
Cache-Oblivious

Algorithms and Data Structures

Gerth Stølting Brodal⋆

BRICS⋆⋆, Department of Computer Science, University of Aarhus
IT-parken, Åbogade 34, DK-8200 Århus N, Denmark

Abstract. Frigo, Leiserson, Prokop and Ramachandran in 1999 intro-
duced the ideal-cache model as a formal model of computation for devel-
oping algorithms in environments with multiple levels of caching, and
coined the terminology of cache-oblivious algorithms. Cache-oblivious
algorithms are described as standard RAM algorithms with only one
memory level, i.e. without any knowledge about memory hierarchies,
but are analyzed in the two-level I/O model of Aggarwal and Vitter for
an arbitrary memory and block size and an optimal off-line cache re-
placement strategy. The result are algorithms that automatically apply
to multi-level memory hierarchies. This paper gives an overview of the
results achieved on cache-oblivious algorithms and data structures since
the seminal paper by Frigo et al.

1 Introduction

Modern computers are characterized by having a memory system consisting of
a hierarchy of several levels of memory, where each level is acting as a cache for
the next level [46]. The typical memory levels of current machines are registers,
level 1 cache, level 2 cache, level 3 cache, main memory, and disk. While the sizes
of the levels increase with the distance from the CPU the access times to the
levels also get larger, most dramatically when going from main memory to disk.
To circumvent dramatic performance loss data is moved between the memory
levels in blocks (cache lines or disk blocks). As a consequence of this organization
of the memory, the memory access pattern of an algorithm has a major influence
on its practical running time. A basic rule commonly stated in the literature for
achieving good running times is to ensure locality of reference in the developed
algorithms.

1.1 I/O model

Several models have been proposed in recent years to model modern memory
hierarchies. The most successful of these models (in terms of number of publica-
tions) is the two-level I/O model introduced by Aggarwal and Vitter in 1988 [6]:

⋆ Supported by the Carlsberg Foundation (contract number ANS-0257/20). Email:
gerth@daimi.au.dk.

⋆⋆ Basic Research in Computer Science, www.brics.dk, funded by the Danish National
Research Foundation.

The memory hierarchy is assumed to consist of two levels, a main memory of
size M and an infinite secondary memory, where data is transfered between the
two levels in blocks of B consecutive elements. Computations are performed
on elements in main memory and algorithms have complete control over block
transfers, I/Os, between the two levels. The resource studied in the I/O model
is the number of I/Os performed by algorithms, e.g. does the scanning of an
N element array in secondary memory imply Θ(N/B) I/Os. Aggarwal and Vit-
ter in their seminal paper [6] proved that in the I/O model, comparison based
sorting requires Θ(SortM,B(N)) = Θ(N

B logM/B
N
B) I/Os, which is achieved by

Theta(M
B)-ary multi-way mergesort, and searching requires Θ(logB N) I/Os,

which is acheived by B-trees [17].

The success of the I/O model is likely due to its simplicity making the design
and analysis of external memory algorithms feasible, while adequately modeling
the case where the I/Os between two levels of the memory hierarchy dominates
the running time. For an overview of the comprehensive work done related to
the I/O model we refer the reader to the surveys by Arge [9] and Vitter [69],
and the book [57].

More sophisticated multi level models have been studied in the literature [3–5,
7, 16, 47, 62, 63, 70, 71], but none of these have gained the same level of attention
as the I/O model of Aggarwal and Vitter [6], likely due to the complexity of
describing algorithms for these models.

A limitation of the I/O model is that the parameters B and M are required
to be known to the algorithms. In practice, these parameters might not always
be available. Furthermore the available memory for a process may wary over
time, e.g. in a multiprocess environment the available memory depends on the
memory usage of the other processes being scheduled.

