics on the number of SPECfp loops amenable to our analysis. (#L refers to the number of loops. #N refers 

to the number of loop nests.) 

was last accessed and the reference accessing it. Once we 

have the information about the reuse we can check if any 

intervening memory access evicts the memory line from the 

cache before it can be reused; this would result in a cache 

miss. If a reuse results in a cache hit we say that the reuse 

is realized. The central idea behind our CM equations is 

to find the loop instances at which reuse does not result in 

cache hits. 

If a reference accesses the same memory line in iterations 

h and &., where zz >- ;I, we say that there is reuse in di- 

rection 7’ = lz - li and 7’is called a reuse vector [16]. For 

now, let us assume only one reuse vector of a reference is 

present. We denote all the misses represented by the equa- 

tions for a reuse vector as misses along that reuse vector.’ 

In Section 3 we show how all the reuse vectors interact to 

decide the cache misses for a reference. 

The CM equations’ generated here are of two types, 

namely, the cold misa equations and the replacement miss 

equations. The cold miss equations represent the cold or 

compulsory misses-misses that occur on the first reference 

to a memory line. The replacement miss equations represent 

all other misses including both capacity and conflict misses 

[8]. Figure 3 summarizes the process to generate the CM 

equations. 

Figure 3: Algorithm to generate all the CM equations. 

pression: 

To generalize our discussion, we will consider generat- 

ing the CM equations for an arbitrary array reference Ra 

accessing A[fdA -L, . . , fi, fo], where da is the number of 

dimensions of the array A. For any dimension k of the ar- 

ray, the index function is written as fk and is of the form 

f(ii, ir , , in) where f is a linear function of the loop in- 

dices il , iz, , i,. For the sake of uniformity in the analysis 

presented here, we assume that all arrays are laid out in 

memory in a row-major order as in C. Here we have also 

assumed that all the load/ store references inside a nest cor- 

respond to only the array references. This algorithm can be 

easily extended to handle scalars resulting in a load/store, 

by considering scalars as a special case of 1-D arrays. While 

generating the equations, we repeatedly need to find the 

cache line of an array reference of the form given above. 

Considering addresses in terms of array element size, the 

cache line of the reference RA is given by the following ex- 

Memory-Address-of-AVdA-t,. . . , ft , fo] = MemR, 

dA-1 

2.2.1 Cold Miss Equations 

= ofiset + fo + c (dim-sizek-1 x fh) 

k=l 

CacheLineR, = lMemR,/LJ mod Nl (1) 

where ojgset = Base address of the array A; fk = Value of 

the index expression along the dimension k, evaluated with 

the current values of the loop indices; dim-sizeh = Size of 

A below the kth dimension; L, = Cache line size; N1 = 

Number of cache lines. 

2A miss is said to occur along a reuse vector at those iteration 
points where, ignoring other reuse vectors, the data reuse is not 

rcaliaed. 

‘The term equation has been used loosely to represent a set of 
simultaneous equalities or inequalities. 

Cold miss equations are formed by investigating the situa- 

tions when a memory line is brought into the cache for the 

first time. As each loop nest is treated in i5olation, we as- 

sume none of the data accessed in a loop nest is already 

present in the cache before it starts execution. For each ref- 

erence, we form a cold miss equation which captures all the 

cold misses along each reuse vector. In our analysis below 

&(i,,i,,-. ,&,) is the current iteration point. 
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(a) Negative Stride (b) Positive Stride 

ep=foO; %=fdH-Loa- 1 e,,=f&h e, =fdtO+C4-Lo~) 

Figure 4: Cold miss examples along an array row aligned on 
a cache line boundary. If en is the row element accessed in 
the previous iteration, the access of row element e, in the 
current iteration will result in a cold miss. 

l Spatial reuse (self or group): There can be a cold 
miss along a spatial reuse vector for either of two reasons 
given below: 

