
Sithole et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:1

http://www.journalofcloudcomputing.com/content/2/1/1

RESEARCH Open Access

Cache performance models for quality
of service compliance in storage clouds
Ernest Sithole1*, Aaron McConnell1 , Sally McClean2 , Gerard Parr2, Bryan Scotney2, Adrian Moore2

and Dave Bustard2

Abstract

With the growing popularity of cloud-based data centres as the enterprise IT platform of choice, there is a need for

effective management strategies capable of maintaining performance within SLA and QoS parameters when

responding to dynamic conditions such as increasing demand. Since current management approaches in the cloud

infrastructure, particularly for data-intensive applications, lack the ability to systematically quantify performance

trends, static approaches are largely employed in the allocations of resources when dealing with volatile demand in

the infrastructure. We present analytical models for characterising cache performance trends at storage cache nodes.

Practical validations of cache performance for derived theoretical trends show close approximations between

modelled characterisations and measurement results for user request patterns involving private datasets and publicly

available datasets. The models are extended to encompass hybrid scenarios based on concurrent requests of both

private and public content. Our models have potential for guiding (a) efficient resource allocations during initial

deployments of the storage cloud infrastructure and (b) timely interventions during operation in order to achieve

scalable and resilient service delivery.

Keywords: Storage cloud, Enterprise applications, Cache performance, Optimisation

Introduction
The cloud computing paradigm is emerging as a main-

stream approach in the design and implementation of

enterprise computing solutions [1-3]. The principal fac-

tors favouring the adoption of cloud-based technologies

in business computing environments are: (a) the ease with

which IT infrastructure deployments and expansions can

be achieved when bringing together multiple and hetero-

geneous computing resources, typically scattered across

wide geophysical locations, and (b) the simplified mech-

anisms by which users can access and utilise hosted IT

services.

Based on the specific needs of target user environ-

ments, which cloud based technologies are intended

to serve, business IT service solutions can be crafted

and made available in a variety of offerings, which can

be Software-as-a-Service (SaaS), Platform-as-a-Service

(PaaS) or Infrastructure-as-a-Service (IaaS) computing

*Correspondence: esithole@infc.ulst.ac.uk
1Networking and Computing Technologies Laboratory, University of Ulster at

Coleraine, Coleraine - BT52 1SA Northern Ireland, United Kingdom.

Full list of author information is available at the end of the article

capabilities. The adoptions of the SaaS solutions [1,2]

present hosted applications to user environments cus-

tomers as usable service entities for business computing

needs; the PaaS-based solutions [4-7] present for use by

application routines executing at the SaaS level, service

capabilities that are derived from the integration of Oper-

ating System and virtualisation functionalities; the IaaS

solutions [3,8-10] bring together the operational hardware

elements such as data centre equipment, processor and

storage servers, and networking devices into functional

capabilities that can be plugged into and utilised by user

routines executing at both the SaaS and PaaS levels of the

cloud stack.

Depending on the nature of the affinity groups that

are served by cloud-based IT environments, there are

four main categories of clouds - Private, Community,

Public or Hybrid, which can serve user environments

according to their access entitlements. Private clouds

are exclusively for intra-organisational needs; Community

clouds result from federations of resources that serve the

interests of select user groups with common objectives;

Public clouds offer on-demand services to anyone with

© 2013 Sithole et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

Sithole et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:1 Page 2 of 24

http://www.journalofcloudcomputing.com/content/2/1/1

service-provider-authenticated web access over the stan-

dard Internet connection; Hybrid clouds fulfill require-

ments that can only met through services derived from

combinations of in-house and off-premises resources. The

delivery of cloud computing service according to above

mentioned implementations enables reduced setup times

for the deployments of outsourced business computing

solutions, with little or no requirement being imposed on

the customers to understand and manage the underlying

technologies operating in the infrastructure.

Despite the enormous strides that have been achieved

in developing functional capabilities for cloud computing

systems, challenges still remain that present formidable

barriers to the reliable performance and therefore effec-

tive use of cloud-based IT infrastructures. Performance

related issues in the cloud domain encompass a range

of considerations such as how to maintain Key Perfor-

mance Indicators (made up of throughput and response

time metrics), on-demand resource and service availabil-

ity, continuity and scalability of IT services at competitive

SLA and QoS levels that will enable business customers

to meet performance goals. In order for the management-

driven strategies and interventions to meet required levels

of service reliability and availability and, thus maintain

infrastructure operations within specified SLA and QoS

targets, in-depth knowledge is required for establishing

quantitative trends that are associated with principal per-

formance indicators such as throughput rates, response

times and load-scalability as the levels of user requests

being sent to the cloud infrastructure vary. Thus, in quan-

titative terms, the ability to provide SLA and QoS-capable

resource management in cloud-based IT environments

requires accurate characterisations of the load response

patterns, based on the interplay of factors such as the

resource infrastructure’s service capacity, the levels of

applied user workloads and their resource consumption

needs in the cloud service environment.