1.2 Ideal-cache model

Frigo, Leiserson, Prokop and Ramachandran in 1999 introduced the ideal-cache

model and coined the terminology of cache-oblivious algorithms [44]. The ideal-
cache model can be viewed as a formal framework for analyzing the locality of
reference of an algorithm that is oblivious about the presence of the memory
hierarchy. The basic idea is to describe algorithms for the standard RAM model
with only one memory level, i.e. without any knowledge about memory hierar-
chies. The algorithms are then analyzed in the two-level I/O model of Aggarwal
and Vitter for an arbitrary memory size M and block size B, assuming that
I/Os are performed by an optimal off-line cache replacement strategy. Since the
analysis of an cache oblivious algorithm should hold for all values of M and B,
the analysis also holds for all levels of a multi-level memory hierarchy (see [44]
for a detailed discussion of the technical requirements to be satisfied).

For algorithms satisfying that reducing the cache size by a factor two does
not increase the number of I/Os by more than a constant factor, Frigo et al. [44]
proved that the assumption of an optimal off-line cache replacement strategy can
be replaced by the on-line least-recently used (LRU) cache replacement strategy,

by appealing to Sleator and Tarjan’s classic competitiveness result [64] for LRU-
paging. Since LRU is adaptive to dynamically changing memory sizes, cache
oblivious algorithms are also adaptive to changes in the available memory.

A naive cache-oblivious algorithm is the scanning of an N element array that
requires optimal Θ(N/B) I/Os. The linear time selection algorithm of Blum et

al. [27] primarily is based on scanning and it can be proved that their selection
algorithm is an optimal cache-oblivious algorithm performing Θ(N/B) I/Os.

Frigo et al. in their seminal paper [44] considered cache-oblivious algorithms
for several algorithmic problems: The transposition of an n×m matrix was solved
using optimal O(mn/B) I/Os. The multiplication of an m × n-matrix and an
n× p-matrix was solved using O((mn + np + mp)/B + mnp/(B

√
M)) I/Os. For

square matrices this matches a lower bound by Hong and Kung [47] for algo-
rithms computing the matrix product only using additions and multiplications.
In [44] it was furthermore proved that Strassen’s matrix multiplication algo-
rithm [65] is cache-oblivious and requires O(n + n2/B + nlog

2
7/(B

√
M)) I/Os.

Optimal comparison based sorting algorithms performing O(Sort(N)) I/Os were
presented, under the so called tall cache assumption M = Ω(B2). Both merging
based (Funnelsort) and distribution based sorting algorithms were presented.
Finally an algorithm for fast Fourier transform (FFT) was presented requir-
ing O(Sort(N)) I/Os. A cache-oblivious algorithm for LU decomposition with
pivoting appeared in [66].

The remaining of this paper gives an overview of the results on cache-
oblivious algorithms and data structures achieved during the five years since
the seminal paper by Frigo et al. Recent surveys on cache-oblivious algorithms
and data structures can also be found in [13, 38, 50].

2 Sorting and permuting

The first cache-oblivious sorting algorithms were presented by Frigo et al. [44]:
One based on the merging paradigm, Funnelsort, and one based on the distri-
bution paradigm. Both algorithms require the tall cache assumption M ≥ B2.
A simplified version of Funnelsort was presented in [28], denoted Lazy Funnel-
sort, requiring the tall cache assumption M ≥ B1+ε. An empirical study of the
developed cache-oblivious sorting algorithms is presented in [33].

That I/O optimal cache-oblivious comparison based sorting is not possible
without a tall cache assumption is proved in [30]. The paper shows an inherent
trade-off for cache-oblivious algorithms between the strength of the tall cache
assumption and the overhead for the case M ≫ B. The result implies that both
Funnelsort and recursive binary mergesort are optimal algorithms in the sense
that they attain this trade-off, where recursive binary mergesort does not require
a tall cache assumption but performs O(N

B log2
N
M) I/Os.

Permuting N elements in an array can be solved by either moving each ele-
ment independently to its new position by O(1) I/Os or by sorting the elements
by their new positions. In [6] it is proved that permuting in the I/O model re-
quires Θ(min{N, Sort(N)}) I/Os. In [30] it is proved that no cache-oblivious

algorithm can match this I/O performance, not even in the presence of a tall
cache assumption.