1. There is a cold miss when the present access is the 
first access along this vector. That means the previous iter- 
ation point along this vector lies outside the iteration space. 
For example, in Figure 2, Z[;,j] has spatial locality along 
the vector (O,O, 1). So the access of Z[;, j] in the iteration 
(0, 1,0) is a cold miss along that reuse vector, because the 
previous iteration point along this vector (0, 1, -1) is out- 
side the iteration space. If the reuse vector is given by 
r’= (Tl,l&..., r,,), an access is a cold miss if the corre- 
sponding iteration point satisfies any of the following in- 
equalities: 

il - 71 < 11, il - t1 > Ul , . . . , i, - 2, < I,, i, - 711 > 7Ln (2) 

where li,ls,... , I, are the lower bounds and ~1, UQ, . . . , u,, 
are the upper bounds of the previous iteration point along 
Fwhichisp’=(ii -~~,i2-r~,.~.,in-r,) 

2. There can also be a cold miss along a spatial reuse 
vector when a new cache line is accessed along that vec- 
tor. This means that the cache line accessed in the present 

iteration point : by the reference RA is different from the 
cache line accessed in the previous iteration point p’ along 
that vector by the same reference (if self reuse) or a different 
reference (if group reuse). Hence, there is a cold miss along 

this reuse vector in the iteration points 7 which satisfy the 
following relation: 

Cache line accessed at 7# Cache line accessed at p’ (3) 

But, if we assume that the beginning of each row (or the 
least significant dimension) of arrays are aligned to the cache 
line boundary, we can further simplify the above equation. 
Now we can have spatial reuse only if the same row of the 

same array is accessed at : and 3. When we access the same 
row, all dimensions, except the least significant one, remain 
the same. We can express this as the two inequalities in 
Equation 4. This is illustrated in Figure 4. 

a(;> < fo(P’) - Log if fo(T) < fo(P”) (neg. skde) 

f0(3 > fo(p’) t (L, - 1 - Log) if fo(l) > fo(p’) (pos.stide) 

where L,,n = fo(p”) mod Ii., L. = Cache Line Size (4) 

When the array is accessed with unit stride we can fur- 
ther simplify Equation 4 to the more familiar form: f~(p’) 

mod L. = 0 since f0(3 - fo(p’) = 1 for unit stride. For ex- 
ample, in Figure 2 the cold misses of Z[i, j] along the spatial 
reuse vector (O,O, 1) can be represented as (j mod 4) = 0, 

assuming the cache line size is 4 array elements. 
l Temporal reuse (self or group): Cold misses along 

a temporal reuse vector occur only for the iteration points 
which lie first along a temporal reuse vector. This is similar 
to the first case given for spatial reuse vectors and so all the 

cold misses along thii vector are given by the same equations 
as in Equation 2. 

2.2.2 Replacement Miss Equations 

All replacement miss equations are formed by a single method, 

irrespective of whether it is due to self or cross interference 
and whether the reuse vector is temporal or spatial. 

Let us say we want to find the replacement miss equac 
tions for the reference RA accessing A[fdA-l,. . . , fl, fc] along 
the reuse vector 7’ = (ti, r2,. s., rn). Here we show how to 
form the replacement miss equation representing the inter- 
ferences with an arbitrary reference RB accessing B[gd,-1, 

..‘I gr , go]. (da and dg denote the number of dimensions of 
the arrays A and B respectively.) For the self-interference 
equation, references RA and RB are identical. If the current 

iteration point is 7 = (ii, is,. . . , in) and the reuse vector is 
r’ then the last iteration point where RA accessed the same 

memory line isp’= 5-g= (il -tl,il -?2,“‘,a, - TV%>. 

The iteration points at which we can have an interference 

with RB, preventing RA from realising the reuse at l, are 

all the points lying between p’and : which are considered as 
the set of potential interfering points. Whether we include 

the points @and ; also in that set depends on the relative 
access order of RA and RB in a loop nest iteration. If RA 

occurs before Rg in the nest, only p’has to be considered, 

otherwise, only 7 needs to be considered. In our implemen- 
tation, we extract access order information from the code 
generation phase automatically. We represent all points in 

the set of interfering points as ; = (ji, jr, . . . , j,,), where 

i E cp’, i) if access of RA is before RB, 

E (p’,iJ othenuise 

There is an interference if the cache line accessed by RA in 

l(which is the same as accessed in p’due to the reuse) is the 

same as any of the cache lines accessed by Rg at every ;. 
Equating the appropriate cache lines accessed gives the con- 

dition for an interference miss along r’: Cache-LineRA = 

CacheLineR,( Substituting in the expressions from Equa- 
tion 1, we can simplify the resulting equation to the linear 
Diophantine equation shown in Equation 5. 

hfemR,(i) = !demR,(j) + nC. + b (5) 

where C. is the cache sise and n is any integer. The variable 
b can take on values in the range -L,o 5 b <_ L. - 1 - L,p 

where ,S Memn,(;) mod L,. Thus, L shows the 

offset oft e reference Rg in its cache line, and T = “% bounds the 
search for an interference within that cache line. Since the 
loop indices are bounded, the equality holds for a bounded 
region. 