Given the lack of intimate knowledge that can lead to

mature capabilities for establishing the quantitative rela-

tionships between user requests and performance in pre-

cise detail, the allocations of resources in cloud-based IT

infrastructures are largely conducted in a reactive man-

ner, with the assignment of resource entities being carried

out statically in response to any changes in user demand.

As a result, the fulfilment of SLAs and QoS contracts for

outsourced IT services essentially relies on either excess

provisioning that leads to inefficiencies or, limited alloca-

tion of infrastructure resources that has carries the risk of

SLA violations. Hence, instead of having in place proactive

technical interventions that can immediately respond by

reassigning resources to keep performance levels within

acceptable thresholds, any QoS breaches that occur in

the infrastructure are handled largely by follow up admin

negotiations with a view to settling any business losses

that may result from service interruptions through com-

pensation. It is therefore worth exploring approaches by

which performance trends in the cloud infrastructure can

be determined with sufficient accuracy to enable proac-

tive resource management for QoS compliant delivery of

IT services. In our work, we isolate for study the resource

utilisation trends of the storage subsystems on server

hardware, an aspect that has not been given sufficient

consideration in the context of supporting SLA-capable

resource management mechanisms in storage clouds.

Proposed strategy for QoS compliance support in storage

clouds

As has been highlighted, the challenge of achieving

SLA-awareness in cloud environments is a multifaceted

research issue with a number of dimensions stemming

from it such as determining the levels of resource avail-

ability, service continuity rates and scalability trends of

performance that will be able to satisfy QoS constraints.

As a starting point towards addressing the vital issues

pertinent to QoSmaintenance in storage cloud infrastruc-

tures, this paper focuses on developing characterisations

of cache performance trends, an aspect which we con-

sider to have potential for serving as an important source

of guidance for informed decisions on the provisioning

of scalable data storage services in enterprise IT environ-

ments. Our approach, thus aims to support QoS readiness

in resource allocation management strategies for storage

clouds through accurate modelling of content availability

levels at individual cache entities in the infrastructure, and

the modelled scalability trends can serve as a feed into the

management strategies for storage space provisioning.

In order to establish the validity of the modelled cache

performance, a data centre facility with cloud-based stor-

age elements is used. As a key contribution of this paper,

we present and validate scalability trends of cache per-

formance at individual nodes, and the derived theoretical

models can be a foundation upon which the considera-

tions for infrastructure sizing can proceed and decisions

are made in accord with the applications’ resource needs

and the service capabilities of the resources in enterprise

computing environments on the following: (a) initial sizes

of the storage deployments for cloud-based services, (b)

re-calibration of the scale of storage resource integrations

an ongoing basis in order to preempt SLA violations that

could arise from short-term increases in demand and, (c)

storage capacity upgrades based on anticipated margins of

permanent increases in user demand.

Given that the accuracy of cache performance char-

acterisations is the critical component underpinning the

ability of our proposed strategy to quantify the scale

of resource allocations required to fulfil performance

goals in storage clouds, the next section proceeds with a

detailed consideration of cache performance trends, with

Sithole et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:1 Page 3 of 24

http://www.journalofcloudcomputing.com/content/2/1/1

the focus primarily on the analytical derivations of the

scalability response patterns of content retention rates

at individual storage server nodes in the cloud domain.

In Section “Experimental facility for validations of cache

performance Trends” we describe the key components

of the practical facility used for conducting experimental

validations of the models. Sections “Validations of cache

performance trends for user requests of private data”

and “Validations of cache performance trends for user

requests of public data” respectively feature the sets of

experiments conducted to establish the validity of the

modelled cache performance for private and public data

requests. Section “Performance characterisations for con-

current accesses to private and public content” extends

the analytical models to scenarios that are based on con-

current requests going to private and public data. A brief

evaluation of our cache performance characterisations

is provided in Section “Discussion” through the consid-

eration of the implications of the results on the ability

to provide support for service continuity, scalability and

SLA compliance in the management of storage resources.

Section “Related research” provides a summary review

of other research initiatives that are aimed at developing

SLA support strategies for clouds by addressing aspects

that are adjacent to our area of focus. The ninth section

concludes the paper by highlighting further issues to

be investigated in future work so that viable techniques

are developed for QoS-ready deployments in the storage

cloud infrastructure.

