
Cache-Oblivious Dynamic Dictionaries with Update/Query Tradeoffs

Gerth Stølting Brodal∗† Erik D. Demaine‡† Jeremy T. Fineman‡§ John Iacono¶

Stefan Langerman‖ J. Ian Munro∗∗

Abstract
Several existing cache-oblivious dynamic dictionaries
achieve O(logB N) (or slightly better O(logB

N
M)) mem-

ory transfers per operation, where N is the number of
items stored, M is the memory size, and B is the
block size, which matches the classic B-tree data struc-
ture. One recent structure achieves the same query
bound and a sometimes-better amortized update bound
of O

(
1

BΘ(1/(log logB)2) logB N + 1
B log2N

)
memory trans-

fers. This paper presents a new data structure, the xDict,
implementing predecessor queries in O(1

ε logB
N
M) worst-

case memory transfers and insertions and deletions in
O
(

1
εB1−ε logB

N
M

)
amortized memory transfers, for any

constant ε with 0 < ε < 1. For example, the xDict
achieves subconstant amortized update cost when N =
M Bo(B

1−ε), whereas the B-tree’s Θ(logB
N
M) is subcon-

stant only when N = o(MB), and the previously ob-
tained Θ

(
1

BΘ(1/(log logB)2) logB N + 1
B log2N

)
is subcon-

stant only when N = o(2
√
B). The xDict attains the optimal

tradeoff between insertions and queries, even in the broader
external-memory model, for the range where inserts cost be-
tween Ω(1

B lg1+εN) and O(1/ lg3N) memory transfers.

1 Introduction
This paper presents a new data structure, the xDict, which
is the asymptotically best data structure for the dynamic-

∗Department of Computer Science, Aarhus University, IT-parken,
Åbogade 34, DK-8200 Århus N, Denmark, gerth@cs.au.dk
†Supported in part by MADALGO — Center for Massive Data Algo-

rithmics — a Center of the Danish National Research Foundation.
‡MIT Computer Science and Artificial Intelligence Laboratory, 32 Vas-

sar St., Cambridge, MA 02139, USA, edemaine@mit.edu, jfineman@cs.
cmu.edu
§Supported in part by NSF Grants CCF-0541209 and CCF-0621511, and

Computing Innovation Fellows.
¶Department of Computer Science and Engineering, Polytechnic Insti-

tute of New York University, 5 MetroTech Center, Brooklyn, NY 11201,
USA, http://john.poly.edu
‖Maı̂tre de recherches du F.R.S.-FNRS, Computer Science Department,

Université Libre de Bruxelles, CP212, Boulevard du Triomphe, 1050
Bruxelles, Belgium, stefan.langerman@ulb.ac.be
∗∗Cheriton School of Computer Science, University of Waterloo, Water-

loo, Ontario N2L 3G1, Canada, imunro@uwaterloo.ca

dictionary problem in the cache-oblivious model.
Memory models. The external-memory (or I/O) model

[1] is the original model of a two-level memory hierarchy.
This model consists of an internal memory of size M and a
disk storing all remaining data. The algorithm can transfer
contiguous blocks of data of size B to or from disk at unit
cost. The textbook data structure in this model is the B-
tree [2], a dynamic dictionary that supports inserts, deletes,
and predecessor queries in O(logB N) memory transfers per
operation.

The cache-oblivious model [9, 10] arose in particular
from the need to model multi-level memory hierarchies. The
premise is simple: analyze a data structure or algorithm just
as in the external-memory model, but the data structure or
algorithm is not explicitly parametrized by M or B. Thus
the analysis holds for an arbitrary M and B, in particular all
the M ’s and B’s encountered at each level of the memory
hierarchy. The algorithm could not and fortunately does
not have to worry about the block replacement strategy
because the optimal strategy can be simulated with constant
overhead. This lack of parameterization has let algorithm
designers develop elegant solutions to problems by finding
the best ways to enforce data locality.

Comparison of cache-oblivious dictionaries. Refer to
Table 1. In the cache-oblivious model, Prokop’s static search
structure [10] was the first to support predecessor searches in
O(logB N) memory transfers, but it does not support inser-
tion or deletion. Cache-oblivious B-trees [3, 4, 7] achieve
O(logB N) memory transfers for insertion, deletion, and
search. The shuttle tree [5] supports insertions and dele-
tions in amortized O

(
1

BΘ(1/(log logB)2) logB N + 1
B log2N

)
memory transfers, which is an improvement over Θ(logB N)
forN = 2o(B/ logB), while preserving theO(logB N) query
bound.1 Our xDict reduces the insertion and deletion bounds
further to O

(
1

εB1−ε logB
N
M

)
, for any constant 0 < ε ≤ 1,

under the tall-cache assumption (common to many cache-
oblivious algorithms) that M = Ω(B2). For all of these data
structures, the query bounds are worst case and the update
bounds are amortized.

1For these previous data structures, the logB N terms may well reduce
to logB

N
M

terms, but only logB N was explicitly proven.