For the matrix multiply example shown in Figure 1, con- 
sider generating replacement miss equations for Z[;, j] along 

the spatial reuse vector r’ = (O,O, 1). If ; = (i, k, j) then 

p’= z-t= (i,k,j-1). F or an 8KB cache with 256 cache lines 
and 4 array elements per cache line, Equation 6 shows the 
replacement miss equation for the interferences with X[i, k] 

along ?. (Here the access of Z[i, j] ia after X[i,k] in each 
loop nest iteration.) 

Cache-Line-Z[i,j] = Cache-LinesX[i’, k’] 

where (i’,k’,j’)E((i,k,j-l),(i,k,j)] 

+ ](4192 + 32i + j)/4] mod 256 

= ](2136 + 32i + k)/4J mod 256 

+ 4192 + 32i + j = 2136 + 32i + k + 1024n + b (6) 
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IB a l 0) a ‘3 0) 

j j 

(a) Considering one reuse vector (b) Considering multiple reuse vectors 

Figure 5: Illustration of (a) Theorem 1 and (b) Theorem 2 

in the iteration space of a 2D loop nest. 

where n > 0, (&j) E [(0,0),(31,31)], b E [-3,3]. 1024 is 

the cache size. 4192 and 2136 are the base addresses of the 

arrays 2 and X respectively, and 32 is the row siee of both 

the arrays (All numbers are in units of data element size.) 

3 Finding Cache Misses from CM Equations 

CM equations arc useful because they allow a systematic 

way to generate all the cache misses of a loop nest from 

them. This section describes the algorithm to generate all 

the cache misses of a loop nest from its CM equations. This 

helps us to understand how the solutions to the CM equa- 

tions are related to the cache miss instances of a loop nest. 

As described in Section 2, for every reference we gener- 

ate a set of equations for each of its reuse vectors. Every 

reuse vector has one equation for the cold misses and other 

equations that represent the conflicts with that reference 

along that reuse vector. The solution set-the set of all 

miss instances-can be generated with the help of two the- 

orems which arc discussed below. (Formal proofs are not 

given here due to space constraints.) 

l THEOREM 1: The set of all misses of a reference 

along a reuse vector is given by the union of all the solution 

sets of the equations corresponding to that reuse vector. 

As an example consider the iteration space shown in Fig- 

ure 5(a). For a particular reference, assume that one of its 

reuse vectors is 77, which means the reference reuses the 

same cache-line at the iteration points 11 and 12. Each so- 
lution of all the equations corresponds to either a cold miss 

along 7; (if it is a cold miss equation) or an interference, 

preventing the reuse to be realized at 4. However, it only 

takes one conflicting cache line access between 1~ and II to 

cause the reference to miss along 7; at 11. This means that 

we have to take the unionof the solution sets of all the cqua- 

tions for a particular reuse vector, ti, to get all the misses 

along that vector. 

l THEOREM 2: The set of all miss instances of a 

reference is given by the intersection of all the miss-instance 

sets along the reuse vectors. 

As an example consider the iteration space in Fig 5(b). 

We assume that the reference has the reuse vectors 77, 7’5, 

and 7;) which means it accesses the same memory line at the 

iteration points II,I~,I~, and I,. The reference can reuse 

data at II if the data remains in cache after being accessed at 

either 1~ or 13 or II. If at least one of the reuses are realized, 

the reference will find the data in cache at II. Hence, the 

reference suffers a miss at 4, if and only if, I~ is a miss along 

all the reuse vectors 77, 73, and 7;. 