Derivations of cache performancemodels
We begin our consideration of cache performance trends

in storage clouds by developing theoretical models of data

availability levels based on the scalability response to ris-

ing numbers user of requests for content. In developing

quantitative estimates of cache hit ratios at storage caches,

four principal factors and their impact on cache perfor-

mance are considered. These factors are (a) the respective

sizes of the storage capacities of the local cache and

source storage devices, CL, and CS (b) the user loading

levels in terms of the average number and average sizes

of input files to satisfy each received request, NF and SF ,

(c) the mean service time period for the execution of the

requests, 1
λApp

, during which a cached file is used by a

runtime process at the CPU and (d) the affinities of user

patterns to the individual files that they request in the

cache. Table 1 provides a complete list of the basic input

and output parameters that are used in the derivations of

the cache models and practical experiments.

Cache performance analysis of user requests for private

data

Based on the interplay of these factors, the overall cache

performance in terms of the average cache hit ratio, PL,

Table 1 Input and output parameters for the local cache

node

Parameter Description Value

NUsers Number Active Users 10 - 250

(1
λApp

) Application Request exp (2.5)

Inter-repetition Time (sec)

JLimit Transaction Limit for Received Jobs Infinite

JPolicy Job Instance Limit Policy Queue

JPriority Priority assigned for Regular 5

(1
µCPU

) Average CPU Service Time (sec) exp (1.5)

NF Average I/O File Read Count Constant (1)

SF Average Read File Size (MB) Constant (1)

SCPUMem Average Size of Memory (MB) Uniform (0- 10)

CL Capacity of Local Cache (GB) 40 - 200

CS Capacity of Remote Storage (GB) 1000

L Local Cache Capacity (users) 10 - 50

S Remote Storage Capacity (users) 400

PL Overall Local Cache Hit Ratio 0 - 1

at each local storage can thus be summarized by the basic

expression, PL = f (CL,CS, SF ,NF ,
1

λApp
). We make the

assumption that the interplay of these input parameters

impacts the local cache performance by predominantly

generating capacity misses.

The analysis of cache performance that we consider first

applies to application routines that have rigid affinities

between user requests and target files i.e. cases where

User1 will always request File1 with User2 requesting File2
etc. The criterion of rigid affinity to content is pertinent to

situations where each customer using the business com-

puting infrastructure accesses his own master data [11],

which he can view and edit. Thus, ignoring the impact

of conflict and compulsory misses on cache performance

trends and assuming uniform file sizes, SF , for cached

content, then the cache hit ratio or the probability, PL,

of satisfying data requests in the local cache, follows the

relationship:

PL =

⎧

⎨

⎩

1 if SFNFNUsers ≤ CL

CL

SFNFNUsers
if SFNFNUsers > CL.

(1)

Assuming that the theoretical analysis applies to those

cases where the data request cycles have gone beyond

the point of start up misses, the model derivation shows

that the hit cache ratio remains at 100% before and upon

matching the storage capacity, CL. Whenever the applied

user load given by storage space requirements of the gen-

erated, SFNFNUsers, exceeds the storage capacity of the

local cache, CL, the cache hits begin falling asymptotically

Sithole et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:1 Page 4 of 24

http://www.journalofcloudcomputing.com/content/2/1/1

toward zero. Conversely, the local cache capacity miss

ratio,ML, is described by the relationship:

ML =

⎧

⎨

⎩

0 if SFNFNUsers ≤ CL

1 − (
CL

SFNFNUsers
) if SFNFNUsers > CL.

(2)

Next, we consider cache performance in scenarios

where users generate dispersed requests i.e. unrestricted

access is allowed to all the publicly available files that are

kept on the remote storage device of capacity, CS .

Cache performance analysis of user requests for public data

Unrestricted data access patterns apply to publicly hosted

content, which many users will likely have an interest in

obtaining, whether from the public internet or in-house

data sources [11,12]. We make two assumptions for dis-

persed file requests: one that the master storage is at least

equal or greater to the local cache space i.e. CS ≥ CL, and

the other that the time period for considering the cache

performance is sufficiently long for the users to cycle their

requests over the entire collection of files kept on themas-

ter storage device, i.e. SFNFNUsers ≥ CS. Since the access

to all the content on the remote storage is unrestricted,

each of the NUsers can thus request any of the files at mas-

ter storage device with equal chance so that the probability

of requesting one of the stored CS
SF

files becomes SF
CS
. If

the start up cache misses are disregarded by taking into

account the CL
SF

files that are already in the local cache

node, then the cache hit ratio, PL, which is equivalent to

the probability that a requested file can be found in the

cache node, is equal to CL
CS
. Thus, regardless of the actual

number of user requests coming onto the IT infrastruc-

ture, the cache performance is given by the relationship:

PL =

⎧

⎪

⎨

⎪

⎩

(

CL

CS

)

if CL < CS

1 if otherwise.

