
Cache Performance for Selected SPEC CPU2000 Benchmarks

Version 1.0

July 2001

Jason F. Cantin
Department of Electrical and Computer Engineering

1415 Engineering Drive
University of Wisconsin-Madison

Madison, WI 53706-1691
jcantin @ece.wisc.edu
http://www.jfred.org

Mark D. Hill
Department of Computer Science

1210 West Dayton Street
University of Wisconsin-Madison

Madison, WI 53706-1685
markhill @cs.wisc.edu

http://www.cs.wisc.edu/-markhill

http://www.cs.wisc .edu/multi facet/misc/spec2000cache-data

Abstract

The SPEC CPU2000 benchmark suite (http://www.spec.org/osg/cpu2000) is a collection of 26
compute-intensive, non-trivial programs used to evaluate the performance of a computer's CPU,
memory system, and compilers. The benchmarks in this suite were chosen to represent real-world
applications, and thus exhibit a wide range of runtime behaviors. On this webpage, we present functional
cache miss ratios and related statistics for selected benchmarks in the SPEC CPU2000 suite. In
particular, split LI cache sizes ranging from 4K.B to 1MB with 64B blocks and associativities of 1, 2, 4,
8 and full. Most of this data was collected at the University of Wisconsin-Madison with the aid of the
Simplescalar toolset (http://www.simplescalar.org).

Methodology

All functional data was collected with simulators from the Alpha version of the Simplescalar toolset,
version 3.0. These include sim-cache, sire-cheetah, and sim-outorder. Some of these simulators were
modified for the task (for example, sire-cheetah was modified to handle programs longer than 2 billion
instructions). For interval cache data, the simulators were modified to print stats every 100 million
executed instructions. A combination of Perl and Tcsh scripts were used to launch, manage, and process
the results of these simulations.

All benchmarks were compiled statically with heavy optimization for the Alpha AXP instruction set.

m 1 3 B

Optimizations were targeted at the Alpha 21264 processor implementations, and include prefetehes,
square-root instructions, byte/word memory operations, and no-ops for alignment. All benchmarks were
run to completion with all reference inputs, with two exceptions. Two of the data sets for Perl
(253.peribmk) required new processes to be spawned, which is not supported by the Simplescalar tools
at this time. The benchmarks simulated comprise nearly 2 trillion committed instructions for the
reference input sets. Generating the functional L1 miss-ratio tables resulted in 100 trillion simulated
instructions. The total simulation load for all functional and timing-based simulations to be reported here
totals 30 CPU-years.

All simulations were carried out on a combination of x86 Linux machines and Alpha (Tru64 Unix)
servers in the University of Wisconsin-Madison's Computer Science Department. The majority of this
load was managed by Condor, which distributed these jobs to vacant machines throughout the building.
The Alpha servers are not managed by Condor at this time, and those simulations were managed
manually.

All cache configurations simulated had 64-byte blocks for both L1 and L2 caches. All data reported here
is for the LRU replacement policy, though data for other replacement policies was collected and may be
placed on this site soon. This data does not include operating system effects, and caches were not
flushed periodically nor on system calls. Thus, actual miss-rates will be higher than those reported here.

Benchmarks Simulated

To date, we have collected data for 11 benchmarks with reference inputs: 6 integer, 5 floating-point.

- - 1 4 - -

Benchmark Language Type

,164.gzip C Int

176.gcc C Int
i

181.reef C Int
|

253.peribmk C Int

254.gap C Int
!

300.twolf C Int
|

17 l.swim Fortran 77 FP
!

173.applu Fortran 77 FP

179.art C FP

183.equake C FP

I ".'.'."