Variations of cache-oblivious sorting have been studied. An implicit cache-
oblivious sorting algorithm was presented in [41], i.e. an algorithm that works
with a single array of size N only storing the N input elements plus O(1) machine
words. Sorting multisets has been studied in [40].

3 List labeling

Itai et al. [48] studied the problem of maintaining N elements in sorted order in
an array of length O(N), an important problem in dynamic dictionaries when
an efficient range query operation is required to be supported [22]. The problem
is commonly denoted the list labeling problem, but in [22] denoted the packed
memory management problem. The reorganization primitive in [48] during in-
sertions and deletions of elements is the even redistribution of the elements in a
section of the array. Their approach uses amortized O(log2 N) work per update.
A matching Ω(log2 N) lower bound for algorithms using even redistribution as
the primitive was given in [39]. A worst-case variant was developed by Willard
in [72]. Bender et al. [22] adapted the algorithms to the cache oblivious setting,
supporting insertions and deletions in the array in amortized O((log2 N)/B)
I/Os, and guaranteeing that there are only O(1) empty slots between two con-
secutive elements in the array. Bender et al. [18] refined the last labeling solution
to satisfy the property that every update (in addition to every traversal) con-
sists of O(1) physical scans sequentially through memory. Updates still require
amortized O((log2 N)/B) I/Os.

4 Search trees

Prokop in [60] proposed static cache-oblivious search trees with search cost
O(logB N) I/Os, matching the search cost of standard (cache-aware) B-trees [17].
The search trees of Prokop are related to a data structure of van Emde Boas [67,
68], since the recursive layout of a search tree generated by Prokop’s scheme re-
sembles the layout of the search trees of van Emde Boas. The constant in the
O(logB N) search cost was studied in [21], where it is proved that no cache-
oblivious algorithm can achieve a performance better than log2 e · logB N I/Os,
i.e. a factor ≈ 1.44 slower than a cache-aware algorithm. Cache oblivious search
trees avoiding the usage of pointers were presented in [31, 53, 59].

Dynamic B-trees were first presented by Bender et al. [22] achieving searches
in O(logB N) I/Os and updates requiring amortized O(logB N) I/Os. Simplified
constructions were presented in [23] and [31], where [31] is based on combining
the recursive static layout of Prokop [60] and the dynamic search trees of low
height by Andersson and Lai [8], and [23] is based on combining the static layout
of Prokop with a data structure for the list labeling problem.

A cache-oblivious dictionary based on exponential search trees was presented
in [19]. The paper shows how to make the exponential search trees partially

persistent, i.e. support queries in previous versions of the search tree, and how to
support efficient cache-oblivious finger searches, i.e. searches in the vicinity of a
given element. The layout of arbitrary static trees was considered in [20]. Finally,
optimal cache-oblivious implicit dictionaries were developed in [42] and [43].

5 Priority queues

Arge et al. [11] presented the first cache-oblivious priority, supporting inserts and
delete-min operations in O(1

B logM/B
N
B) I/Os. This matches the performance

achieved in the I/O model by e.g. the buffer trees of Arge [10]. The construction
in [11] is a general reduction to sorting. An alternative cache-oblivious priority
achieving the same I/O complexity as [11] was presented in [29]. This solution
is a more direct solution based on k-mergers introduced in the Funnelsort algo-
rithm [44, 28].

6 Graph algorithms

The existence of a cache-oblivious priority queue enabled a sequence of cache-
oblivious graph algorithms. In [11] the following deterministic cache-oblivious
bounds are obtained: List ranking, computing the Euler tour of a tree, breadth
first search (BFS) of a tree, and depth first search (DFS) of a tree, all requiring
O(Sort(E)) I/Os, matching the known bounds for the I/O model achieved in [36].
For directed BFS and DFS on general graphs a cache-oblivious algorithm was
presented performing O((V + E/B) logV +Sort(E)) I/Os, matching the known
best bounds for the I/O model [34]. For undirected DFS, an algorithm performing
O(V + Sort(E)) I/Os was achieved, matching the bound for the I/O model
in [58]. Finally an O(Sort(E) log log V) I/O minimum spanning tree algorithm
was presented, nearly matching the O(Sort(E) log log V B

E) I/O bound in [12] for
the I/O model.