For a reference R, say there are m reuse vectors and the 

number of equations corresponding to the kth reuse vector 

is given by nk. From the above two theorems, the set of 

miss instances of R can be generated from the following 

expression: 

Miss Instances of R 

= nr=, [Uyil(Solution Set of CM-eqn,j)] 

‘th CM-eqnkj = 3 CM equation of the kth reuse vector (7) 

If the number of array references in a loop nest of depth 

n 1s n,,f and dm,z is the maximum number of dimensions of 

any of those arrays, the worst case complexity of calculating 

all the reuse vectors is O(n&, x (maz(n, dm,z))S). Once the 

reuse vectors are calculated, the time taken to generate all 

the CM equations of the loop nest is given by O(n x dmcr. x 

necn), where ncqn = #Equations = n, x n,,/, n,-,, = Total 

#reuse vectors of all the references. 

The equations generated here represent a set of linear 

equalities or inequalities. Fast methods to solve these kind 

of equations for most practical loops can be found in [2, 131. 

Taking unions and intersections to find the cache misses 

takes polynomial time in the number of elements of the so- 

lution sets. Many loop optimixations and estimations need 

the total number of cache misses rather than the iteration 

points where the cache misses occur. This involves finding 

the number of integer solutions to the unions and intcrscc- 

tions of the CM equations. The method to find the number 

of integer points in unions and intersections of closed con- 

vex polyhedrons defined by most practical scientific loops, 

as given in [5], could be used. For the closed convex poly- 

hedrons defined by the CM equations, the method takes 

polynomial time for fixed loop bounds. It is also efficient for 

parametric loop bounds of practical loop nests. 

4 Using CM Equations to Guide Memory Optimizations 

We have implemented our algorithm to generate the CM 

Equations for all the analyaable loops in a program that 

is integrated with the SUIF compiler system [15]. All nec- 

essary information regarding analyzable loops is gathered 

by a pass integrated into the SUIF analysis. Besides the 

reuse vectors, our algorithm also needs the exact reference 

sequence within a loop nest. We extract thii from the code 

generator after register allocation is done. 

In this section we describe how these equations can be 

used to guide different memory optimizations through two 

examples. The first example shows how the CM equations 

can be used to reduce cache misses by changing the base 

addresses and the row sizes (i.e. padding) of the arrays 

referenced in a loop nest which is taken from the SPECfp 

benchmarks. The second example shows how the equations 

can be used for efficient block size selection for the blocked 

matrix multiply loop nest. While these optimizations have 

been addressed in isolation by past work (1, 6, 91, these cx- 

amples illustrate how CM equations provide an accurate, 

unifying framework to drive optimiaations. 

4.1 Example 1: Padding and Changing Base Address 

The code in this example is from the aiuinn program of the 

SPECfp benchmarks. When we run our equation generator 

on the loop nests, it generates a collection of CM equations 

summarizing the memory behavior of each nest. We focus 

here on one of the analysablc loop nests (shown in Figure 6) 

which suffers significantly from replacement misses. In this 

loop, roughly 187000 out of 306000 misses are replacement 

misses. We use the CM equations to eliminate these misses. 

Equation 8 and Equation 9 arc generated as the replacc- 

mcnt miss equations for the reference to i-h-weights[hu][iu]. 

Equation 8 represents the self-interferences while Equation 9 

gives the cross-interferences with the reference i-h-w-ch-sum- 
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for (iu=O; iu<1221; iu++) 

for (hu=O; hu<30; hu++) { 

i-h-weights[hu][iu] += 

ih-wrh-eum-array[hu][iu]* i-hlrc; 

i-h-wrh-sumarray[hu][iu] *= ALPHA; 

I 

Figure 6: Example loop nest from the aluinn benchmark. 

array/hu][iu]. 

1221hu + iu = 1221hU’ + iu’ + nC. + b 

82110 + 1221f~u + iu 

(8) 

= 45480 + 1221hu’ + iu’ + nC. + b (9) 

where (iu’, hu’) E [(iu-1, hu+l), (iu, hu-1)] in Equation 8, 

and (iU’, hu’) E [(iu-1, hu), (iu, hu- 1 ] in Equation 9. For 

both the equations, hu E [0,29], iu E r’ 0,1220], b E [-3,3], 

and n E [0, oo) . For this example, we assume a cache sise, 

C,, of 1024 and a line size of 4 elements. In Equation 9, the 

constant terms 82110 and 45480 are the base addresses of 

the arrays i-h-weights and i-h-w-ch-sum-array respectively. 

The coefficient 1221 is the sise of each row of the arrays. 

