
Ferreira et al. BMC Bioinformatics 2014, 15:165

http://www.biomedcentral.com/1471-2105/15/165

METHODOLOGY ARTICLE Open Access

Cache-Oblivious parallel SIMD Viterbi
decoding for sequence search in HMMER
Miguel Ferreira1,2†, Nuno Roma1,2† and Luis MS Russo1,2*†

Abstract

Background: HMMER is a commonly used bioinformatics tool based on Hidden Markov Models (HMMs) to analyze

and process biological sequences. One of its main homology engines is based on the Viterbi decoding algorithm,

which was already highly parallelized and optimized using Farrar’s striped processing pattern with Intel SSE2

instruction set extension.

Results: A new SIMD vectorization of the Viterbi decoding algorithm is proposed, based on an SSE2 inter-task

parallelization approach similar to the DNA alignment algorithm proposed by Rognes. Besides this alternative

vectorization scheme, the proposed implementation also introduces a new partitioning of the Markov model that

allows a significantly more efficient exploitation of the cache locality. Such optimization, together with an improved

loading of the emission scores, allows the achievement of a constant processing throughput, regardless of the

innermost-cache size and of the dimension of the considered model.

Conclusions: The proposed optimized vectorization of the Viterbi decoding algorithm was extensively evaluated

and compared with the HMMER3 decoder to process DNA and protein datasets, proving to be a rather competitive

alternative implementation. Being always faster than the already highly optimized ViterbiFilter implementation of

HMMER3, the proposed Cache-Oblivious Parallel SIMD Viterbi (COPS) implementation provides a constant throughput

and offers a processing speedup as high as two times faster, depending on the model’s size.

Keywords: Sequences alignment, Hidden Markov model, Viterbi, HMMER, Parallelization, Streaming SIMD

Extensions (SSE)

Background
Sequence alignment algorithms

One of the most used alignment algorithms for sequence

homology search is the Smith-Waterman algorithm [1]. It

computes the optimal local alignment and the respective

similarity score between the most conserved regions of

two sequences, with a complexity proportional to O(N2).

The algorithm is based on a Dynamic Programming (DP)

approach that considers three possible mismatches: inser-

tions, deletions, and substitutions. To ensure that a local

alignment is found, the computed scores are constrained

to a minimum value of 0, corresponding to a restart in the

alignment. To circumvent the computational complexity

of the Smith-Waterman and similar alignment algorithms,

*Correspondence: lsr@kdbio.inesc-id.pt
†Equal contributors
1Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001

Lisboa, Portugal
2INESC-ID, Rua Alves Redol, 9, 1000-029 Lisboa, Portugal

alternative heuristic methods (like BLAST [2]) were devel-
oped. However, their lower complexity is obtained at the
cost of sacrificing the resulting sensibility and accuracy.
An effective way that has been adopted to speed up

these DP alignment algorithms is the exploitation of data-
level parallelism. One of the most successful paralleliza-
tion methods was proposed by Farrar [3], who exploited
vector processing techniques using the Intel SSE2 instruc-
tion set extension to implement an innovative striped data
decomposition scheme (see Figure 1). In his approach,
each vector contains several cells from the same column of
the scoring matrix. However, contrasting to other imple-
mentations, these cells are not contiguous. Instead, they
are exactly K cells apart, in order to minimize the inter-
row dependencies. Essentially, this processing pattern
assumes that there is no dependencies across the vertical
‘segment sections’ (continuous sections). Whenever this
assumption is not verified, the existing data dependencies

have to be solved by a second inner loop (the Lazy-F loop).

Since these vertical dependencies among cells are unlikely

© 2014 Ferreira et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication
waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated.

mailto:lsr@kdbio.inesc-id.pt
http://creativecommons.org/licenses/by/2.0

Ferreira et al. BMC Bioinformatics 2014, 15:165 Page 2 of 13

http://www.biomedcentral.com/1471-2105/15/165

Figure 1 Interleaved decomposition pattern proposed by Farrar [3].

(although still possible), the resulting algorithm proves to

be very effective in the average case.

Meanwhile, Rognes proposed a different method in his

Swipe tool [4], which achieved even better performances

than Farrar’s. Contrasting to Farrar’s, which was based on

the exploitation of intra-task parallelism, Rognes’ method

also makes use of SSE2 vector processing but exploits

an inter-task parallelism scheme (i.e., multiple alignment

tasks are run in parallel), by using a lock-step process-

ing model (see Figure 2). Each vector is loaded with N

different sequences, one in each vector element (or chan-

nel), and the algorithm concurrently aligns them against

a target sequence, by using the N vector channels to

hold the independent computed values. The drawbacks of

this strategy are concerned with its restrictive application

domain, resulting from the fact that theN alignments pro-

ceed coalesced, from the beginning to the end. Any diver-

gence on the program flow carries a high performance

penalty, either as stoppage time or as wasted computing

potential (e.g., empty padded cells). Even so, the com-

plete elimination of data dependencies between the values

inside the same SSE register allows this technique to

achieve quasi-optimal speed-ups. Therefore, this software

implementation is often regarded as the fastest choice.

Other authors have even focused on the use of more

specialized hardware architectures, such as GPUs [5],

ASICs [6], or on parallelizing the algorithm onto a multi-

node grid, usually by dividing the sequence database in

blocks and independently searching on each block.