1448 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Data Structure Search Insert/Delete
static search [10] O(logB N) not supported
B-trees [3, 4, 7] O(logB N) O(logB N)
shuttle tree [5] O(logB N) O

(
1

BΘ(1/(log logB)2) logB N + 1
B log2N

)
lower bound [6] O(1

ε logB
N
M) =⇒ Ω

(
1

εB1−ε logB
N
M

)
xDict [this paper] O(1

ε logB
N
M) O

(
1

εB1−ε logB
N
M

)
Table 1: Summary of known cache-oblivious dictionaries. Our xDict uses the tall-cache assumption that M = Ω(B2).

Lower bounds. The tradeoff between insertion and
search costs was partly characterized in the external-
memory model [6]. Because any algorithm in the cache-
oblivious model is also an algorithm in the external-
memory model using the same number of memory trans-
fers, lower bounds for the external-memory model carry
over to the cache-oblivious model. Brodal and Fagerberg
[6] proved that any structure supporting insertions in I =
O
(

1
εB1−ε logB(N/M)

)
amortized memory transfers, when

I is between Ω(1
B lg1+εN) andO(1/ lg3N) and whenN ≥

M2, must use Ω(1
ε logB(N/M)) worst-case memory trans-

fers for search. They also produced a data structure achiev-
ing this tradeoff, but their structure is not cache-oblivious,
using knowledge of the parameters B and M . The xDict
structure achieves the same tradeoff in the cache-oblivious
model, and is therefore optimal for this range of insertion
cost I . Slightly outside this range, the optimal bounds are
not known, even in the external-memory model.

2 Introducing the x-box
Our xDict dynamic-dictionary data structure is built in terms
of another structure called the x-box. For any positive inte-
ger x, an x-box supports a batched version of the dynamic-
dictionary problem (defined precisely later) in which ele-
ments are inserted in batches of Θ(x). Each x-box will be
defined recursively in terms of y-boxes for y < x, and later
we build the overall xDict data structure in terms of x-boxes
for x increasing doubly exponentially. Every x-box uses a
global parameter, a real number α > 0, affecting the inser-
tion cost, with lower values of α yielding cheaper insertions.
This parameter is chosen globally and remains fixed through-
out.

As shown in Figure 1, an x-box is composed of three
buffers (arrays) and many

√
x-boxes, called subboxes. The

three buffers of an x-box are the input buffer of size x, the
middle buffer of size x1+α/2, and the output buffer of size
x1+α. The

√
x-subboxes of an x-box are divided into two

levels: the upper level consists of at most 1
4x

1/2 subboxes,
and the lower level consists of at most 1

4x
1/2+α/2 subboxes.

Thus, in total, there are fewer than 1
2x

1/2+α/2 subboxes. See
Table 2 for a table of buffer counts and sizes. As a base
case, an O(1)-box consists of a single array that acts as both

the input and output buffers, with no recursive subboxes or
middle buffer.

Logically, the upper-level subboxes are children of the
input buffer and parents of the middle buffer. Similarly, the
lower-level subboxes are children of the middle buffer and
parents of the output buffer. However, the buffers and sub-
boxes do not necessarily form a tree structure. Specifically,
for an x-box D, there are pointers from D’s input buffer
to the input buffers of its upper-level subboxes. Moreover,
there may be many pointers from D’s input buffers to a sin-
gle subbox. There are also pointers from the output buffers
of the upper-level subboxes to D’s middle buffer. Again,
there may be many pointers originating from a single sub-
box. Similarly, there are pointers from D’s middle buffer to
its lower-level subboxes’ input buffers, and from the lower-
level subboxes’ output buffers to D’s output buffers.

The number of subboxes in each level has been chosen
to match the buffer sizes. Specifically, the total size of the
input buffers of all subboxes in the upper level is at most
1
4x

1/2 · x1/2 = 1
4x, which is a constant factor of the size of

the x-box’s input buffer. Similarly, the total size of the upper-
level subboxes’ output buffers is at most 1

4x
1/2 ·(x1/2)1+α =

1
4x

1+α/2, which matches the size of the x-box’s middle
buffer. The total size of the lower-level subboxes’ input and
output buffers are at most 1

4x
1/2+α/2 · x1/2 = 1

4x
1+α/2 and

1
4x

1/2+α/2 · (x1/2)1+α = 1
4x

1+α, which match the sizes of
the x-box’s middle and output buffers, respectively, to within
a constant factor.

An x-box D organizes elements as follows. Sup-
pose that the keys of elements contained in D range from
[κmin, κmax). The elements located in the input buffer oc-
cur in sorted order, as do the elements located in the mid-
dle buffer and the elements located in the output buffer. All
three of these buffers may contain elements having any keys
between κmin and κmax. The upper-level subboxes, how-
ever, partition the key space. More precisely, suppose that
there are r upper-level subboxes. Then there exist keys
κmin = κ0 < κ1 < · · · < κr = κmax such that each sub-
box contains elements in a distinct range [κi, κi+1). Simi-
larly, the lower-level subboxes partition the key space. There
is, however, no relationship between the partition imposed
by the upper-level subboxes and that of the lower-level sub-
boxes; the subranges are entirely unrelated. What this setup

1449 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Figure 1: The recursive structure of an x-box. The arrows represent lookahead pointers. These lookahead pointers are
evenly distributed in the target buffer, but not necessarily in the source buffer. Additional pointers (not shown) allow us to
find the nearest lookahead pointer(s) in O(1) memory transfers. The white space at the right of the buffers indicates empty
space, allowing for future insertions.