Abello et al. [1] presented for the I/O model a functional approach to solve a
sequence of graph problems based on recursion and repeated use of sorting and
scanning. Their randomized minimum spanning tree algorithm is actually also
cache-oblivious and performs expected O(Sort(E)) I/Os.

In [56] it was shown how to solve undirected BFS in O(ST(E) + Sort(E) +
√

V E/B) I/Os for the I/O model, where ST(E) denotes the I/O bound for
computing a spanning tree of the graph. In [32] two cache-oblivious versions of
the algorithm in [56] were developed requiring O(ST(E) + Sort(E) + E

B log V +
√

V E/B) and O(ST(E)+Sort(E)+ E
B · 1

ε · log log V +
√

V E/B ·
√

V B/E
ε
) I/Os

respectively.

Undirected single source shortest path (SSSP) can be solved cache-obliviously
in O(V +E/B log(E/B)) I/Os [32, 37], matching the known bounds for the I/O
model [51].

7 Computational geometry

Goodrich et al. [45] introduced the distribution sweeping approach to solve a
sequence of problems within computational geometry in the I/O model. A cache-
oblivious version of the distribution sweeping approach is developed in [28],
achieving the following results, where N is the input size, T the output size:
The 3D maxima problem on a set of points, computing the measure of a set
of axis-parallel rectangles, the all nearest neighbors problem, and computing
the visibility of a set of non-intersecting line segments from a point can be
solved using optimal O(Sort(N)) I/Os. The orthogonal line segment intersection
reporting problem, batched orthogonal range queries, and reporting pairwise
intersections of axis-parallel rectangles can be solved using optimal O(Sort(N)+
T
B) I/Os,

A cache-oblivious data structure for the planar point location problem was
presented in [19]. In requires linear space, taking optimal O(logB N) I/Os for
point location queries, where N is the number of line segments specifying the
partition of the plane. The pre-processing requires O((N/B) logM/B N) I/Os.

Cache-oblivious algorithms for orthogonal range searching were presented
in [2], both a kd-tree and range-tree solution were presented. A cache-oblivious
kd-tree is simply a normal kd-tree [24] laid out in memory using the van Emde
Boas layout. This structure uses linear space and answers queries in O(

√

N/B+
K
B) I/Os; this is optimal among linear space structures [49]. Insertions are fa-
cilitated using the so-called logarithmic method of Bentley [25], and require
O(log N

B logM/B N) I/Os. The cache-oblivious range-tree presented in [2] sup-

ports range queries in O(logB N + K
B) I/Os and requires space O(N log2 N).

8 Lower bounds

A general reduction technique for proving lower bounds for comparison based
algorithms for the I/O model was presented in [15], allowing the reduction to
standard comparison trees. Lower bounds achieved for the I/O model immedi-
ately apply to cache-oblivious algorithms also.

Bilardi and Peserico [26] have investigated the portability of algorithms across
memory hierarchies in the HRAM-model, where they provide a CDAG compu-
tation and two machines such that any scheduling of the computation is a factor
polynomial from optimal on at least one of the machines. For cache-oblivious
algorithms lower bounds have been given for searching [21], and sorting and
permuting [30].

9 Empirical work

The impact of different memory layouts for data structures has been studied
before in different contexts. In connection with matrices, significant speedups
can be achieved by using layouts optimized for the memory hierarchy—see e.g.
the paper by Chatterjee et al. [35] and the references it contains.