Markov models and Viterbi decoding

Instead of searching with a single query sequence, several

applications have adopted a previously built consensus,

conveniently defined from a family of similar sequences.

This consensus structure is usually known as a consen-

sus profile and it provides a more flexible way to identify

homologs of a certain family, by highlighting the fam-

ily’s common features and by downplaying the divergences

between the family’s sequences.

A common method to perform a profile homology

search rests on a well-known machine learning tech-

nique: Hidden Markov Modelss (HMMs). As an example,

an HMM may be constructed to model the probabilistic

structure of a group of sequences, such as a family of pro-

teins. Such resulting HMM is then used to search within

a sequence database, by computing the probability of that

sequence being generated by the model. HMMs may also

be used to find distant homologs, by iteratively building

Ferreira et al. BMC Bioinformatics 2014, 15:165 Page 3 of 13

http://www.biomedcentral.com/1471-2105/15/165

Figure 2 Decomposition pattern proposed by Rognes in SWIPE [4].

and refining a model that describes them (such as in the
SAM tool [7]).
In 1994, Krogh et al. [8] developed a straightforward

and generalized profile HMM for homology searches
that emulates the results of an optimal alignment algo-
rithm. The model is mainly composed by three different
types of states, corresponding to matches/mismatches
(M), insertions (I) and deletions (D), with explicit transi-
tions between the three types of states. Figure 3 depicts
an example of such model, where the match states (M) are
represented by squares, the insertions (I) by rhombus and
the deletions (D) by circles. The model also contains an
initial and a final state, represented by hexagons.

The most important algorithms to process HMMs are

the Forward algorithm, which gives the full probability

for all possible model state paths; and the Viterbi’s algo-

rithm, used to compute the most likely sequence of model

states for the generation of the considered sequence. The

complete path of states that is extracted by the applica-

tion of Viterbi’s procedure thus corresponds to an optimal

alignment of the considered sequence against the profiled

model.

Hence, for a general Markov model, Viterbi’s algorithm

computes the most likely sequence of hidden states. By

denoting as P(Vj(i)) the probability that the most likely

path at time i ends at Vj, Viterbi’s algorithm defines the

following relation to compute this probability:

P(Vj(i)) = P(xi|Vj)max
j′

{Vj′ tj′j} (1)

In this equation, P(xi|Vj) represents the probability of

observing xi in state Vj. The tj′j term represents the tran-

sition probability from state Vj′ to state Vj.

These equations are very similar to the corresponding

recurrences of the Forward algorithm, with Viterbi’s using

amaximum operation while Forward uses a sum. To avoid

possible underflows resulting from the repeated prod-

ucts, the involved computations usually use logarithmic

scores (log-odds). This conversion also replaces the multi-

plication operations by sums, which further simplifies the

calculations. To simplify this log-odds notation, the term

Vj(i) will herein represent log(P(Vj(i))). The recurrence

equations of Viterbi’s algorithm, for the profile HMMs, in

log-odds, are presented in Equation 2.

VM
j (i) = log

eMj(xi)

qxi
+ max

⎧

⎪

⎨

⎪

⎩

VM
j−1(i − 1) + log(tMj−1Mj)

V I
j−1(i − 1) + log(tIj−1Mj)

VD
j−1(i − 1) + log(tDj−1Mj)

V I
j (i) = log

eIj(xi)

qxi
+ max

⎧

⎪

⎨

⎪

⎩

VM
j (i − 1) + log(tMjIj)

V I
j (i − 1) + log(tIjIj)

VD
j (i − 1) + log(tDjIj)

VD
j (i) = max

⎧

⎪

⎨

⎪

⎩

VM
j−1(i) + log(tMj−1Dj)

V I
j−1(i) + log(tIj−1Dj)

VD
j−1(i) + log(tDj−1Dj)

(2)

Figure 3 HMM for global alignment.

Ferreira et al. BMC Bioinformatics 2014, 15:165 Page 4 of 13

http://www.biomedcentral.com/1471-2105/15/165

The terms eIj(xi)/qxi, relating the emission probabili-

ties (eIj(xi)) and the background probability distribution

(qxi) of belonging to the standard random model, rep-

resent a normalized probability of observing the event

xi at state Ij. The remaining variables in these equations

represent the following: VM
j (i) represents the logarithm

of the probability of the most likely path ending at

state Mj in column j, after processing i letters from

a given sequence. Likewise, V I
j (i) and VD

j (i) represent

the logarithm of the probability of an insertion and

deletion, respectively. tXY represents the probability of

transitioning from one state to another (for example,

tM2D3 represents the probability of transitioning from M2

to D3).

HMMER

HMMER [9] is a commonly used software tool that uses

HMMs to perform homology search. The original ver-

sion of HMMER relied on a model architecture entirely

similar to Krogh-Haussler’s model. The current version

(HMMER 3.1b1 [10]) employs the ‘Plan 7’ model archi-

tecture, presented in Figure 4. Although the core of this

architecture is still very similar to Krogh-Haussler’s, Plan

7 has no D → I or I → D transitions, which sim-

plifies the algorithm. Furthermore, some special-states

are added at the beginning and at the end, in order to

allow for arbitrary restarts (thus making it a local align-

ment) and multiple repeats (multihit alignment). These

special states can be parameterized to control the desired

form of alignment, such as unihit or multihit, global or

local.

This latest HMMER version also introduced a pro-

cessing pipeline, comprehending a combination of sev-

eral incremental filters. Each incremental filter is more

accurate, restrictive and expensive than the previous one.