The absolute value of the bounds of b is one less than the 

cache line sise. (All the numbers given are in units of data 

element size.) 

Equations 8 and 9 have 232 and 269 solutions respec- 

tively. Each solution corresponds to a potential cache miss. 

We wish to reduce the number of solutions in order to reduce 

the cache interferences represented by these equations. We 

intend to do that by changing the offsets and the row sises 

(i.e. padding the arrays). For this reason, we will replace 

all terms related to the base addresses and the row skes 

with parameters. Equations 10 and 11 are derived from 

the Equations 8 and 9 respectively using standard algebraic 

techniques. The parameter k is related to the baee addresses 

while P is related to the row sizes. Our goal is to see which 

values of k and P will result in the fewest interference misses. 

Phudig - 1024n’ = (b - iud;B), n’ E [-29, m) (10) 

k + Phudi8 - 1024n’ = (b - iudin), n’ E [-84, CG) (11) 

In Equation 10, hUdia = (hU - hU’) E [-29, -11 if iU&fl = 

(iu - iu’) = 1 and hUdi# E [l, 291 if iu&ff = 0. In Equa- 

1 and-hUd,g E [1,29] if 

value of hu&iff in these 

eq;&ons corresponds to the upper bound of the-Lop index 

hu. Though Equations 10 and 11 are independent equations, 

they are connected through the parameter P. Changing P 

in one equation will affect the other. We consider Equa- 

tion 10 first to determine which values of P would eliminate 

its solutions. We then use one of these P’s in Equation 11 

to find the values of k that eliminate its solutions. 

From basic number theory, we see that if the greatest 

common divisor of P and 1024 represented aa CCD(P, 1024) 

I does not divide (b - iU,fi#) E -4,3], then Equation 10 has 

no solution [2]. When (b - iudw) = 0, GCD(P,1024) will 

always divide (b - iudi#). For this case, we can again show 

from number theory that the equation will have no solution 

if GCD(P, 1024) < 1024/maz(hUdin) where ma%(hudig) ie 

the maximum value of hUdig (in this case, 29). Choosing 

4 < 1 GCD(P, 1024)) < 36, satisfies both of the above criteria 

and guarantees that Equation 10 will have no solution. As 

4 < IGCD(P, 1024)l < 36, we can write P = Bt, 16t, or 321 

where t is any odd positive integer. 

1 

for (kk=O; kk<N; kk+=B-k) 

for (jj=O; jj<N; jj+=B-j) 

for (i=O; i<N; i++) 

for (k=kk; k<min(kk+B-k-l, N); k++) 

r = X[i,k]; 

for (j=jj; j<min(jj+B-j-1, N); j++) 

Z[ij] += r * Y[kj]; 

Figure 7: Blocked matrix multiplication loop nest, 

By similar reasoning as above, we can say that Equa- 

tion 11 will have no solution if GCD(k, P, 1024) does not 

divide (b - iU&#) for (b - iudiff) # 0. For (b - iudio) = 0, 

rewriting the equation as PhUdin - 1024n’ = -k, the equa- 

tion will have no solution if GCD(P, 1024) does not divide 

k. If we choose k = 8 and P = 16t we can satisfy all the 

above criteria and make both Equation 10 and 11 have no 

solution. In order to have the least amount of padding we 

choose P = 208, the least multiple of 16 above the original 

value of P = 197. (Clearly, we cannot choose to decrease P; 

that would correspond to negative padding.) 

Tracing back the origin of k, it can be seen that set- 

ting k = 8 corresponds to changing the offset of the ar- 

ray i-h-weights from 82110 to 81328. On the other hand, 
setting P = 208 corresponds to changing the sise of each 

row of the arrays from 1221 to 1232. These simple changes 

in the array layout eliminated all the interference misses 

in the loop nest of Figure 6. (The equations for the ref- 

erence i-h-w-ch-sum-arraybu][iuj are similar and required 

similar changes to eliminate misses.) Overall, this example 

has shown how expressing a loop nest’s cache misses in the 

form of linear Diophantine equations allows us to methodi- 

cally identify ways of padding and aligning data in order to 

avoid interference misses. 