Buffer Size per buffer Number of buffers Total size
Top buffer x 1 x

Top buffer x1/2 1
4x

1/2 1
4x

Middle buffer (x1/2)1+α/2 1
4x

1/2 1
4x

1+α/4

Bottom buffer (x1/2)1+α 1
4x

1/2 1
4x

1+α/2

Middle buffer x1+α/2 1 x1+α/2

Top buffer x1/2 1
4x

1/2+α/2 1
4x

1+α/2

Middle buffer (x1/2)1+α/2 1
4x

1/2+α/2 1
4x

1+3α/4

Bottom buffer (x1/2)1+α 1
4x

1/2+α/2 1
4x

1+α

Bottom buffer x1+α 1 x1+α

Table 2: Sizes of buffers in an x-box. This table lists the sizes of the three buffers in an x-box and the sizes and number of
buffers in its recursive x1/2-boxes, expanding just one level of recursion.

means is that an element with a particular key may be located
in the input buffer or the middle buffer or the output buffer
or a particular upper-level subbox or a particular lower-level
subbox. Our search procedure will thus look in all five of
these locations to locate the element in question.

Before delving into more detail about the x-boxes, let
us first give a rough sketch of insertions into the data struc-
ture. When an element is inserted into an x-box D, it is
first inserted into D’s input buffer. As the input buffer stores
elements in sorted order, elements in the input buffer must
move to the right to accommodate newly inserted elements.
When D’s input buffer becomes full (or nearly full), the
elements are inserted recursively into D’s upper-level sub-
boxes. When an upper-level subbox becomes full enough,
it is “split” into two subboxes, with one subbox taking the
half of the elements with smaller keys and the other taking
the elements with larger keys. When the maximum number
of upper-level subboxes is reached, all elements are moved
from the upper-level subboxes to D’s middle buffer (which
stores all elements in sorted order). When the middle buffer
becomes full enough, elements are moved to the lower-level
subboxes in a similar fashion. When the maximum number
of lower-level subboxes is reached, all elements are moved

from the lower-level subboxes to D’s output buffer.
To aid in pushing elements down to the appropriate sub-

boxes, we embed in the input (and middle) buffers a pointer
to each of the upper-level (and lower-level) subboxes. These
subbox pointers are embedded into the buffers by associating
with them the minimum key stored in the corresponding sub-
box, and then storing them along with the buffer’s elements
in sorted order by key.

To facilitate searches, we employ the technique of frac-
tional cascading [8], giving an x-box’s input buffer (and
middle buffer) a sample of the elements of the upper-level
subboxes’ (and lower-level subboxes’) input buffers. Specif-
ically, let U be an upper-level subbox of the x-box D. Then
a constant fraction of the keys stored in U ’s input buffer are
also stored in D’s input buffer. This sampling is performed
deterministically by placing every sixteenth element in U ’s
input buffer into D’s input buffer. The sampled element (in
D’s input buffer) has a pointer to the corresponding element
in U ’s input buffer. This type of pointer also occurs in [5],
where they are called “lookahead pointers.” We adopt the
same term here. This sampling also occurs on the output
buffers. Specifically, the output buffers of the upper-level
(and lower-level) subboxes contain a similar sample of the

1450 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

elements in D’s middle buffer (and output buffer).2

The advantage of lookahead pointers is roughly as fol-
lows. Suppose we are looking for a key κ in some buffer A.
Let s be the multiple of 16 (i.e., a sampled element) such that
A[s] ≤ κ < A[s+ 16]. Then our search procedure will scan
slots s to s + 16 in the buffer A. If κ is not located in any
of these slots, then it is not in the buffer. Ideally, this scan
would also provide us with a good starting point to search
within the next buffer.

As the lookahead pointers may be irregularly distributed
in D’s input (or middle) buffer, a stretch of sixteen elements
in D’s input (or middle) buffer may not contain a lookahead
pointer to an upper (or lower)-level subboxes. To remedy
this problem, we associate with each element inD’s input (or
middle) buffer a pointer to the nearest lookahead or subbox
pointers preceding and following it.

Techniques. While fractional cascading has been em-
ployed before [5], we are not aware of any previous cache-
oblivious data structures that are both recursive and that use
fractional cascading. Another subtler difference between the
x-box and previous cache-oblivious structures involves the
sizing of subboxes and our use of the middle buffer. If the
x-box matched typical structures, then an x-box with an in-
put buffer of size x and an output buffer of size x1+α would
have a middle buffer of size x

√
1+α, not the x1+α/2 that we

use. That is to say, it is natural to size the buffers such that
a size-x input buffer is followed by a size-xδ middle buffer
for some δ, and a size-y = xδ middle buffer is followed by
a size-yδ = xδ

2
output buffer. Our choice of sizes causes

the data structure to be more topheavy than usual, a feature
which facilitates obtaining our query/update tradeoff.