All of these filters have already been parallelized by

Single-Instruction Multiple-Data (SIMD) vectorization

using Farrar’s striped processing pattern [3]. The Viterb-

iFilter, in particular, has been parallelized with 16-bit inte-

ger scores. Accordingly, the present work proposes a new

parallelization approach of this filter based on Rognes’

processing pattern [4], with a novel strategy to improve

the cache efficiency.

Cache-Oblivious SIMD Viterbi with inter-sequence
parallelism
The proposed Cache-Oblivious Parallel SIMD Viterbi

(COPS) algorithm represents an optimization of the

Viterbi filter implementation in local unihit mode

(i.e., the mode corresponding to the original Smith-

Waterman local alignment algorithm). Global alignment

is not currently supported by the latest version of

HMMER.

The presented implementation was developed on top of

the HMMER suite, as a standalone tool. A full integration

into the HMMER pipeline was deemed unsuitable, since

the pipeline was designed to execute a single sequence

search at a time, while the proposed approach exploits

inter-sequence parallelism, i.e., it concurrently processes

several sequences at a time in the SIMD SSE2 vector

elements.

A coarse grained structure of the implemented algo-

rithm, when compared with the original HMMER imple-

mentation, is presented in Listing 1. The following sub-

sections will describe the several code transformations

that were required to implement the proposed processing

approach.

Figure 4Multihit HMMER3model.

Ferreira et al. BMC Bioinformatics 2014, 15:165 Page 5 of 13

http://www.biomedcentral.com/1471-2105/15/165

Listing 1 Coarse grained algorithm structure

(a)HMMER Original Code: Non-partitioned Model

1: ⊲ LOOP B: Loop through the sequence symbols
2: for i ← 1 to SequenceLength (L) do
3: ...
4: ⊲ LOOP A: Loop through the model

state-triplets
5: for j ← 0 toM − 1 do

6: ⊲ Core Viterbi code
7: ...
8: end for
9: ⊲ Update the special states

10: ...
11: end for

(b) Proposed COPS Code: Strip-Mined Partitioned

Model

1: ⊲ LOOP C: Loop through the partitions
2: for p ← 1 to Npartitions do
3: ...

4: ⊲ LOOP B: Loop through the sequence symbols
5: for i ← 1 to SequenceLength (L) do
6: Load_Data_From_Last_Partition(i)
7: ...
8: ⊲ LOOP A: Loop through the model

state-triplets of the current partition
9: for j ← 0 to PartLength do

10: ⊲ Core Viterbi code
11: ...
12: end for
13: ⊲ Update the special states
14: ...
15: Store_Data_For_Next_Partition(i)
16: end for
17: end for

Rognes’ strategy applied to Viterbi decoding

Although HMMER extensively adopts the Farrar’s intra-

sequence vectorization approach, the presented research

demonstrates that the inter-sequence parallel alignment

strategy that was proposed by Rognes [4] can be equally

applied to implement the Viterbi decoding algorithm. The

proposed vectorization comprehends the computation of

the recursive Viterbi relations, by using three auxiliary

arrays to hold the previous values of the Match (M),

Insert (I) and Delete (D) states (see Figure 4). After each

loop over the normal states, the special states (E and

C) are updated. Since the proposed implementation does

not support multhit alignments, the J transitions were

removed from the original model.

Just like Farrar’s and Rognes’ vectorizations, the imple-

mentation that is now proposed uses 128-bit SIMD

registers, composed by eight 16-bit integer scores, to

simultaneously process eight different sequences. Fur-

thermore, similarly to the HMMER implementation, the

scores are discretized by using a simple scaling opera-

tion, with an additional bias and saturated arithmetic.

Hence, just like the ‘-2.0 nat approximation’ that is used

by HMMER, the N → N and C → C transitions were set

to zero, and a -2.0 score offset was added at the end. This

value approximates the cumulative contribution of N →

N and C → C transitions which, for a large L, is given

by log L
L+2 . As a result, the B contributions become con-

stant, since they only depend on the N values (which are

constant) and on the J values (which are zero in unihit

modes).

A required and important step in this inter-sequence

SIMD implementation of the Viterbi decoding is the

pre-loading and arrangement of the per-residue emis-

sion scores. However, these emission scores depend on

the searched sequences and they cannot be predicted,

pre-computed and memorized before knowing those

sequences. Furthermore, each new batch of 8 sequences

to search requires the loading of new emission scores.

Rognes’ solution to circumvent this problem can also be

adapted to Viterbi decoding and consists on loading the

emission scores for the 8 different residues from the 8

sequences under processing (each from its own emission

scores array) before starting the main loop of the model

(loop A, in Listing 1). To accomplish this, the scores must

be transposed from the original continuous pattern into

a convenient striped pattern, by using the unpack and

shuffle SSE operations. The implemented processing pat-

tern is illustrated in Figure 5, while the corresponding

pseudo-code implementation is presented in Listing 2.

Listing 2 Pre-processing of the emission scores by using

SSE2 instructions
procedure EMISSION_SCORES_PREPROCESS

⊲ Load original scores, xmm 0 to 8

xmm[0]← LOAD16(EMscoreSeq[0]+j)

xmm[1]← LOAD32(EMscoreSeq[1]+j)

...