4.2 Example 2: Selecting Block Size for Loop-Tiling 

Thii case study deals with a familiar loop optimisation for 

scientific code: blocking (or tiling). This technique tries to 

eliminate capacity misses by reordering accesses so that ac- 

cesses to reused data are closer together in the iteration 

space. There has been significant research on how to re- 

structure loop nests for tiling [3, 16, 1’71. This work typically 

ignores the effects of conflict misses arising due to the low as- 

sociativity of real caches. More recent work noted that cache 

conflicts can have significant impact on performance and are 

highly sensitive to the problem sise and block sise [9]. This 

led to recent research on choosing appropriate tile sires that 

would reduce conflict misses as well [6, 91. These papers 

concentrate on eliminating the self-interference misses that 

are found to dominate conflict misses in tiled code. They 

develop specific algorithms for choosing a blocking factor 

based on program and cache parameters. Here we will show 

how to use our CM equations, a more general framework, to 

find the block sise that will eliminate all the self-interference 

misses in a tiled code. In fact, our fiamework can be used to 
handle both self and cross-interferences, but here we focus 

on the former. 

In thii example, we start with an already-blocked loop 

nest. We explain our method for the blocked matrix multi- 

plication loop nest given in Figure 7. Our analysis could be 

easily generalised for all other tiled loops handled in previ- 

ous work. In Figure 7, Bk by B-j is the block sire which 

thi example works to maximise without incurring any self- 

interference misses. 

In order to roughly match the analysis given by Lam 
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Figure 8: Solutions to self-interference equation of Y[k, j] 

4 he 

Figure 10: Finding regions without integral solution points. 

Figure 9: Solution plot of the self-interference equation of 
Y[k, j]. The parallel lines correspond to sets of solutions for 
different values of n. Dots along each line represent the in- 
tegral solution points (interference misses). Shaded regions 
correspond to possible blocks with no self-interference. 

et al. [9], we consider a 4 KB (512 element) direct-mapped 
cache with 8 Byte (1 element) lines. We assume matrices 
of sire 295 by 295 double-word elements. The predomi- 
nant source of misses in the tiled code is self-interference 
misses in Y/k,jJ. In fact, after a certain block sine, these eelf- 
interferences outweigh the performance gain expected from 
increasing block sise [9]. The self-interference equation of 
Yh, j] for each execution of the blocked code in Figure 7 is 
given by Equation 12. 

295k+j = 2958’ + j’ + nC. + b (12) 

where (L, j) E [(0, O), (B-k-l, B-j-l)], (k’, j’) E [(O,O), (k, j- 
l)] or [(k, j + l), (B-k - 1, B-j - l)], b E [-O,O],, C, = 512 
and n is any integer except 0. As before, C, is the cache 
sise, and b is the cache line sise minus one. Equation 13 is 
a simplified version and includes all the solutions of Equa- 
tion 12. 

295kdifl + jaifi = 512n (13) 

where, Jkdi 

Figure % 
] = )k - le’) < Bk and ]j&frl = ]j - j’] < B-j. 

plots the number of solutrons of Equation 12 
for different square block sizes. These data are consistent 
with the self-interference misses of blocked matrix multipli- 
cation presented in [9]. There are no self-interferences of 

Yfi,j]until a block sic of 16 by 16. Thereafter, it increases 
drastically with increasing block size. Our goal is to USC the 
CM equations to identify the largest block sise with no self- 
interference. That means WC need to find the largest value 
of B-k by B-j such that Equation 13 has no solution. Lam 
et al. considered only square blocks, but Coleman et al. [6] 
showed that we can get better performance with rectangu- 
lar blocks without restricting ourselves to square blocks. We 
will show that CM equations can guide us to choose the best 
block, square or rectangular. 

Figure 9 illustrates the block-selection problem. The 
lines in the figure are plots of Equation 13 for different 
values of n. The bold dots show the self-interference in- 
stances, that is the solution points for integral values of z 
and y. Since ]kdiB] < B1 and (jdig] < B-j, Equation 13 
will have no solution if there are no mtegral solution points 
in the region defined by k&f = B-k, kdig = -BJc and 
jdiff = B-j, jdiff = -B-j. Thus, such an empty region 
corresponds to the selection of a block of sise Bk by BJ 

which would eliminate all self-interferences. For example, 
the shaded region A1 in Figure 9 is one such empty region. 
Our aim is to find the empty region with the largest area. 