Ladner et al. considered the effect of caches in connection with heaps [54],
sorting [55], and sequential and random traversals [52]. Using registers to im-
prove the running time of sorting was considered in [14]. Minimizing translation
look-aside buffer (TLB) misses, and the case of low cache associativity was stud-
ied in [73]. Rahman et al. [61] made an empirical study of the performance of
various search tree implementations, with focus on showing the significance of
minimizing TLB misses. Brodal et al. [31] studied different memory layouts for
near perfect-balanced search trees. Ladner et al. [53] gave a comparison of cache
aware and cache-oblivious static search trees using program instrumentation.
Empirical investigations of the practical efficiency of cache-oblivious algorithms
for sorting was done in [33],

The overall conclusion of these investigations is that cache-oblivious methods
often outperform RAM algorithms, but not always as much as algorithms tuned
to the specific memory hierarchy and problem size. On the other hand, cache-
oblivious algorithms perform well on all levels of the memory hierarchy, and seem
to be more robust to changing parameter sizes than cache-aware algorithms.

10 Summary

Since the seminal paper by Frigo et al. [44] in 1999 an amazing sequence of
papers has been published on various cache-oblivious problems and data struc-
tures, establishing cache-oblivious algorithms as an important subfield of exter-
nal memory algorithms. Empirical work has documented the soundness of the
cache-oblivious approach. The level of success (in terms of number of publica-
tions) as for the I/O model of Aggarwal and Vitter has not been achieved yet for
the cache-oblivious model, likely due to the complexity of the algorithm descrip-
tions: The ideal-cache model forces the logical structure of an cache-oblivious
algorithm in most cases to be more complex than the structure of a correspond-
ing algorithm for the I/O model.

References

1. J. Abello, A. L. Buchsbaum, and J. R. Westbrook. A functional approach to
external graph algorithms. Algorithmica, 32(3):437–458, 2002.

2. P. Agarwal, L. Arge, A. Danner, and B. Holland-Minkley. Cache-oblivious data
structures for orthogonal range searching. In Proc. 19th ACM Symposium on

Computational Geometry, pages 237 – 245. ACM Press, 2003.

3. A. Aggarwal, B. Alpern, A. K. Chandra, and M. Snir. A model for hierarchical
memory. In Proc. 19th Annual ACM Symposium on Theory of Computing, pages
305–314. AMC Press, 1987.

4. A. Aggarwal and A. Chandra. Virtual memory algorithms. In Proc. 20th Annual

ACM symposium on Theory of computing, pages 173–185. ACM Press, 1988.

5. A. Aggarwal, A. K. Chandra, and M. Snir. Hierarchical memory with block trans-
fer. In Proc. 28th Annual IEEE Symposium on Foundations of Computer Science,
pages 204–216. IEEE Computer Society Press, 1987.

6. A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116–1127, Sept. 1988.

7. B. Alpern, L. Carter, E. Feig, and T. Selker. The uniform memory hierarchy model
of computation. Algorithmica, 12(2–3):72–109, 1994.

8. A. Andersson and T. W. Lai. Fast updating of well-balanced trees. In Proc.

2nd Scandinavian Workshop on Algorithm Theory, volume 447 of Lecture Notes in

Computer Science, pages 111–121. Springer, 1990.
9. L. Arge. External memory data structures. In J. Abello, P. M. Pardalos, and

M. G. C. Resende, editors, Handbook of Massive Data Sets, pages 313–358. Kluwer
Academic Publishers, 2002.

10. L. Arge. The buffer tree: A technique for designing batched external data struc-
tures. Algorithmica, 37(1):1–24, 2003.

11. L. Arge, M. A. Bender, E. D. Demaine, B. Holland-Minkley, and J. I. Munro.
Cache-oblivious priority queue and graph algorithm applications. In Proc. 34th

Annual ACM Symposium on Theory of Computing, pages 268–276. ACM Press,
2002.

12. L. Arge, G. Brodal, and L. Toma. On external-memory MST, SSSP and multi-way
planar graph separation. In Proc. 8th Scandinavian Workshop on Algorithm The-

ory, volume 1851 of Lecture Notes in Computer Science, pages 433–447. Springer,
2000.

13. L. Arge, G. S. Brodal, and R. Fagerberg. Cache-oblivious data structures. In
D. Mehta and S. Sahni, editors, Handbook of Data Structures and Applications,
page 27. CRC Press, 2004.

14. L. Arge, J. Chase, J. Vitter, and R. Wickremesinghe. Efficient sorting using reg-
isters and caches. ACM Journal of Experimental Algorithmics, 7(9), 2002.