⊲ Interleave 16-bit wide, xmm 8 to 15

xmm[8]← UNPACK_LOW16(xmm[0] , xmm[1])

xmm[9]← UNPACK_HIGH16(xmm[0] , xmm[1])

...

⊲ Interleave 32-bit wide, xmm 16 to 23

xmm[16]← UNPACK_LOW32(xmm[8] , xmm[10])

xmm[17]← UNPACK_HIGH32(xmm[8] , xmm[10])

...

⊲ Interleave 64-bit wide, xmm 24 to 31

xmm[24]← UNPACK_LOW64(xmm[16] , xmm[18)

xmm[25]← UNPACK_HIGH64(xmm[16], xmm[18])

...

end procedure

Ferreira et al. BMC Bioinformatics 2014, 15:165 Page 6 of 13

http://www.biomedcentral.com/1471-2105/15/165

Figure 5 Emission scores pre-processing using SSE2 unpack instructions. For illustrative purposes, only 4 sequences (denoted by letters a, b, c

and d) were represented. The numeric suffix represents the corresponding index, within the sequence.

Inline pre-processing of the scores

Rognes’ method to pre-load and pre-process the emis-

sion scores before each inner loop iteration (i.e., itera-

tion over the model states) suffers from a considerable

handicap: it needs an additional re-write of the scores

to memory, before the actual Viterbi decoding can start.

To circumvent this problem, an alternative approach is

herein proposed. Instead of transposing all the emission

scores for each tuple of residues in the outer loop of the

algorithm (Loop B in Listing 1 (a), over the sequence

residues), the transposition was moved inwards to the

inner loop (Loop A) and subsequently unrolled for 8

iterations. Hence, each iteration starts by pre-loading

8 emission values: one from each of the 8 continuous

arrays. These emission values are then transposed and

striped into 8 temporary SSE2 vectors and used in the

computation of the next model state for each of the 8

sequences under processing. Hence, the inner loop is

unrolled into the 8 state-triplets that are processed by

each loop iteration. With this approach, the emission

scores can be kept in close memory, thus improving

the memory and cache efficiency. Furthermore, the re-

writing in memory during this pre-loading phase is also

avoided.

To take full advantage of this vectorization approach,

the number of considered model states should be always

a multiple of 8 (in order to occupy the 8 available SSE

channels). Nevertheless, this restriction is easily fulfilled,

by padding the model with dummy states up to the next

multiple-of-8 state barrier. These dummy states should

carry dummy scores (set to −∞), so that they have a null

influence on the final results, representing a negligible

effect on the overall performance. According to the con-

ducted evaluations (further detailed in the latest sections

of this manuscript), this optimization of the inlined

scores loading procedure leads to an execution time

roughly 30% faster than the pre-loading method used by

Rognes’ tool.

Model partitioning

One common problem that is often observed in these

algorithms is concerned with the degradation of the

cache efficiency when the score arrays exceed the capac-

ity of the innermost-level data caches, leading to an

abrupt increase of the number of cache misses and caus-

ing a substantial reduction of the overall performance.

This type of performance penalties is also present

in HMMER Farrar-based ViterbiFilter implementation,

whenever larger models are considered.

To circumvent this cache efficiency problem, a loop-

tiling (a.k.a. strip-mining) strategy based on a partition-

ing of the model states was devised in the proposed

implementation, in order to limit the amount of mem-

ory required by the core loop. The required code trans-

formations are illustrated in Listing 1(b). Accordingly,

the M, I and D model states are split in blocks (or

partitions), whose optimal dimension (Maximum Parti-

tion (MP) length) is parameterized according to the size

and organization of the L1 data (L1D) cache. With this

approach, all the defined partitions are now iterated in

a new outermost-loop (Loop C, in Listing 1(b)). As a

result, the inner loop (Loop A) is substantially shorter

and it is now possible to obtain an optimal cache use

in loops A and B — the middle loop (Loop B) iter-

ates over the 8 database sequences, while the inner

loop (Loop A) iterates over a single partition of model

states.

The middle loop (Loop B), over the database sequences,

mostly re-uses the same memory locations (except for

the emission scores) that are accessed in the inner core

loop (Loop A). Consequently, these locations tend to be

kept in close cache. By limiting this model states loop

to a pre-defined number of state-triplets defined by the

MP length, it can be assured that the whole sequence

loop (Loop B) is kept in cache. Hence, with this opti-

mization, the memory required by the inner loop (Loop

A) is always cached in close memory and repeatedly

Ferreira et al. BMC Bioinformatics 2014, 15:165 Page 7 of 13

http://www.biomedcentral.com/1471-2105/15/165

accessed over the whole sequence loop, thereby drasti-

cally reducing the occurrence of cache misses. To attain

the maximum performance, the MP length should be

adjusted in order to achieve an optimal cache occupation,

i.e., one that fills the available capacity of the inner-

most data cache (L1D). The processing pattern resulting

from the proposed partitioned model is represented in

Figure 6.
Listing 3 presents the pseudo-code of the whole algo-

rithm implementation. The pseudo-code corresponding

to the procedures EMISSION_SCORES_PREPROCESS
and COMPUTE_STATE_TRIPLET, used in the inner loop
(Loop A), are depicted in Listings 2 and 4, respectively.
The notation adopted in this pseudo-code is closer to
the provided software implementation than equations 1

and 2, defining the algorithm. Accordingly, the vari-

able names re properly adapted. In particular, the j

indexes were omitted and use cv (current value). Like-
wise, pv (previous value) was used to represent the index

j − 1. Hence, variable Mpv represents VM
j−1(i). Similarly,

Dpv represents VD
j−1(i) and Ipv represents V I

j−1(i). It is
also worth noting that these variables are not arrays.