3 Sizing an x-box
An x-box stores the following fields, in order, in a fixed
contiguous region of memory.

1. A counter of the number of real elements (not counting
lookahead pointers) stored in the x-box.

2. The top buffer.

3. Array of booleans indicating which upper-level sub-
boxes are being used.

4. Array of upper-level subboxes, in an arbitrary order.

2Any sufficiently large sampling constant suffices here. We chose 16

as an example of one such constant for concreteness. The constant must be
large enough that, when sampling D’s output buffer, the resulting lookahead
pointers occupy only a constant fraction of the lower-level subboxes’ output
buffers. To make the description more concise, the constant fraction we
allow is 1

4
, but in fact any constant would work. As the lower-level

subboxes’ output buffers account for only 1
4

of the space of D’s output
buffer, these two constants are multiplied to get that only 1

16
of the elements

in D’s output buffer may be sampled.

5. The middle buffer.

6. Array of booleans indicating which lower-level sub-
boxes are being used.

7. Array of lower-level subboxes, in an arbitrary order.

8. The bottom buffer.

In particular, the entire contents of each
√
x-subbox are

stored within the x-box itself. In order for an x-box to
occupy a fixed contiguous region of memory, we need a
upper bound on the maximum possible space usage of a box.

LEMMA 3.1. The total space usage of an x-box is at most
c x1+α for some constant c > 0.

Proof. The proof is by induction. An x-box contains three
buffers of total size c′(x+x1+α/2+x1+α) ≤ 3c′x1+α, where
c′ is the constant necessary for each array entry (including
information about lookahead pointers, etc.). The boolean
arrays use a total of at most 1

2x
1/2+α/2 ≤ c′x1+α space,

giving us a running total of 4c′x1+α space. Finally, the
subboxes by assumption use a total of at most c(x1/2)1+α ·
1
2x

1/2+α/2 = c
2x

1+α space. Setting c ≥ 8c′ yields a total
space usage of at most cx1+α. ut

4 Operating an x-box
An x-box D supports two operations:

1. BATCH-INSERT(D, e1, e2, . . . , eΘ(x)): Insert Θ(x)
keyed elements e1, e2, . . . , eΘ(x), given as a sorted ar-
ray, into the x-box D. BATCH-INSERT maintains
lookahead pointers as previously described.

2. SEARCH(D, s, κ): Return a pointer to an element with
key κ in the x-box D if such an element exists. If no
such element exists, return a pointer to κ’s predecessor
in D’s output buffer, that is, the element located in D’s
output buffer with the largest key smaller than κ. We
assume that we are given the nearest lookahead pointer
s preceding κ pointing into D’s input buffer: that is,
s points to the sampled element (i.e., having an index
that is a multiple of 16) in D’s input buffer that has the
largest key not exceeding κ.

We treat an x-box as full or at capacity when it con-
tains 1

2x
1+α real elements. A BATCH-INSERT is thus only

allowed when the inserted elements would not cause the x-
box to contain more than 1

2x
1+α elements. Our algorithm

does not continue to insert into any recursive x-box when
this number of elements is exceeded. The constant can be
tuned to waste less space, but we choose 1

2 here to simplify
the presentation. Recall that the output buffer of an x-box
has size x1+α, which is twice the size necessary to accom-
modate all the real elements in the x-box. We allow the other

1451 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

1
2x

1+α space in the output buffer to store external lookahead
pointers (i.e., lookahead pointers into a buffer in the contain-
ing x2-box).

4.1 SEARCH. Searches are easiest. The operation
SEARCH(D, s, κ) starts by scanning D’s input buffer at slot
s and continues until reaching an element with key κ or un-
til reaching slot s′ where the key at s′ is larger than κ. By
assumption on lookahead pointers, this scan considers O(1)
array slots. If the scan finds an element with key κ, then we
are done. Otherwise, we consider the nearest lookahead or
subbox pointer preceding slot s′ − 1. We follow this pointer
and search recursively in the corresponding subbox. That re-
cursive search returns a pointer in the subbox’s output buffer.
We again reference the nearest lookahead pointer and jump
to a point in the middle buffer. This process continues, scan-
ning a constant-size region in middle buffer, searching re-
cursively in the lower-level subbox, and scanning a constant-
size region in the output buffer.

LEMMA 4.1. For x > B, a SEARCH in an x-box costs
O((1 + α) logB x) memory transfers.

Proof. The search considers a constant-size region in the
three buffers, for a total of O(1) memory transfers, and per-
forms two recursive searches. Thus, the cost of a search can
be described by the recurrence S(x) = 2S(

√
x) + O(1).

Once x1+α = O(B), or equivalently x = O(B1/(1+α)),
an entire x-box fits in a block, and no further recursions
incur any other cost. Thus, we have a base case of
S(O(B1/(1+α))) = 0.