15. L. Arge, M. Knudsen, and K. Larsen. A general lower bound on the I/O-
complexity of comparison-based algorithms. In Proc. 3rd Workshop on Algorithms

and Data Structures, volume 709 of Lecture Notes in Computer Science, pages
83–94. Springer, 1993.

16. R. D. Barve and J. S. Vitter. A theoretical framework for memory-adaptive al-
gorithms. In Proc. 40th Annual IEEE Symposium on Foundations of Computer

Science, pages 273–284. IEEE Computer Society Press, 1999.
17. R. Bayer and E. McCreight. Organization and maintenance of large ordered in-

dexes. Acta Informatica, 1:173–189, 1972.
18. M. Bender, R. Cole, E. Demaine, and M. Farach-Colton. Scanning and traversing:

Maintaining data for traversals in a memory hierarchy. In Proc. 10th Annual

European Symposium on Algorithms, volume 2461 of Lecture Notes in Computer

Science, pages 139–151. Springer, 2002.
19. M. Bender, R. Cole, and R. Raman. Exponential structures for cache-oblivious

algorithms. In Proc. 29th International Colloquium on Automata, Languages, and

Programming, volume 2380 of Lecture Notes in Computer Science, pages 195–207.
Springer, 2002.

20. M. Bender, E. Demaine, and M. Farach-Colton. Efficient tree layout in a multilevel
memory hierarchy. In Proc. 10th Annual European Symposium on Algorithms,
volume 2461 of Lecture Notes in Computer Science, pages 165–173. Springer, 2002.
Full version at http://www.cs.sunysb.edu/˜bender/pub/treelayout-full.ps.

21. M. A. Bender, G. S. Brodal, R. Fagerberg, D. Ge, S. He, H. Hu, J. Iacono, and
A. López-Ortiz. The cost of cache-oblivious searching. In Proc. 44th Annual IEEE

Symposium on Foundations of Computer Science, pages 271–282. IEEE Computer
Society Press, 2003.

22. M. A. Bender, E. Demaine, and M. Farach-Colton. Cache-oblivious B-trees. In
Proc. 41st Annual IEEE Symposium on Foundations of Computer Science, pages
399–409. IEEE Computer Society Press, 2000.

23. M. A. Bender, Z. Duan, J. Iacono, and J. Wu. A locality-preserving cache-oblivious
dynamic dictionary. In Proc. 13th Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 29–38. ACM-SIAM, 2002.

24. J. L. Bentley. Multidimensional binary search trees used for associative searching.
Communication of the ACM, 18:509–517, 1975.

25. J. L. Bentley. Decomposable searching problems. Information Processing Letters,
8(5):244–251, 1979.

26. G. Bilardi and E. Peserico. A characterization of temporal locality and its porta-
bility across memory hierarchies. In Proc. 28th Annual International Colloquium

on Automata, Languages and Programming, volume 2076, pages 128–139. Springer,
2001.

27. M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds
for selection. Journal of Computer and System Sciences, 7:448–461, 1973.

28. G. S. Brodal and R. Fagerberg. Cache oblivious distribution sweeping. In Proc.

29th International Colloquium on Automata, Languages, and Programming, volume
2380 of Lecture Notes in Computer Science, pages 426–438. Springer, 2002.

29. G. S. Brodal and R. Fagerberg. Funnel heap - a cache oblivious priority queue.
In Proc. 13th Annual International Symposium on Algorithms and Computation,
volume 2518 of Lecture Notes in Computer Science, pages 219–228. Springer, 2002.

30. G. S. Brodal and R. Fagerberg. On the limits of cache-obliviousness. In Proc. 35th

ACM Symposium on Theory of Computing, pages 307–315. ACM Press, 2003.

31. G. S. Brodal, R. Fagerberg, and R. Jacob. Cache oblivious search trees via binary
trees of small height. In Proc. 13th Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 39–48. ACM-SIAM, 2002.