(3)

Apart from the fact that load levels of input user

requests are irrelevant to cache performance, it also fol-

lows that for scenarios where user requests are uniformly

scattered over the remotely stored files, the trends for

local node cache miss ratios in such cases are given by the

expression:

ML =

⎧

⎪

⎨

⎪

⎩

1 −

(

CL

CS

)

if CL < CS

0 if otherwise.

(4)

The following section provides an introduction to the

setup for the experiments that were conducted to establish

the practical validity of the modelled scalability trends of

the cache hit rates derived for the two cases of data access

patterns considered above.

Experimental facility for validations of cache
performance Trends
As shown in Figure 1, the practical setup for our exper-

iments employs four Virtual Machines: the User Load

Generator, Application Server, File Manager and Remote

StorageManager VMs, all of which comprise the software

elements for the experiments.

The Load Generator program initiates the operations

in the Application Server, File Manager and Remote Stor-

age VMs in readiness for the start of measurements

and results collection. As a preparatory step, an initial

start signal is sent by the generator to both the File

Manager and Remote Storage VMs so that the cache

optimisation algorithm and storage partitions are pro-

visioned with target files to be requested by users are

set up. After a delay of appropriate duration, a second

start signal is generated to initiate first user request,

Request1, which will be followed by a train of arrivals,

Request2 . . .RequestN , at the Application Server accord-

ing to the predefined arrival process rate, λApp. The File

Manager VM responds to the initial start signal by set-

ting aside the required storage space in the local cache and

activating the algorithm selected for optimising cached

content.

In addition to retaining cached content according to the

selected optimisation criterion, the cache algorithm func-

tionality in the File Manager VM responds directly to the

data requests by compiling a record of the Request, Hit

and Miss events occurring in the local cache. The Remote

Storage VM ensures that permanent copies of all the file

objects to be requested by the users are kept on its storage

partition, ready to be copied across to the local cache

partition should any misses occur at the latter. Upon

the lapse of the predefined duration of the experimental

measurements, a stop signal is emitted by Load Genera-

tor to the Application Server, File Manager and Remote

Storage VMs.

The number of users,NUsers, that generate data requests

at runtime is varied from 0 to 250, and the user ses-

sions execute concurrently in the form of thread instances

spawned off from the invoked work process instance.

Thus, for each active user session, the runtime execution

is in the form a VM instance at the application server.

The consumptions of processor hardware resources (CPU

and memory), 1
µCPU

and SCPUMem, are according to the

requests generated by the application routine generated

inside the VM instance. The average number of input data

files, NF , requested by each user routine, is fixed to 1,

with each file being 1000 KB in size and, the reserved

cache space on the storage node, CL, is varied from 40

GB to 200 GB for the two cases for data request patterns.

The accessed files are indexed as database objects in the

MySQL backend database entries, and the file retrievals

into cache space are handled as block data transfers of

Sithole et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:1 Page 5 of 24

http://www.journalofcloudcomputing.com/content/2/1/1

Figure 1 Functional setup for the experiments.

the database table entries. The cached content is hosted

on a local Dell R515 node, whose hardware is made up

of an AMD 12-core 4170 HE, 2.1 GHz processor, 128 GB

Memory and 25 TB storage. The functional configura-

tion for Dell server is based on the Tier 2 settings so that

both the application′s CPU executions and the data access

services are colocated in the same machine. The inter-
arrival time, 1

λApp
, for the data requests occurring inside

each cycle of user operations is assumed to follow the

exponential distribution with a mean of 2.5 seconds. The

mean service durations of computation operations when

interacting with cached files is set to 1.5 seconds also

following the exponential distribution, and the duration

of the experiments is 10 minutes. We base the parame-

ter values and the distribution patterns for service times

on the workload scenarios described in [11]. The run-

in period before the experiment begins recording results

data lasts for 2 minutes from the instant at which the

experimental run is launched. For each data point that

is presented by the graphs in the experimental scenar-

ios that were featured in our studies, the result value

was obtained from computing a running average of ten

output readings as shown in the screenshot in Figure 2.

Before the ten experimental runs for each result are con-

ducted, the input parameters are fed into both the File

Manager (which enforces the cache policies) and the User

Emulator (which generates requests for files). Reference

can be made to Table 1 for a complete list of the input

parameters that were used in setting up the practical

experiments.