Instead, once the values are computed they are copied

to the arrays Mmx(j), Dmx(j) and Imx(j), respectively.

The transition probabilities t, are stored in 8 arrays

(for example tMI , for transitions from match to insert

states). The computation of each Match value is split

Figure 6 Processing pattern of the adopted partitionedmodel,

with a batch of length 10. The numbers represent the processing

order of each partition, while the arrows show the inter-partition

dependencies.

between iterations. Hence, an additional variableMnext is

required to carry the partial computed value onto the next

iteration.

Listing 3 Pseudo-code of the proposed COPS algorithm

1: ⊲ LOOP C: Loop through the partitions

2: for p ← 1 to N partitions do

3: Initialize Mmx, Imx, Dmx to − ∞

4: ⊲ LOOP B: Loop through the sequence symbols

5: for i ← 1 to SequenceLength (L) do

6: if p = 0 then

7: ⊲ First partition, initialize all to −∞

8: xmxE ← Mnext ← Dcv ← −∞

9: else

10: ⊲ Load data from previous partitions

11: xmxE ← PxmxE(i)

12: Dcv ← PDcv(i)

13: Mnext ← PMnext(i)

14: end if

15: ⊲ LOOP A: Loop through the model

state-triplets of the current partition

16: for j ← 0 to Min(PartLength,ModelLength−

p × PartLength), with step 8 do

17: EMISSION_SCORES_PREPROCESS()

18: for k ← 0 to 7 do

19: ⊲ Inner loop procedure. Argument:

state index

20: COMPUTE_STATE_TRIPLET(j + k)

21: end for

22: end for

23: ⊲ Compute and update the special flanking

states

24: if j + p × PartLength < ModelLength then

25: ⊲ Not the last partiton, store data for

next partition

26: PxmxE(i) ← xmxE

27: PDcv(i) ← Dcv

28: PMnext(i) ← Mnext

29: else

30: ⊲ Final partition, update the definitive

pseudo-states

31: xmxC ← VMAX16(xmxC, xmxE)

32: end if

33: end for

34: end for

35: return Undiscretize(VMAX16(xmxC, t_CT))

Ferreira et al. BMC Bioinformatics 2014, 15:165 Page 8 of 13

http://www.biomedcentral.com/1471-2105/15/165

Listing 4 Pseudo-code of the inner loop procedure. M

represents the model length, while j is the State index

1: procedure COMPUTE_STATE_TRIPLET

2: ⊲ Use M value partially computed in last iteration

3: Mnext ← VMAX16

⎧

⎪

⎨

⎪

⎩

Mnext

xmxB + tBM(j)

xmx[EMindex]

4: xmxE ← VMAX16(xmxE,Mnext)

5: ⊲ Load scores from last column

6: Dpv ← Dmx(j)

7: Ipv ← Imx(j)

8: Mpv ← Mmx(j)

9: ⊲ Compute and store scores of this column

10: Mmx(j) ← Mnext

11: Dmx(j) ← Dcv

12: Imx(j) ← VMAX16

{

Mpv + tMI(j + 1)

Ipv + tII(j + 1)

13: ⊲ Preempetive computation of next-column

D score

14: Dcv ← VMAX16

{

Mnext + tMD(j + 1)

Dcv + tDD(j + 1)

15: ⊲ Partially compute M score for next column

16: Mnext ← VMAX16

⎧

⎪

⎨

⎪

⎩

Mpv + tMM(j)

Ipv + tIM(j)

Dpv + tDM(j)

17: end procedure

Table 1 represents the memory footprint required by

the proposed COPS implementation, when compared

with the original HMMER ViterbyFilter.M represents the

model length. At this respect, it is important to note

that although the presented approach exceeds the inner-

most cache capacity sooner, since 8 times more transition

scores and 8-fold larger dynamic programming arrays are

required in the inner loop, the cumulative amount of

cache misses along the time is substantially lower, as a

result of the proposed partitioning.

Overall, the partitioned COPS implementation has an

expectedmemory footprint of around 240×M+900 bytes

(corresponding to the original memory requirements of

the non-partitioned COPS, plus the additional arrays that

are required to store the inter-partition dependencies). It

Table 1 Memory footprint (in Bytes) required by the

proposed COPS implementation, when compared with the

original HMMER ViterbyFilter

Data structure COPS (proposed) ViterbiFilter

(HMMER)

Mmx, Dmx, Imx 3 × M × 16 3 × M × 2

Transition scores 8 × M × 16 8 × M × 2

Emission match (E.M.) scores M × 16 M × 2

Auxiliary emission array 24 × 16 –

∼20 aux. variables 20 × 16 20 × 16

Total 192 × M + 700 24 × M + 320

Total minus E.M. scores 176 × M + 700 22 × M + 320

Max.M to fill a 32 KB cache 32768−700
192 ≈ 167 32768−320

24 ≈ 1350

M represents the model length and all the computed scores are represented

with 16-bit integers.

can thereby be estimated an optimal MP value as the max-

imum model length (M) that limits the memory footprint

within the size of the L1D cache. Hence theMP length can

be determined by:

MP =
size(L1D) − 900

240
(3)

Nevertheless, a conservative tolerance should be consid-

ered when approaching this maximum estimate, justified

by the sharing of the L1D cache with other variables not

correlated with this processing loop, process or thread.