The recursion therefore proceeds with a nonzero cost
for lg lg x − lg lgO(B1/(1+α)) levels, for a total of
2lg lg x−lg lgO(B1/(1+α)) = (1 + α) lg x/ lgO(B) = O((1 +
α) logB x) memory transfers. ut

4.2 BATCH-INSERT overview. For clarity, we decom-
pose BATCH-INSERT into several operations, including two
new auxiliary operations:

1. FLUSH(D): After this operation, all k elements in the
x-boxD are located in the first Θ(k) slots ofD’s output
buffer. These elements occur in sorted order. All other
buffers and recursive subboxes are emptied, temporarily
leaving the D without any internal lookahead pointers
(to be fixed later by a call SAMPLE-UP). The Θ() arises
because of the presence of lookahead pointers directed
from the output buffer. The FLUSH operation is an
auxiliary operation used by the BATCH-INSERT.

2. SAMPLE-UP(D): This operation may only be invoked
on an x-box that is entirely empty except for its out-
put buffer (as with one that has just been FLUSHed).
The sampling process is employed from the bottom up,

creating subboxes as necessary, and placing the appro-
priate lookahead pointers. The SAMPLE-UP operation
is an auxiliary operations used by BATCH-INSERT.

4.3 FLUSH. To FLUSH an x-box, first flush all the sub-
boxes. Now consider the result. Elements can live in only
five possible places: the input buffer, the middle buffer, the
output buffer, the upper-level subboxes’ output buffers, and
the lower-level subboxes’ output buffers. The elements are
in sorted order in all of the buffers. Moreover, as the upper-
level (and lower-level) subboxes partition the key space, the
collection of upper-level subboxes’ output buffers form a
fragmented sorted list of elements. Thus, after flushing all
subboxes, moving all elements to the output buffer requires
just a 5-way merge into the output buffer. A constant-way
merge can be performed in a linear number of memory trans-
fers in general, but here we have to deal with the fact that
upper-level and lower-level subboxes represent fragmented
lists, requiring random accesses to jump from the end of one
output buffer to the beginning of another.

When merging all the elements into the output buffer,
we merge only real elements, not lookahead pointers (except
for the lookahead pointers that already occur in the output
buffer). This step breaks the sampling structure of the data
structure, which we will later resolve with the SAMPLE-UP
procedure.

When the flush completes, the input and middle buffers
are entirely empty, and all subboxes are deleted.3

LEMMA 4.2. For x1+α > B, a FLUSH in an x-box costs
O(x1+α/B) memory transfers.

Proof. We can describe the flush by the recurrence

F (x) = O(x1+α/B) +O(x1/2+α/2) +
1
2
x1/2+α/2F (

√
x) ,

where the first term arises due to scanning all the buffers
(i.e., the 5-way merge), the second term arises from the
random accesses both to load the first block of any of the
subboxes and to jump when scanning the concatenated list of
output buffers, and the third term arises due to the recursive
flushing. When x1+α = O(M), the second term disappears
as the entire x-box fits in memory, and we thus need only
pay for loading each block once. When applying a tall-
cache assumption that M = Ω(B2), it follows that the
second term only occurs when x1/2+α/2 = Ω(B), and
hence when x1/2+α/2 = x1+α/x1/2+α/2 = x1+α/Ω(B) =
O(x1+α/B). We thus have a total cost of

F (x) ≤ c1x1+α/B +
1
2
x1/2+α/2F (

√
x) ,

3In fact, the subboxes use a fixed memory footprint, so they are simply
marked as deleted.

1452 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

where c1 is a constant hidden by the order notation.
We next prove that F (x) ≤ cx1+α/B by induction. As

a base case, when y1+α fits in memory, the cost is F (y) =
cy1+α/B as already noted, to load each block into memory
once. Applying the inductive hypothesis that F (y) ≤
cy1+α/B for some sufficiently large constant c and y < x,
we have F (x) ≤ c1x1+α/B+ 1

2x
1/2+α/2(cx1/2+α/2/B) =

c1x
1+α/B + 1

2cx
1+α/B. Setting c > 2c1 completes the

proof. ut

4.4 SAMPLE-UP. When invoking a SAMPLE-UP, we as-
sume that the only elements in the x-box live in the output
buffer. In this state, there are no lookahead pointers to fa-
cilitate searches. The SAMPLE-UP recomputes the looka-
head pointers, allowing future searches to be performed effi-
ciently.

The SAMPLE-UP operates as follows. Suppose that the
output buffer contains k < x1+α elements. Then we cre-
ate (k/16)/(x1/2+α/2/2) = k/8x1/2+α/2 ≤ x1/2+α/2/8
new lower-level subboxes. Recall that this is half the num-
ber of available lower-level subboxes. We then assign to each
of these subboxes x1/2+α/2/2 of contiguous sampled point-
ers (filling half of their respective output buffers), and recur-
sively call SAMPLE-UP in the subboxes. Then, we sample
from the lower-level subboxes’ input buffers to the middle
buffer, and we sample the middle-buffer to upper-level sub-
boxes in a similar fashion. Finally, we sample the upper-level
subboxes up to the input buffer.