Sithole et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:1 Page 6 of 24

http://www.journalofcloudcomputing.com/content/2/1/1

Figure 2 Screenshot of the input and output parameters of the experiments for cache performance analysis.

Definitions of scenarios for the experimental study

A simplification is made to Equations 1 - 4, developed in

2.1 and 2.2 so that the experimental analyses of the impact

of user runtime behavior on the local cache hits and miss

ratios can be carried out by expressing the local cache

and remote storage capacities in terms of the maximum

users that fill up the cache andmaster storage respectively.

Thus, the formula, L =
CL

SFNF
, represents the maximum

number of users that can use cache storage before capacity

misses occur, and the equation, S =
CS

SFNF
, relates to the

maximum users whose data are kept on the remote stor-

age space. Figure 3 shows the experimental setup of the

scenarios based on the use of simplified input parame-

ters for user load levels, local cache and remote storage

capacities.

Therefore, in situations where user requests for the

experiments are defined according to each user having a

unique file set for exclusive access, L becomes relevant

Sithole et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:1 Page 7 of 24

http://www.journalofcloudcomputing.com/content/2/1/1

Figure 3 Experimental setup the for cache performance studies.

to the analysis of cache performance according to the

expression,

PL =

⎧

⎨

⎩

1 if NUsers ≤ L

L

NUsers
if NUsers > L.

(5)

The cache performance analysis associated with

requests for private data is thus considered in terms of the

number of active users, NUsers, generating data requests

and the number of users, L, that fill up local cache capac-

ity. Similarly, when public data objects are requested

randomly from the list of shared data objects that are

kept in the remote storage, the respective sizes of the

local cache and remote storage affect cache performance

according to the equation,

PL =

⎧

⎪

⎨

⎪

⎩

(

L

S

)

if L < S

1 if otherwise.

(6)

It is important to reiterate that the specific definitions

for the scenarios considered in the experimental stud-

ies take into account the fact that the levels of content

availability at storage nodes in the cloud are governed by

the interplay of the principal factors considered in the

derivations of cache hit ratios, which are the data request

patterns in terms of whether they specify private or shared

data, the amounts of storage space in both the cache and

Sithole et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:1 Page 8 of 24

http://www.journalofcloudcomputing.com/content/2/1/1

remote nodes, the applied user load according to vol-

umes of data requests and file sizes associated with each

request, and the efficacy of the storage management and

cache replacement policies in keeping content that closely

matches the needs of anticipated user requests. Hence,

we define scenarios for experimental investigations to

bring out the impact the respective factors to cache per-

formance by setting the key experimental parameters as

follows:

• Scenario 1 considers Cache Performance with User

Requests accessing Private Data
• Scenario 2 considers Cache Performance with User

Requests accessing Public Data
• Within each of the two primary scenarios, three

separate studies of cache performance are conducted

based on cache optimisation policies for Random,

Popularity and Age-based File Evictions.
• The applied user load, based on the number of users

and the average file sizes per request, is uniformly

increased to levels that are beyond the assigned cache

storage, CL, and the resulting scalability patterns for

cache misses and hits are recorded for comparisons

with the theoretical ones.

Validations of cache performance trends for user
requests of private data
The arrival and service processes for the user requests

received at the local cache nodes server are assumed to

be Poisson, and in order to ensure a stable queue on the

storage node, the relationship, 1
λApp

> 1
µCPU

, must hold for

the respective magnitudes of the mean arrival and service

times. Reference can be made to the list of input param-

eters shown in Table 1 for the actual values of arrival

and service intervals. To investigate the sensitivity of the

local cache ratios to user load, the local cache and remote

storage capacities are assigned fixed values of L = 50,

and S = 400 respectively. The applied user load param-

eter, NUsers, is increased uniformly from 10 to 250 with

each active user accessing his own set of data whenever

requests are sent to the local cache.

Random eviction criterion

The pseudocode representing key functional features

of the cache optimisation program is presented in

Algorithm 1. It is important to point out that for the

purpose of providing a complete summary of the experi-

mental operations, Algorithm 1 also includes the primary

functionalities of the Load Generator and Storage Man-

ager programs. Once all start up misses have been dealt

with and the cache is space is filled up, the Random

Cache Eviction algorithm responds to any further misses

by choosing the victim files in the local cache that are

marked for deletion. The victim files are then replaced

with the requested content, which is brought from the

remote storage in order to satisfy the cache miss event.

The durations of inter-arrival and service times of the user

requests follow the exponential distribution with mean

values of 1
λApp

= 2.5 and 1
µCPU

= 1.5 seconds respectively.