In fact, the conducted experimental procedures demon-

strated that the actual MP values are very close to the best

values that were theoretically estimated:

• 112 to 120 states, for 32 KB L1D CPUs (e.g. Intel Core,

Core2, Nehalem, Sandy Bridge, Ivy Bridge and Haswell);
• around 48 states, for 16 KB L1D CPUs (e.g. AMD

Opteron Bulldozer and Piledriver);
• 216 to 224 states, for 64 KB L1D CPUs (e.g. AMD

Opteron K8, K10, Phenom I and II).

There are, however, two memory blocks that cannot be

strip-mined:

• Emission scores, which must be refreshed

(re-computed) for each new round of sequence

tokens. These values are accessed only once, so it is

counter-productive to consider their cacheability.
• Dependencies that must be exchanged between

adjacent partitions. The last Match (M), Insert (I) and

Delete (D) contributions from each partition have to

be carried on in the next partition, and so they have

to be saved at the end of each partition. Hence, each

partition receives as input one line of previous states,

with one state-triplet for each 8-fold round of

Ferreira et al. BMC Bioinformatics 2014, 15:165 Page 9 of 13

http://www.biomedcentral.com/1471-2105/15/165

sequences, and produces as output another line of

values to be used by the next partition. These

dependencies can be minimized to 3 values per

sequence round (xmxE,Mnext and Dcv) after
re-factoring the core code and moving the

computation ofMnext with the 3 state dependencies

to the end. The re-factored inner loop code can be

seen in Listing 4.

Methods
To conduct a comparative and comprehensive evalua-

tion of the proposed approach, the COPS algorithm was

ran against the ViterbiFilter implementation of HMMER

3.1b1, based on Farrar’s striped vectorization. For such

purpose, a benchmark dataset comprehending both DNA

and protein data was adopted, covering a wide spectrum

of model lengths, ranging from 50 to 3000 model states,

with a step of about 100.

In particular, the DNA data consisted on HMMs sam-

pled from Dfam 1.2 database of Human DNA HMMs

[11], and the human genome retrieved from the NCBI

archive.

As of March 2013, Dfam uses HMMER3.1b1 to cre-

ate the models. The complete list of HMMs is the

following (the length is prefixed to the model name):

M0063-U7, M0804-LTR1E, M1597-Tigger6b, M2500-L1

M4c_5end, M0101-HY3, M0900-MER4D1, M1683-Ford

Prefect, M2596-L1P4a_5end, M0200-MER107, M1000-

L1MEg2_5end, M1795-L1MB4_5end, M2706-Charlie3,

M0301-Eulor9A, M1106-L1MD2_3end, M1961-Charlie4,

M2789-L1MC4_3end, M0401-MER121, M1204-Charlie

17b, M2101-L1MEg_5end, M2904-L1M2_5end, M0500-

LTR72B, M1302-HSMAR2, M2204-CR1_Mam, M2991-

HAL1M8,M0600-MER4A1, M1409-MLT1H-int, M2275-

L1P2_5end, M0700-MER77B, M1509-LTR104_Mam, M2

406-Tigger5.

The protein data consisted on a mix of 13 small

and medium-sized HMMs from Pfam 27.0 [12] and 17

large HMMs created with hmmerbuild tool from Pro-

tein Isoforms sampled from Uniprot, and the NRDB90

[13] non-redundant protein database. The short protein

models, from Pfam, were the following: M0063-ACT_5,

M0400-Alginate_exp, M0800-Patched, M1201-DUF3584,

M0101-Bactofilin, M0500-Lant_dehyd_C, M0900-PolC_

DP2, M1301-Orbi_VP1, M0201-Adeno_52K, M0600-Mp

p10, M1002-SrfB, M0300-Aldose_epim, M0700-Pox_

VERT_large, M1098-CobN-Mg_che.

The longer models used were generated from the

following Uniprot Isoforms: M1400-Q8CGB6, M1800-

Q9BYP7, M2203-P27732, M2602-O75369, M1500-

Q9V4C8, M1901-Q64487, M2295-Q3UHQ6, M2703-Q8

BTI8, M1600-Q6NZJ6, M2000-Q9NY46, M2403-Q9U

GM3, M2802-Q9DER5, M1700-Q3UH06, M2099-Q8NF

50, M2505-O00555, M2898-Q868Z9, M3003-A2AWL7.

The benchmarks were run on two different machines:

• Intel Core i7 3770 K, with an Ivy Bridge architecture,

running at 3.50 GHz with a 32 KB L1D cache;
• AMD Opteron 6276, with a Bulldozer architecture,

running at 2.3 GHz with a 16 KB L1D cache.

All the timings were measured as total walltime, by using

the Linux ftime function.

Results and discussion
Cache misses

To evaluate the cache usage efficiency of the considered

algorithms, the number of L1D cachemisses for the COPS

tool and for the HMMER ViterbiFilter implementations

were measured with PAPI performance instrumentation

framework [14]. To ensure a broader and more com-

prehensive coverage of measures, a wider and random

dataset of DNA models was considered in this specific

evaluation.