32. G. S. Brodal, R. Fagerberg, U. Meyer, and N. Zeh. Cache-oblivious data structures
and algorithms for undirected breadth-first search and shortest paths. In Proc. 9th

Scandinavian Workshop on Algorithm Theory, Lecture Notes in Computer Science.
Springer, 2004.

33. G. S. Brodal, R. Fagerberg, and K. Vinther. Engineering a cache-oblivious sorting
algorithm. In Proc. 6th Workshop on Algorithm Engineering and Experiments,
page 14, 2004.

34. A. Buchsbaum, M. Goldwasser, S. Venkatasubramanian, and J. Westbrook. On
external memory graph traversal. In Proc. 11th Annual ACM-SIAM Symposium

on Discrete Algorithms, pages 859–860. ACM Press, 2000.

35. S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, and M. Thottethodi. Non-
linear array layouts for hierarchical memory systems. In Proc. 1999 Conference on

Supercomputing, ACM SIGARCH, pages 444–453. ACM Press, 1999.

36. Y. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff, and J. S.
Vitter. External-memory graph algorithms. In Proc. 6th Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 139–149. ACM-SIAM, 1995.

37. R. A. Chowdhury and V. Ramachandran. Cache-oblivious shortest paths in graphs
using buffer heap. In Proc. 16th Annual ACM Symposium on Parallelism in Algo-

rithms and Architectures. ACM Press, 2004.

38. E. D. Demaine. Cache-oblivious data structures and algorithms. In Proc. EFF

summer school on massive data sets, Lecture Notes in Computer Science. Springer,
2004, to appear.

39. P. F. Dietz and J. Zhang. Lower bounds for monotonic list labeling. In J. R.
Gilbert and R. G. Karlsson, editors, Proc. 2nd Scandinavian Workshop on Algo-

rithm Theory, volume 447 of Lecture Notes in Computer Science, pages 173–180.
Springer, 1990.

40. A. Farzan and J. I. Munro. Cache-oblivious sorting and searching in multisets.
Manuscript, 2004.

41. G. Franceschini. Proximity mergesort: optimal in-place sorting in the cache-
oblivious model. In Proc. 15th Annual ACM-SIAM Symposium on Discrete Al-

gorithms, pages 291–299. ACM-SIAM, 2004.
42. G. Franceschini and R. Grossi. Optimal cache-oblivious implicit dictionaries. In

Proc. 30th International Colloquium on Automata, Languages and Programming,
volume 2719 of Lecture Notes in Computer Science, pages 316–331. Springer, 2003.

43. G. Franceschini and R. Grossi. Optimal worst-case operations for implicit cache-
oblivious search trees. In Proc. 8th International Workshop on Algorithms and

Data Structures, volume 2748 of Lecture Notes in Computer Science, pages 114–
126. Springer, 2003.

44. M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious
algorithms. In 40th Annual IEEE Symposium on Foundations of Computer Science,
pages 285–297. IEEE Computer Society Press, 1999.

45. M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter. External-memory
computational geometry. In Proc. 34th Annual IEEE Symposium on Foundations

of Computer Science, pages 714–723. IEEE Computer Society Press, 1993.
46. J. L. Hennessy and D. A. Patterson, editors. Computer Architecture: A Quantita-

tive Approach. Morgan Kaufmann, 3 edition, 2002.
47. J.-W. Hong and H. T. Kung. I/O complexity: The red-blue pebble game. In Proc.

13th Annual ACM Symposium on Theory of Computation, pages 326–333. AMC
Press, 1981.

48. A. Itai, A. G. Konheim, and M. Rodeh. A sparse table implementation of priority
queues. In Automata, Languages and Programming, 8th Colloquium, volume 115
of Lecture Notes in Computer Science, pages 417–431. Springer, 1981.

49. K. V. R. Kanth and A. K. Singh. Optimal dynamic range searching in non-
replicating index structures. In Proc. 7th International Conference on Database

Theory, volume 1540 of Lecture Notes in Computer Science, pages 257–276.
Springer, 1999.