The results in Figure 4 showing both the measure-

ments and theoretical trends confirm a decrease in the

cache miss ratio, PL, as the applied user load, NUsers, is

increased. Even more significant from the graphs is the

observation that the practical results track the modelled

trends very closely, with the cache performance levels of

the measurement results being higher than the theoretical

ones.

An important factor leading to better performance for

the measurement results is that the analytical models are

based on the worst-case situations, in which the consider-

ation of excess requests within each average cycle of user

requests by NUsers does not take into account the possi-

bility that some of the requests generated in the practical

scenarios would be accessing data already in the cache.

Hence because of the inability of the performance analy-

sis to quantify exactly the extent of improvement in cache

hits caused by the repeat requests that can occur within

the {NUsers − L} excess requests inside each average load

cycle, there are lower cache hit ratios for the theoretical

trends.

The use of the Random Eviction criterion in selection

of the files for deletion in the cache is another factor con-

tributing to the better cache performance achieved in the

practical measurements. Since the identities of requested

files is determined by the Load Generator according to

the probability, (1
NUsers

), and that of the files to be deleted

according to the probability, (1L), identical strategies are

thus used for the respective actions of file requests and

cache optimisation. Having such alignment in the Load

Generator and Caching Algorithm functional patterns

therefore helps improve the cache hit ratios obtained from

practical measurements. Despite the consistently lower

performance levels for the modelled cache hit ratios, the

comparisons in Figure 4 nonetheless show that the the-

oretical trends can be a reliable indicator of achievable

cache performance in practice.

Least frequently used criterion

The LFU Algorithm is structurally similar to the Random

Eviction criterion, the important difference as shown in

the program module below, being that update and sort

functions on the popularity list are performed according

to the frequencies of the requests for the cached files.

The lowest ranked file on the list is marked for deletion

and its place in the cache is taken by the newly requested

content brought into the local cache from the remote

storage.

Sithole et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:1 Page 9 of 24

http://www.journalofcloudcomputing.com/content/2/1/1

Algorithm 1 : Cache Eviction Simulator (NUsers, L, S)

1: Measurement.start ← true

Beginning program execution

2: ((|LocalCache| ← L) ∧ (|RemoteStore| ← S)) | (LocalCache � RemoteStore)

Setting the cardinalities for, Local Cache and Remote Storage

3: for j ← 1 to NUsers do

4: StorageFile[j] .Popularity ← default

Initialising file popularity parameters to default value.

5: end for

6: (ti ← t(i−1) + tw) | (Pr(tw) ← exp(λApp))

Setting the waiting time for next user request, ti

7: i ← {0 + %rand(NUsers)}

Fixing User ID associated with next request, i

8: Listen.Request[i]← StorageFile[i] .[Content]

Setting the affinity between User ID and Target File ID

Execution of File Manager upon resolving startup misses

9: while ((¬Measurement.stop) ∧ (CacheMiss.EventType¬Compulsory)) do

10: if (Request[i] .Content ∈ LocalCache) then

11: LocalCacheRequest.Total.Update

12: LocalCacheHit.Total.Update

13: else

14: LocalCacheRequest.Total.Update

15: LocalCacheMiss.Total.Update

16: m ← {0 + %rand(L)}

Local Cache position ID,m, marked for Random Deletion.

17: LocalCache.Position[m]← Request[i] .Content

18: end if

19: (CPUTime.Request[i]← tCPU) | (Pr(tCPU) ← exp(µCPU))

Setting the service time for current request

20: Request[i] .execute

21: return Request[i] .Result

22: end while

In order to perform the comparisons for cache per-

formance trends, two graphs are used in the validations:

one based on measurement results and the other on the

derived theoretical trends. The trends for the analytical

characterisations are based on capacity misses occurring

on the local cache space assuming that fully-associative

mapping policies are enforced i.e. cached objects brought

in from external nodes can reside anywhere within the

entire cache storage area, L, that is set aside for local

caching service. Apart from compulsory misses, the

impact of conflict misses on the cache performance is also

disregarded in the analysis, the assumption being that the

incidence of predictive errors of cache policies (i.e. when-

ever the algorithms evict content that should have been

retained) will have a negligibly low impact on the overall

cache ratio, PL.

1: if (Request[i] .[Content]∈ LocalCache) then

2: LocalCacheRequest.Total.Update

3: LocalCacheHit.Total.Update

4: Popularity.List.Update ← Request[i] .Content.

5: else

Sithole et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:1 Page 10 of 24

http://www.journalofcloudcomputing.com/content/2/1/1

Figure 4 Cache performance vs. applied load with random file evictions for private data.