When Intel processors (with 32 KB L1D caches) are

considered, the theoretical estimates suggested a critical

point for optimal L1D cache utilization corresponding to

models of sizeM≈1350 for the HMMER ViterbiFilter and

M≈167 for COPS. To confirm the formulated estima-

tion, the experimental procedure started by considering

a non-partitioned implementation, which was evaluated

in conjunction with the corresponding HMMER imple-

mentation. The obtained values, illustrated in Figure 7,

demonstrate that the theoretically estimated critical

points coincide very closely with the observed abrupt

increases of the L1D cache misses, as well as with the

corresponding performance drops, which are strongly

correlated in the observed results.

After partitioning, the overall performance of the pro-

posed COPS algorithm behaved remarkably close to what

had been predicted, maintaining the same level of caches

misses and computation performance for any model

length (see Figure 8). As it can be seen in this figure, COPS

even managed to be slightly faster than HMMER Viterb-

iFilter for models up to M≈1200 in 32 KB L1D cache

machines. For longer models, COPS gains are close to 1.5-

fold speedup over HMMER ViterbiFilter, due to the cache

degradation observed in HMMER. When compared with

the non-partitioned COPS implementation (see Figure 7),

the partitioned version was about 50% faster for long

models (>1000 bps), demonstrating the remarkable bene-

fits of the proposed partitioned processing approach.

Performance

Figures 9 and 10 represent the performance (in Mil-

lions of Cell Updates Per Second (MCUPS)) of the two

implementations and the observed speedup of the pre-

sented COPS approach, when using the Intel Core i7

Ferreira et al. BMC Bioinformatics 2014, 15:165 Page 10 of 13

http://www.biomedcentral.com/1471-2105/15/165

Figure 7 Cache usage results of HMMER ViterbiFilter and of a Non-Partitioned COPS (NP) implementation on the Intel Core i7 with 32 KB

of L1D cache.

processor. Figures 11 and 12 represent similar results,

observed in the AMD processor.

For short models (< 100 bps), the penalizing overhead

of Farrar’s Lazy-F loop is clearly evident. As a result,

the HMMER ViterbiFilter has a very poor performance

on these models. In contrast, the proposed COPS solu-

tion does not suffer from this problem and presents a

much smaller performance penalty in these small models

(mainly from the initialization costs between each inner-

loop execution). As a result, with these short models,

COPS achieved a considerable 1.7-fold speedup, when

compared with HMMER.

For medium-length models (between 100 and 500

bps on 16 KB-L1D machines, and up to ≈1000 bps

on 32 KB-L1D machines), the proposed COPS imple-

mentation is about as good as HMMER, reducing the

observed speedup to about 1.2-fold. These performance

values correspond to model lengths where the striped

version does not exceed the size of the innermost data

cache.

For longermodels, from 500 bps or 1000 bps (depending

on the L1D size), it can be observed that the perfor-

mance of HMMER quickly deteriorates as the length of

the model increases and the memory requirements of

HMMER Farrar-based approach reach the maximum that

the innermost L1D caches can provide (usually, 32 KB on

Intel and 16 KB on AMDCPUs). In contrast, the proposed

inter-sequence COPS is able to consistently maintain the

Figure 8 Cache usage results of HMMER ViterbiFilter and of the new partitioned COPS implementation on the Intel Core i7 with 32 KB of

L1D cache.

Ferreira et al. BMC Bioinformatics 2014, 15:165 Page 11 of 13

http://www.biomedcentral.com/1471-2105/15/165

Figure 9 Comparative performance results of the proposed COPS implementation and of HMMER ViterbiFilter, obtained on the Intel

Core i7 (32 KB of L1D cache).

same performance level with increasingly long models,

thus achieving a 2-fold speedup on AMD and a 1.5-

fold on Intel, against the HMMER version for longer

models.

Conclusions
The main insight of the presented approach is based

on the observation that current parallel HMM imple-

mentations may suffer severe cache penalties when pro-

cessing long models. To circumvent this limitation, a

new vectorization of the Viterbi decoding algorithm

is proposed to process arbitrarily sized HMM models.

The presented algorithm is based on a SSE2 inter-

sequence parallelization approach, similar to the DNA

alignment algorithm proposed by Rognes [4]. Besides

the adopted alternative vectorization approach, the pro-

posed algorithm introduces a new partitioning of the

Markov model that allows a significantly more effi-

cient exploitation of the cache locality. Such opti-

mization, together with an improved loading of the

emission scores, allows the achievement of a constant

processing throughput, regardless of the innermost-

cache size and of the dimension of the considered

model.

Figure 10 Resulting speedup of the proposed COPS implementation over HMMER ViterbiFilter, obtained on the Intel Core i7 (32 KB of

L1D cache).

Ferreira et al. BMC Bioinformatics 2014, 15:165 Page 12 of 13

http://www.biomedcentral.com/1471-2105/15/165

Figure 11 Comparative performance results of the proposed COPS implementation and of HMMER ViterbiFilter, obtained on an AMD

Opteron Bulldozer (16 KB of L1D cache).

In what concerns the partitioning, the proposed

implementation was based on the observation that the

poor cache performance of HMMER is related to the size

of the model and to the fact that it is necessary to update

all the states in the model for every letter of a query

sequence. As a result, large models will force recently

computed values out of cache. When this phenomena

occurs for every letter in a query, it naturally results in a

significant bottleneck.

We speculate that a similar phenomena occurs for the

striped pattern of Farrar, in which case our partitioning

technique could prove useful. Still, Farrar’s algorithm pro-

cesses one single query at a time, instead of 8. Therefore,

the slowdown should only occurs for models 8 times

larger, i.e., models of size larger than 10800.