LEMMA 4.3. A SAMPLE-UP in an x-box, for x1+α > B,
costs O(x1+α/B).

Proof. The proof is virtually identical to the proof for
FLUSH. The recurrence is the same (in fact, it is better here
because we can guarantee that the subboxes are, in fact, con-
tiguous).
ut

4.5 BATCH-INSERT. The BATCH-INSERT operation
takes as input a sorted array of elements to insert. In par-
ticular, when inserting into an x-box D, a BATCH-INSERT
inserts Θ(x) elements. For conciseness, let us say that the
constant hidden by the theta notation is 1/2. First, merge
the inserted elements into D’s input buffer, and increment
the counter of elements contained in D by (1/2)x. For
simplicity, also remove the lookahead pointers during this
step. We will readd them later.

Then, (implicitly) partition the input buffer according
to the ranges owned by each of the upper-level subboxes.
For any partition containing at least (1/2)

√
x elements,

repeatedly remove (1/2)
√
x elements from D’s input buffer

and insert them recursively into the appropriate subbox
until the partition contains less than (1/2)

√
x elements. If

performing a recursive insert would cause the number of
(real) elements in the subbox to exceed (1/2)

√
x

1+α, first
“split” the subbox. A “split” entails first FLUSHing the
subbox, creating a new subbox, moving the larger half of
the elements from the old subbox’s output buffer to the new
subbox’s output buffer (involving two scans), and calling
SAMPLE-UP on both subboxes, and updating the counter
recording the number of elements in each subbox to reflect
the number of real elements in each.

Observe that after all the recursions occur, the number
of real elements in D’s input buffer is at most (1/2)

√
x ·

(1/4)
√
x = (1/8)x, as otherwise more elements would have

moved down to a subbox.
After moving elements from the input buffer to the

upper-level subboxes, resample from the upper-level sub-
boxes’ input buffers intoD’s input buffer. Note that the num-
ber of lookahead pointers introduced into the input buffer is
at most 1

16

√
x · 14
√
x. When combining the number of looka-

head pointers with the number of real elements, we see that
D’s input buffer is far less than half full, and hence it can
accommodate the next insertion.

When a split causes the last available subbox to be al-
located, we abort any further recursive inserts and instead
merge all of D’s input-buffer and upper-level subbox el-
ements into D’s middle buffer. This merge entails first
FLUSHing all the upper-level subboxes, and then merging
into the middle buffer (similar to the process for the full
FLUSH). We then perform an analogous movement from
the middle buffer to the lower-level subboxes, matching
the movement from the upper-level subboxes to the middle
buffer. (If the last lower-level subbox is allocated, we move
all elements from D’s middle buffer and lower-level sub-
boxes to D’s output buffer and then call SAMPLE-UP on D.)
When insertions into the lower-level subboxes complete, we
allocate new upper-level subboxes (as in SAMPLE-UP) and
sample from D’s middle buffer into the upper-level suboxes’
output buffers, call SAMPLE-UP recursively on these sub-
boxes, and finally sample from the subboxes’ input buffers
into D’s input buffer.

Observe that the upper-level subboxes’ output buffers
collectively contain at most 1

16x
1+α/2 lookahead pointers.

Moreover, after elements are moved into the middle buffer,
these are the only elements in the upper-level subboxes, and
they are spread across at most half (x1/2/8) the upper-level
subboxes, as specified for SAMPLE-UP. Hence, there must
be at least x1/2/8 subbox splits between moves into the
middle buffer. Because subboxes splits only occur when
the two resulting subboxes contain at least (1/4)x1+α/2 real
elements, it follows that there must be at least (1/4)x1+α/2 ·
(1/8)x1+α/2 = Ω(x1+alpha/2) insertions into D between
moves into the middle buffer. A similar argument shows that
there must be at least Ω(x1+α) insertions into D between
insertions into the output buffer.

1453 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

THEOREM 4.1. A BATCH-INSERT into an x-box, with x >
B, costs an amortized O((1 + α) logB(x)/B1/(1+α)) mem-
ory transfers per element.

Proof. An insert has several costs per element. First, there
is the cost of merging into the input array, which is simply
O(1/B) per element. Next, each element is inserted recur-
sively into a top-level subbox. These recursive insertions en-
tail random accesses to load the first block of each of the sub-
boxes. Then these subboxes must be sampled, which is dom-
inated by the cost of the aforementioned random accesses
and scans. An element may also contribute to a split of a sub-
box, but each split may be amortized against Ω(x1/2+α/2)
insertions. Then we must also consider the cost of moving
elements from the upper-level subboxes to the middle buffer,
but this movement may be amortized against the Ω(x1+α/2)
elements being moved. Finally, there are similar costs among
the lower-level subboxes.