6: LocalCacheRequest.Total.Update

7: LocalCacheMiss.Total.Update

8: Popularity.List.Update ← Request[i] .Content.

9: Popularity.Rank.Consult

10: m ← Lowest.Rank.CachePosition.Get

Local Cache Position,m, marked for deletion

according to LFU criterion.

11: LocalCache.Position[m]← Request[i] .Content

12: end if

As in Figure 4, the overall cache hit ratio trend in

Figure 5 shows a decrease according to the relation-

ship, PL = (L
NUsers

) whenever the data requirements

of user requests exceed the capacity of the local cache

space.

Measurements for scenarios based on the popularity of

cached data produce lower cache hits than in the case

of optimisation techniques that use the Random Eviction

policy. As can be seen in Figure 5, the practical values

of cache hit ratios are much nearer to the theoretical

ones than those shown in Figure 4. The reduced level

of cache performance using the popularity based crite-

ria suggests that the LFU algorithm is less efficient than

the random deletions of cached files in response to cache

misses. The performance knock resulting from the LFU

algorithm is likely accounted for by the fact that mecha-

nisms, which rank cached files by virtue of the frequencies

of previous requests are not employing the relevant strat-

egy given that the identities of requested files are in fact

specified by the Load Generator at random, based on

uniform probability of occurrence of magnitude, (1
NUsers

).

Hence, the LFU approach for ranking cached content only

produces nonexistent patterns of file popularity, which in

turn, results in reductions of cache hit events.

Sithole et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:1 Page 11 of 24

http://www.journalofcloudcomputing.com/content/2/1/1

Figure 5 Cache performance vs. applied load with LFU cache optimisation for private data.

Least recently used criterion

The LRU algorithm is based on rating cached files accord-

ing to age so that file objects that have been kept in the

local cache the longest are assigned the lowest indices of

usefulness with respect to data needs of future requests.

The oldest files are thus selected for deletion whenever

cache miss events occur and the victim files are replaced

by the newly requested content, which is transferred from

the master storage.

The trends shown in Figure 6 for the comparisons of

both the theoretical and measurement results confirm

that there is a drop in local cache ratio performance as

the load is increased beyond the local cache capacity. The

results for the LRU algorithm are almost identical to those

associated with the LFU criterion presented in Figure 5.

As load levels exceed the local capacity cache correspond-

ing to L files, the cache hit ratios track themodelled trends

very closely according to the analytical formula, PL =

(L
NUsers

).

As in the case of the LRU, the lower cache hit ratio

performance is probably an outcome of the mismatch

between the cache optimisation strategy and the patterns

associated with data requests coming onto the cache.

The age-based approach of quantifying the likelihood of

experiencing repeat requests in the future for cached files

is not a useful optimisation technique given the random

manner in which requested files are specified by users.

Thus, any apparent difference in the ages of stored files

that may be computed by the LRU provides no predictive

value on the likely patterns of future file requests, which

Sithole et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:1 Page 12 of 24

http://www.journalofcloudcomputing.com/content/2/1/1

Figure 6 Cache performance vs. applied load with LRU cache optimisation for private data.

according to Algorithm 1, are stochastic and follow a dis-

crete uniform distribution with probability, (1
NUsers

), for

each request action.

Summary of validation experiments for private data

requests

The practical measurements that were conducted using

the three cache optimisation algorithms produced results

that were closely matched to the modelled theoretical

trends. In terms of the actual cache hit ratios, the use

of the Random Cache Eviction criterion resulted in bet-

ter cache performance over the age and popularity-based

LRU and LFU policies respectively. The inefficiencies in

the LRU and LFU Cache Eviction criteria are due to the

non-existence of age and popularity-based behavioural

patterns in the requests for cached content. Since each of

the public data objects, like private content, are requested

with identical probability, the next set of validations of

cache performance models for the requests for public

data are therefore carried out on the basis that our initial

results show superiority of Random Eviction policy over

LRU and LFU by considering the scenarios involving use

of the Random Cache Eviction policy only.

Validations of cache performance trends for user
requests of public data
In conducting the practical measurements, we simplify

the cache performance models for public data requests

developed in Subsection “Cache performance analysis of

user requests for public data” by expressing the storage

Sithole et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:1 Page 13 of 24

http://www.journalofcloudcomputing.com/content/2/1/1

capacities of the local cache and external storage in terms

of L and S, which are the respective numbers of active

user requests that can fill up the storage entities. Con-

tent access patterns to the S publicly available files on the

remote storage are thus governed by the discrete uniform

distribution with the probability, 1
S , applying to each file

request. Consequently, when the requested data objects

can be specified randomly from the list of shared data

objects that are kept in the remote storage, the respec-

tive sizes of the local cache and remote storage capacities

impact on cache performance according to Equation 3.