189.1ucas Fortran 90 ~FP

'iOverall

Category

Compression

C Programming
Language Compiler

Combinatorial
Optimization

PERL Programming
Language

Group Theory,
Interpreter

Place and Route
Simulator (CAE)

Shallow Water
Modeling

Parabolic/Elliptic
Partial Diff. E,q'ns

Image Recognition /
Neural Networks

Seismic Wave
Propagation
Simulation

Number Theory /
Primality Testing

Simulatedlnst's

478,636,174,329

116,093,336,744

61,870,158,860

143,122,956,639

213,813,801,949

346,489,363,383

225,830,970,9511

223,883,653,813

86,834,976,688

131,518,705,120

142,398,814,292

2,170,492,912,770

Simulated Data
Ref's

142,700,878,428

243,597,914,726

23,056,352,854

61,829,661,201

80,924,423,445

111,857,479,345

74,341,437,755

85,459,1)68,028

30,279,186,530

58,248,603,550

31,507,111,538

943,802,117,4001

Ref'sflnst

0.2981

0.4766

0.3727

0.4320

0.3785

0.3228

0.3292

0.3817

0.3487

0.4429

0.2213

0.4348

Miss Ratio Tables

Get the complete archive at
http://www.cs.wisc.edu/multifacet/misc/spec2000cache-data/miss-tables.tar.gz

Overall First-level Cache Miss ratio tables:
O Arithmetic mean of all selected benchmarks
O Arithmetic mean of integer benchmarks (selected SPECint)
O Arithmetic mean of floating-point benchmarks (selected SPECfp)

First-level Cache Miss ratio tables for selected benchmarks:
O 164.gzip

• 164.gzipl.tab (Source code tar-file)
• 164.gzip2.tab (Webserver log)
• 164.gzip3.tab (Large TIFF image)
• 164.gzip4.tab (Random data)
• 164.gzip5.tab (Program binary)

- - 1 5 m

• 164.gzip-ave.tab (Average of above)
O 176.gcc

• 176.gcc l.tab (Preprocessed source from a SPECint2000 candidate)
• 176.gcc2.tab (Preprocessed source from SPECfp2000 200.sixtrack)
• 176.gcc3.tab (Preproeessed expr.i from gee source)
• 176.gcc4.tab (Preprocessed integrate.i from gcc source)
• 176.gcc5.tab (Preprocessed version of Scilab program)
• 176.gee-ave.tab (Average of above)

O 181.reef
• 18 l.mcfl.tab (Single-depot vehicle scheduling in public mass transportation)

O 253.peflbmk
• 253.perlbmkl.tab (Speediff applied to email)
• 253.perlbmk2.tab (Finding perfect numbers --not reported, crashes Simplescalar)
• 253.perlbmk3.tab (Testing pseudo random numbers --not reported, crashes

Simplescalar)
• 253.perlbmk4.tab (Converting Email to HTML)
• 253 .perlbmk5. tab (Converting Email to t-YTML)
• 253.perlbmk6.tab (Converting Email to HTML)
• 253.perlbmkT.tab (Converting Email to HTM1,)
• 253.perlbmk-ave.tab (Average of above)

O 254.gap
• 254.gapl.tab (Comb. functions, big numbers, finite fields, lattice computations,

normalizers, ag-groups)
O 300.twolf

• 300.twolfl.tab (structured circuit from MCNC benchmark suite)
O 171.swim

• 171.swiml.tab (Large 1335x1335 array over 512 timesteps)
O 173.applu

• 173.applu l.tab (Large mesh over many timesteps)
O 179.art

• 179.artl.tab (Finding helicopter and airplane in a thermal image)
• 179.artl.tab (Finding helicopter and airplane in a the==aal image)
• 179.art-ave.tab (Average of above)

O 183.equake
• 183.¢quake 1 .tab (1994 Northridge Earthquake aftershock in California)

O 189.1ucas
• 189.1ucasl.tab (Lucas-Lehmer test for primality of Mersenne numbers 2^p-l)

Overall Second-level Cache Miss ratio tables:

Miss
0

0

0

0

ratios for intervals of 100 million instructions:
Tabular data for split 64K LI caches
(h ttp://www.cs.wisc.edu/mul tifacet/misc/spec2000cache-data/splitl lcache64K_tables.tar.gz)
Tabular data for a unified 1MB L2 cache
(http:/•www•cs•wisc•edu/mu•tifacet/misc•spec2•••ca•he-data/u•2cache•MB-tab]es•tar.gz)
Graphs for 64K LI data cache
(http:•/www.cs.wisc.•du•multifac•t•misc•spec2•••cach•-data/dcach•64K-grap•s.tar.gz)
Graphs for 64K LI instruction cache

m 1 6 m

(http://www .cs.wisc.edu/multi facet/misc/spec2000eache-data/icache64K__graphs.tar.gz)
O Graphs for 64K L2 unified cache