According to the extensive set of assessments and eval-

uations that were conducted, the proposed vectorized

optimization of the Viterbi decoding algorithm proved

to be a rather competitive alternative implementation,

when compared with the state of the art HMMER3

decoder. Being always faster than the already highly opti-

mized HMMER ViterbiFilter implementation, the pro-

posed implementation provides a constant throughput

and proved to offer a processing speedup as high as 2,

depending on the considered HMM model size and L1D

cache size.

Figure 12 Resulting speedup of the proposed COPS implementation over HMMER ViterbiFilter, obtained on an AMDOpteron Bulldozer

(16 KB of L1D cache).

Ferreira et al. BMC Bioinformatics 2014, 15:165 Page 13 of 13

http://www.biomedcentral.com/1471-2105/15/165

Future work may also extend this approach to Intel’s

recent instruction-set extension AVX2, allowing the pro-

cessing of twice more vector elements at a time.

Availability and requirements
Project name: COPS (Cache-Oblivious SIMD Viterbi

with Inter-Sequence Parallelism)

Project home page: https://kdbio.inesc-id.pt/~lsr/

COPS

Operating system(s): Linux

Platform independent Programming language: C

requirements: gcc, make

License: a variation of the Internet Systems Consortium

(ISC) license.

Restrictions to use by non-academics: Referencing this

work.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MF analyzed the problem and implemented the prototype, which was

subsequently used for profiling and evaluation. NR and LR introduced the

problem, along with an initial analysis, and recommended experimental

approaches. All authors read and approved the final manuscript.

Acknowledgements

This work was partially supported by national funds through Fundação para a

Ciência e a Tecnologia (FCT), under project “HELIX: Heterogeneous Multi-Core

Architecture for Biological Sequence Analysis” (reference number

PTDC/EEA-ELC/113999/2009), project “DataStorm - Large scale data

management in cloud environments” (reference number

EXCL/EEI-ESS/0257/2012) and project PEst-OE/EEI/LA0021/2013.

Received: 22 October 2013 Accepted: 4 April 2014

Published: 30 May 2014

References

1. Smith TF, Waterman MS: Identification of commonmolecular

subsequences. J Mol Biol 1981, 147:195–197.

2. Altschul S, Gish W, Miller W, Myers E, Lipman D: Basic local alignment

search tool. J Mol Biol 1990, 215(3):403–410.

3. Farrar M: Striped Smith-Waterman speeds database searches six

times over other SIMD implementations. Bioinformatics 2007,

23(2):156–161.

4. Rognes T: Faster Smith-Waterman database searches with

inter-sequence SIMD parallelisation. BMC Bioinformatics 2011, 12:221.

5. Ganesan N, Chamberlain RD, Buhler J, Taufer M: Accelerating HMMER

on GPUs by implementing hybrid data and task parallelism. In

Proceedings of the First ACM International Conference on Bioinformatics and

Computational Biology. New York: ACM; 2010:418–421.

6. Derrien S, Quinton P: Hardware acceleration of HMMER on FPGAs. Sci J

Circ Syst Signal Process 2010, 58:53–67.

7. Karplus K, Barrett C, Hughey R: HiddenMarkov models for detecting

remote protein homologies. Bioinformatics 1998, 14(10):846–856.

8. Krogh A, Brown M, Mian IS, Sjolander K, Haussler D: Hidden Markov

models in computational biology: Applications to protein

modeling. J Mol Biol 1994, 235(5):1501–1531.

9. Eddy SR: Profile Hidden Markov models. Bioinformatics 1998,

14(9):755–763.

10. Eddy SR: Accelerated profile HMM searches. PLoS Comput Biol 2011,

7(10):e1002195.

11. Wheeler TJ, Clements J, Eddy SR, Hubley R, Jones TA, Jurka J, Smit AF, Finn

RD: Dfam: a database of repetitive DNA based on profile hidden

Markov models. Nucleic Acids Res 2013, 41(D1):D70–D82.

12. Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Jones SG, Khanna A,

Marshall M, Moxon S, Sonnhammer ELL, Studholme DJ, Yeats C, Eddy SR:

The Pfam protein families database. Nucleic Acids Res 2004, 32(suppl 1):

D138–D141.

13. Holm L, Sander C: Removing near-neighbour redundancy from large

protein sequence collections. Bioinformatics 1998, 14(5):423–429.

14. Browne S, Dongarra J, Garner N, Ho G, Mucci P: A portable

programming interface for performance evaluation onmodern

processors. Int J High Perform Comput Appl 2000, 14(3):189–204.

doi:10.1186/1471-2105-15-165
Cite this article as: Ferreira et al.: Cache-Oblivious parallel SIMD Viterbi
decoding for sequence search in HMMER. BMC Bioinformatics 2014 15:165.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

https://kdbio.inesc-id.pt/~lsr/COPS
https://kdbio.inesc-id.pt/~lsr/COPS

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Sequence alignment algorithms
	Markov models and Viterbi decoding
	HMMER

	Cache-Oblivious SIMD Viterbi with inter-sequence parallelism
	Rognes' strategy applied to Viterbi decoding
	Inline pre-processing of the scores
	Model partitioning

	Methods
	Results and discussion
	Cache misses
	Performance

	Conclusions
	Availability and requirements
	Competing interests
	Authors' contributions
	Acknowledgements
	References