Let us consider the cost of the random accesses more
closely. If all of the upper-level subboxes fit into mem-
ory, then the cost of random accesses is actually the mini-
mum of performing the random accesses or loading the en-
tire upper-level into memory. For the upper-level, we denote
this value by UpperRA(x). We thus have UpperRA(x) =
O(1

4x
1/2) if x1+α/2 = Ω(M), and UpperRA(x) =

O(min
{

1
4x

1/2, x1+α/2/B
}

) if x1+α/2 = O(M). In fact,
we are really concerned with UpperRA(x)/x, as the ran-
dom accesses can be amortized against the x elements in-
serted. We analyze the two cases separately, and we assume
the tall-cache assumption that M > B2.

1. Suppose that x1+α/2 = Ω(M). Then we have
x1+α/2 = Ω(B2) by the tall-cache assumption,
and hence x1/2 = Ω(B2/(2+α)). It follows that
UpperRA(x)/x = O(1/

√
x) = O(1/B2/(2+α).

2. Suppose that x1+α/2 = O(M). We have two subcases
here. If x > B2/(1+α), then we have a cost of at most
UpperRA(x)/x = O(x1/2/x) = O(1/B1/(1+α)).
If, on the other hand, x < B2/(1+α), then we have
UpperRA(x)/x = O(x1+α/2/Bx) = O(xα/2/B) =
O(Bα/(1+α)/B) = O(1/B1/(1+α)).

Because 1/B2/(2+α) < 1/B1/(1+α), we conclude that
UpperRA(x)/x = O(1/B1/(1+α)).

We must also consider the cost of random accesses into
the lower-level subboxes, which can be amortized against the
x1+α/2 elements moved. A similar case analysis shows that
LowerRA(x)/x1+α/2 = O(1/B1/(1+α)).

We thus have a total insertion cost of

I(x) = O

(
x/B

x

)
+O

(
UpperRA(x)

x

)
+ I(
√
x)

+O

(
F (
√
x)

x1/2+α/2

)
+O

(
1
4x

1/2F (
√
x)

x1+α/2

)

O

(
x1+α/2/B

x1+α/2

)
+O

(
LowerRA(x)
x1+α/2

)
+ I(
√
x) +O

(
F (
√
x)

x1/2+α/2

)
+ O

(
1
4x

1/2+α/2F (
√
x)

x1+α

)
+O

(
x1+α/B

x1+α

)
= O(1/B) +O

(
UpperRA(x)

x

)
+O

(
LowerRA(x)
x1+α/2

)
+O

(
F (
√
x)

x1/2+α/2

)
+ 2 I(

√
x)

= O(1/B) +O(1/B1/(1+α)) +O(1/B1/(1+α))

+O

(
x1/2+α/2/B

x1/2+α/2

)
+ 2 I(

√
x)

= O(1/B1/(1+α)) + 2 I(
√
x)

As we charge loading the first block of a sub-
box to an insert into the parent, we have a base
case of I(O(B1/(1+α)) = 0, i.e., when the x-
box fits into a single block. Solving the recur-
rence, we get a per element cost of O(1/B1/(1+α)) at
lg lg x − lg lgO(B1/(1+α)) levels of recursion, and hence
a total cost of O(2lg lg x−lg lgO(B1/(1+α))/B1/(1+α)) =
O
(

(1+α) lg x
B1/(1+α) lgO(B)

)
= O((1 + α) logB(x)/B1/(1+α)). ut

5 Building a dictionary out of x-boxes
The xDict data structure consists of log1+α log2N + 1
x-boxes of doubly increasing size, where α is the same
parameter for the underlying x-boxes. Specifically, for 0 ≤
i ≤ log1+α log2N , the ith box has x = 2(1+α)i . The
x-boxes are linked together by incorporating into the ith
box’s output buffer the lookahead pointers corresponding to
a sample from the (i+ 1)st box’s input buffer.

We can define the operations on an xDict in terms of
x-box operations. To insert an element into an xDict, we
simply insert it into the smallest x-box (i = 0), which
has x = Θ(1) so supports individual element insertions.
When the ith box reaches capacity (containing 2(1+α)i+1

/2
elements), we FLUSH it, insert all of its elements (contained
in its output buffer) into the (i+ 1)st box, and empty the ith
box’s output buffer. This process terminates after performing
a batch insert into the jth box if the jth box is the first box
that can accommodate the elements (having not yet reached
capacity). At this point, all boxes preceding the jth box are
entirely empty. We next rebuild the lookahead starting from
the (j − 1)st box down to the 0th box by sampling from
the (i + 1)st box’s input buffer into the ith box’s output
buffer and then calling SAMPLE-UP on the ith box. As
elements are first inserted into the 0th box and eventually

1454 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

move through all boxes, our insertion analysis accounts for
an insertion into each box for each element inserted. The cost
of the FLUSH and SAMPLE-UP incurred by each element as
it moves through each of the boxes is dominated by the cost
of the insertion.

To search in the xDict, we simply search in each of
the x-boxes, and return the closest match. Specifically, we
search the boxes in order from smallest to largest. If the
element is not found in the ith box, we have a pointer into
the ith box’s output buffer. We use this pointer to find an
appropriate lookahead pointer into the (i + 1)st box’s input
buffer, and begin the search from that point.