50. P. Kumar. Cache oblivious algorithms. In U. Meyer, P. Sanders, and J. Sibeyn,
editors, Algorithms for Memory Hierarchies, volume 2625 of Lecture Notes in Com-

puter Science, pages 193–212. Springer, 2003.
51. V. Kumar and E. J. Schwabe. Improved algorithms and data structures for solving

graph problems in external memory. In Proc. 8th SPDP, pages 169–177. IEEE
Computer Society Press, 1996.

52. R. E. Ladner, J. D. Fix, and A. LaMarca. Cache performance analysis of traversals
and random accesses. In Proc. 10th Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 613–622. ACM-SIAM, 1999.
53. R. E. Ladner, R. Fortna, and B.-H. Nguyen. A comparison of cache aware and

cache oblivious static search trees using program instrumentation. In Experimental

Algorithmics, volume 2547 of Lecture Notes in Computer Science, pages 78–92.
Springer, 2002.

54. A. LaMarca and R. E. Ladner. The influence of caches on the performance of
heaps. ACM Journal of Experimental Algorithms, 1:4, 1996.

55. A. LaMarca and R. E. Ladner. The influence of caches on the performance of
sorting. Journal of Algorithms, 31:66–104, 1999.

56. K. Mehlhorn and U. Meyer. External-memory breadth-first search with sublinear
I/O. In Proc. 10th ESA, volume 2461 of Lecture Notes in Computer Science, pages
723–735. Springer, 2002.

57. U. Meyer, P. Sanders, and J. F. Sibeyn, editors. Algorithms for Memory Hierar-

chies, volume 2625 of Lecture Notes in Computer Science. Springer, 2003.
58. K. Munagala and A. Ranade. I/O-complexity of graph algorithms. In Proc. 10th

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 687–694. ACM-
SIAM, 1999.

59. D. Ohashi. Cache oblivious data structures. Master’s thesis, Department of Com-
puter Science, University of Waterloo, Waterloo, Canada, 2000.

60. H. Prokop. Cache-oblivious algorithms. Master’s thesis, Massachusetts Institute
of Technology, June 1999.

61. N. Rahman, R. Cole, and R. Raman. Optimised predecessor data structures for
internal memory. In Proc. 5th International Workshop on Algorithm Engineering,
volume 2141, pages 67–78. Springer, 2001.

62. J. E. Savage. Extending the Hong-Kung model to memory hierachies. In Proc. 1st

Annual International Conference on Computing and Combinatorics, volume 959
of Lecture Notes in Computer Science, pages 270–281. Springer, 1995.

63. S. Sen and S. Chatterjee. Towards a theory of cache-efficient algorithms. In
Proc. 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 829–
838. ACM-SIAM, 2000.

64. D. D. Sleator and R. E. Tarjan. Amortized Efficiency of List Update and Paging
Rules. Communications of the ACM, 28:202–208, 1985.

65. V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13:354–
356, 1969.

66. S. Toledo. Locality of reference in LU decomposition with partial pivoting. SIAM

Journal on Matrix Analysis and Applications, 18(4):1065–1081, 1997.
67. P. van Emde Boas. Preserving order in a forest in less than logarithmic time and

linear space. Information Processing Letters, 6:80–82, 1977.
68. P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an

efficient priority queue. Mathematical Systems Theory, 10:99–127, 1977.
69. J. S. Vitter. External memory algorithms and data structures: Dealing with mas-

sive data. ACM Computing Surveys, 33(2):209–271, June 2001.
70. J. S. Vitter and E. A. M. Shriver. Algorithms for parallel memory I: Two-level

memories. Algorithmica, 12(2–3):110–147, 1994.
71. J. S. Vitter and E. A. M. Shriver. Algorithms for parallel memory II: Hierarchical

multilevel memories. Algorithmica, 12(2–3):148–169, 1994.
72. D. E. Willard. A density control algorithm for doing insertions and deletions in a

sequentially ordered file in good worst-case time. Information and Computation,
97(2):150–204, 1992.

73. L. Xiao, X. Zhang, and S. A. Kubricht. Improving memory performance of sorting
algorithms. ACM Journal of Experimental Algorithmics, 5(3), 2000.