(http:l/www .cs.wisc.edu/multifacet/misc/spec2000cache-data/ul2cache IMB_graphs.tar.gz)

Table Format

All miss-ratio tables are in ASCII text format, generated with Perl scripts. They include the name of the
file, the name of the benchmark, the command line for the benchmark, the number of instructions, the
number of data references, miss-ratios (misses/reference) for a set of cache sizes and associativities, and
compulsory miss rates. For each benchmark and data set, miss ratios are rounded to 6 decimal places.
The computed arithmetic means for each benchmark are rounded to 5 significant digits, and the overall
means are rounded to 4 significant digits. Miss ratios are reported for sizes of 4K.B - 1MB, with
associativities of l-way, 2-way, 4-way, 8-way, and full. In all eases the block size was 64 Bytes and the
replacement policy was LRU. Compulsory miss-rates were measured as the miss-rate of a
fully-associative 256MB cache with no flushing. Note that there is sufficient data to calculate the 3C's
for the various configurations. See the example below (overall arithmetic mean for selected benchmarks)

Size ---

4K 0.
8K 0

16K 0
32K 0
64K 0

128K 0
256K 0
512K 0

1024K 0

Block size: 64 bytes, Repl: LRU

Arithmetic Mean for Data References

Associativity

1 2 4 8 full

0599--
0514--
0455--
0412--
0377--
0344--
0326--
0268--
0164--

0.0511--
0.0455--
0.0419--
0.0387--
0.0359--
0.0335--
0.0322--
0.0290--
0.0169--

0.0491--
0.0439--
0.0410--
0 0303--
0 0356--
0 0333--
0 0323--
0 0 3 0 9 - -
0 0 2 0 8 - -

0.0488--
0.0434--
0.0408--
0 0380--
0 0355--
0 0333--
0 0323--
0 0312--
0 0225--

0.0487--
0.0429--
0.0403--
0.0378--
0.0353--
0.0353--
0.0323--
0.0311--
0.0229--

Compulsory: 2.357738e-05

For example, for a 4K.B direct-mapped LI data cache with 64B blocks, 5.99 out of every 100 data
references miss.

Future Work

• The rest of the SPEC CPU2000 Suite
• Data for TLBs
• Impact of L2 cache sizes on IPC

Related Work

• SPEC CPU2000: Measuring CPU Performance in the New Millennium, John L. Henning.
http:llwww.spec.orglosgicpu2OOOIpaperslCOMPUTER_2OOOO7-abstract.JLH.html

• Simulating SPEC CPU2000: Reduced input sets for SPEC CPU2000, research by the University
of Minnesota. http:llwww.spec.orglosglcpu2OOOIresearchlumn/

• Prefetching and memory system behavior of the SPEC95 benchmark suite, M.J. Charney and T.R.
Puzak. http:ilwww.research.ibm.comljournalirdl4131charney.htmi

• Cache Performance of the SPEC92 Benchmark Suite, Jeffrey D. Ge¢, Mark D. Hill, Dionisios N.
Pnevmatikatos, and Alan Jay Smith. http://www.cs.wisc.edu/--markhill/spec92miss.htrnl

Acknowledgements

• Cache numbers were generated with computing resources provided by Wisconsin Condor,
Midship 0NSF 144-GB67), and Multifacet (NSF EIA-9971256) projects.

• Special thanks to David A. Patterson for advice in generating this data.
• Jason F. Cantin is supported by a Peter Schneider Wisconsin Distinguished Graduate Fellowship

Publications

• A subset of this data will appear in the third edition of John Hennessy and David Patterson's
"Computer Architecture, A Quantitative Approach".

Disclaimer

Data in this directory is correct to the best of our knowledge. However, we provide it, *AS IS* without
an expressed or implied warranty, and we accept no responsibility for the consequences of the use or
misuse of this data.

Last updated July 2001 by Jason Cantin.

m l S m