For our explanation, we only concentrate on the right- 
half of Figure 9 (i.e. z 2 0) as the left half is just the 
reflection of that through the origin. In order to explain our 
method, consider the sane around the origin in the figure. 
We start with the tallest, thinnest empty region A1 where 
Bk = 1 and B-j = 216 since (z,~) = (1,217), an integral 
solution point, has to be excluded. We then try to expand 
that empty region along the kdig axis until we hit an integral 
solution point. Now the region ~8 shrunk along the j&f axis 
to just exclude that solution point and expanded again along 
kdi# as much as possible without including any integral solu- 
tion point. As a result of the above operation we obtain the 
region Al. We repeat the above process to find the mtimol 
empty regions’ until the region’s area exceeds the cache size 
or reduces to sero. Table 2 lists the maximal empty regions 
A1 through AT found by the above algorithm. Figure 10 
depicts the formation of the first four regions. Now, each 
of these regions define a block size with no self-interference. 
For example, region AI defines the block sic of Bk by B-j 

= 25 by 16 which clearly includes the square block solution 
of 16 by 16 found experimentally from Figure 8. For the 
largest block sise, we choose the region with the maximum 
area which, in thii case, is the block Aa. Our algorithm 
does not require finding integral solution points for all n, j, 
k. Rather, we need only identify those close to the axes as 
we stretch the rectangles. 

4Regionr whose area cannot be increased without decreasing the 

height. 
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Table 2: Blocks with no self-interference (from our tic- 
rithm). 

5 Future Work 

One of the important extensions to our analysis is to handle 
set-associative caches. AS azsociativity does not affect the 
cold misses of a program, our methods for generating cold 
miss equations hold for any degree of azzociativity. For re- 
placement misses we need to modify the COnBtraintB given 
in Equation 5. For a k-way set-associative cache with LRU 
replacement policy there must be at least k interfering ac- 
cesses to the same cache line before a data can be replaced 

from its cache line. Hence, the constraints need to be mod- 

ified such that an iteration point ; will be a solution if and 

only if there are k different ?s satisfying Equation 5 for that 
1 
t. 

The methods presented here can be followed to gener- 
ate equations taking inter-nest effects into account, once 
efficient methods are developed to calculate reuse vectors 
across loop nests. Fortunately, most inter-nest misses occur 
between adjacent nests [12]. So it should be enough to find 
reuse vectors only between adjacent nests for most practical 
purposes. 

In order to help code optimirations, az described in Sec- 
tion 4, we try to find values of parameters that would elimi- 
nate or reduce the number of solutions to the CM equations. 

AS one possible way to automate that analysiz, we hope to 
use the extension of Pugh’s Omega test [IS] to project our 
constraints on the parameters of interest and find the pos- 
sible ranges of those parameters that would eliminate or 
reduce the number of solutions. Another possible way is 
to calculate the parametric number of solutions az given by 
Clauss [5] and then find the values of the parameters that 
would reduce that number. The Pugh and Clause methods 

are reported to be fast for linear constraints derived from 
most practical loops. The varying ability of these methods 
to handle parameters would alzo help us to analyze and op- 
timise loops with parametric loop bounds. 

6 Conclusions 

This paper has demonstrated the use of CM equations as a 
means of precisely characterizing the cache misses within a 
loop nest. Our method involves extending traditional reuse 
analysis in order to generate a set of linear Diophantine 
equations whose solutions comprise potential cache misses 
for the loop nest. We then dezcribed algorithms for iden- 
tifying cache misses without simulation, and we used ex- 
amples from SPECfp benchmarb to demonstrate practical 
applications of thiz information. 

There are numerous applications of thiz work that range 
from performance estimation to code optimisations. By au- 
tomating CM equation analysis within the compiler, one 
can guide compiler memory optimiiations. In addition to 

loop optimizations, CM equations may also be useful in in- 
struction scheduling to avoid stalls due to long cache miss 
penalties. We also hope to use the equation framework to 
improve the performance of cache simulation tools. Easen- 
tidy, CM equations can accelerate simulations by identi- 
fying cache misses and summarizing much of a program’s 
memory behavior at compile-time, before the cache simu- 
lation is run. Overall, Cache Miss Equations provide an 
unique, systematic framework for accurately assessing the 
frequency and causes of cache misses in loop-oriented code; 
this accurate framework will support a range of future uses. 
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