The performance of the xDict is essentially a geometric
series:

THEOREM 5.1. The xDict supports searches in
O(1

α logB
N
M) memory transfers and (single-element)

inserts in O(1
α (logB

N
M)/B1/(1+α)) amortized memory

transfers, for 0 < α ≤ 1.

Proof. A simple upper bound on the search cost is

log1+α log2 N∑
i=0

O((1 + α) logB(2(1+α)i)

= O

1 + α

lgB

log1+α log2 N∑
i=0

(1 + α)i

= O

(
(1 + α) lgN

lgB

∞∑
i=0

1
(1 + α)i

)

= O

(
(1 + α)2

α
logB N

)
= O

(
1
α

logB N
)
.

The last step of the derivation follows from the assumption
that α ≤ 1 and hence that (1 + α)2 = O(1).

The above analysis, however, exploits only a constant
number of cache blocks. If we assume that the memory
already holds all x-boxes smaller than O(M1/(1+α)),4 the
first O(1

α logBM1/(1+α)) = O(1
α logBM) transfers are

free, resulting in a search cost of O(1
α logB

N
M). The cache-

oblivious model assumes an optimal paging strategy, and
using half the memory to store the smallest x-boxes is no
better than optimal.

The analysis for insertions is identical except that all
costs are multiplied by O(1/B1/(1+α)). ut

COROLLARY 5.1. For any ε with 0 < ε < 1, there exists
a setting of α such that the xDict supports searches in

4All x-boxes with size at most O(M1/(1+α)) fit in O(M) memory as
the x-box sizes increase supergeometrically.

O(1
ε logB

N
M) memory transfers and supports insertions in

O(1
ε logB(NM)/B1−ε) amortized memory transfers.

Proof. First off, we consider only ε < 1
2 (rolling up a

particular constant into the big-O notation), as larger ε only
hurt the performance of inserts.

Choose α = ε/(1− ε), which gives B1/(1+α) = B1−ε.
Because ε < 1

2 , we have α < 1, and we can apply
Theorem 5.1. The 1/α term solves to 1/α = (1 − ε)/ε =
O(1/ε) to complete the proof. ut

6 Final notes
We did not address deletion in detail, but claim that it can
be handed using standard techniques. For example, to delete
an element we can insert an anti-element with the same key
value. In the course of an operation, should a key value and
its antivalue be discovered, they annihilate each other while
releasing potential which is used to remove them from the
buffers they are in. Rebuilding the whole structure when
the number of deletions since the last rebuild is half of the
structure ensures that the total size does not get out of sync
with the number of not-deleted items currently stored.

Another detail is that, to hold n items, the xDict may
create an n-box, which occupies up to Θ(n1+α) of address
space. However, only Θ(n) space of the xDict will ever be
occupied, and the layout ensures that the unused space is at
the end. Therefore the xDict data structure can use optimal
Θ(n) space.

Acknowledgments
We would like to thank the organizers of the MADALGO
Summer School on Cache-Oblivious Algorithms, held in
Aarhus, Denmark, on August 18–21, 2008, for providing the
opportunity for the authors to come together and create and
analyze the structure presented in this paper.

References

[1] Alok Aggarwal and Jeffrey Scott Vitter. The input/output
complexity of sorting and related problems. Communications
of the ACM, 31(9):1116–1127, September 1988.

[2] Rudolf Bayer and Edward M. McCreight. Organization and
maintenance of large ordered indexes. Acta Informatica,
1(3):173–189, February 1972.

[3] Michael A. Bender, Erik D. Demaine, and Martin Farach-
Colton. Cache-oblivious B-trees. SIAM Journal on Comput-
ing, 35(2):341–358, 2005.

[4] Michael A. Bender, Ziyang Duan, John Iacono, and Jing
Wu. A locality-preserving cache-oblivious dynamic dictio-
nary. Journal of Algorithms, 53(2):115–136, 2004.

[5] Michael A. Bender, Martin Farach-Colton, Jeremy T. Fine-
man, Yonatan R. Fogel, Bradley C. Kuszmaul, and Jelani Nel-
son. Cache-oblivious streaming B-trees. In Proceedings of

1455 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

the 19th Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 81–92, San Diego, CA, June 2007.

[6] Gerth Stølting Brodal and Rolf Fagerberg. Lower bounds
for external memory dictionaries. In Proceedings of the
14th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 546–554, Baltimore, MD, January 2003.

[7] Gerth Stølting Brodal, Rolf Fagerberg, and Riko Jacob.
Cache oblivious search trees via binary trees of small height.
In Proceedings of the 13th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 39–48, San Francisco, CA, Jan-
uary 2002.

[8] Bernard Chazelle and Leonidas J. Guibas. Fractional cascad-
ing: I. A data structuring technique. Algorithmica, 1(2):133–
162, 1986.

[9] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Srid-
har Ramachandran. Cache-oblivious algorithms. In Proceed-
ings of the 40th Annual IEEE Symposium on Foundations of
Computer Science, pages 285–297, New York, NY, 1999.

[10] Harald Prokop. Cache-oblivious algorithms. Master’s thesis,
Massachusetts Institute of Technology, Cambridge, MA, June
1999.

1456 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