To ensure that user requests cycle through all the S

files in the remote storage device, the duration of the

experiment runs should be sufficient to cover at least S

unique file requests from active users. If the assumption

is made that no repeat requests are generated in each

request cycle, the minimum time period for the experi-

ment should equal S
µCPU−λApp

. Hence, the duration of the

experiments for publicly hosted content can be expressed

by the equation, TExp = MS
µCPU−λApp

, whereM ≥ 1. Figure 7

shows the setup for the cache performance studies of

accesses generated inM request cycles.

Based on the setup shown in Figure 7, the derivation

and practical evaluations of cache performance emanat-

ing from scattered requests take into account that of the

S possible files that can be specified by each user request

with equal probability, 1
S , there are L files already in the

cache if compulsory misses are ignored. Hence, assum-

ing that the M request cycles are sufficient to produce a

record of data accesses to all the S files, the probability that

a requested data object is found inside the local cache is

given by equation,

P(L)|(TExp >> {
S

µCPU − λApp
}) ≈

(

L

S

)

. (7)

As an input parameter the practical validation of cache

performance trends, the applied load based on NUsers is

increased from 10 to 250 in uniform incremental steps

as shown in Figure 8. Since the LRU and LFU algorithms

proved ineffective in tracking file request patterns that are

associated with the File Generator, our use of the cache

optimisation techniques in the second practical study is

confined to the technique of RandomEviction of least use-

ful data in the cache. Figure 8 also presents three cases

of modelled cache performance based on the ratio, L
S ,

which were chosen for comparison. The theoretical per-

formance trends featured in the validations are based on

the predefined hit ratios, LS =0.25, LS =0.5, and L
S =0.75.

The results from the three scenarios confirm that in the

event of data requests predominantly going to publicly

hosted content, which all active users are free to access

the overall cache performance is independent of load

in accord with the theoretical approximation. Another

important observation from the graphs in Figure 8 is that

for the modelled cache performances of 25 and 50%, the

theoretical and measurement results are very similar, with

the practical results marginally better than the theoreti-

cal estimates in some places for cache hit ratio of 25%.

As the size of the local cache is increased to 75% of the

remote storage, the practical performance also goes even

though it stays within the 70% range. We attribute the

lower values of cache hit ratios in the measurements at

high cache capacity to a further need for calibrating the

number of user request cycles, M, that governs the dura-

tion for the measurements to capture the events so that

the impact data of the requests to all S files is accurately

reflected by practical observations. Despite the discrep-

ancies in the modelled and practical results shown in

the graphs, particularly for higher values of hit ratios,

the theoretical approximations of cache performance (in

terms the respective sizes of local cache and remote stor-

age capacities) is a reliable guide of cache performance

for file requests that are spread across publicly available

content.

Section “Performance characterisations for concurrent

accesses to private and public content” follows the the-

oretical derivations of cache performance patterns with

scenarios where mixed requests are generated simultane-

ously by users to access both public and private content.

Performance characterisations for concurrent
accesses to private and public content
The analysis of simultaneous requests patterns to public

and private data considers two cases of cache space allo-

cation, one which features separate cache partitions for

private and public data and the other involving the use

of a common cache partition that is shared by both types

of content. In both cases of cache space assignment, the

sizes of input parameters used in the performance anal-

ysis remain the same, i.e. NUsers is uniformly varied from

10 to 250, while L is equal to 50, and the remote storage

space for public data, S, is 200. The list of input and output

parameters used in the derivations of cache performance

models that are associated with the simultaneous requests

of private and public is provided in Table 2.

Data access patterns for content on separate caches

We define separate cache partitions, L1 and L2, for private

and public data respectively on the local cache storage.

The cache partitions are both equal to 50 and the respec-

tive probabilities of each active user requesting private and

public data are P1 and P2 i.e. a generated data request

either specifies personal user or publicly available con-

tent, which means P1 + P2 = 1. Figure 9 shows the setup

involving data requests going to separately allocated cache

spaces.

Sithole et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:1 Page 14 of 24

http://www.journalofcloudcomputing.com/content/2/1/1

Figure 7 Setup for validations of cache performance trends for dispersed file accesses.

We recall that the local cache hit performance, PHitL1,

on the cache partition assigned for private user content,

L1, is given by the expression:

PHitL1 =

⎧

⎨

⎩

1 if NUsers ≤ L1

L1

NUsers
if NUsers > L1.

(8)

Similarly, the local cache performance, PHitL2, on the

cache space that is set aside for hosting public content is

given by the expression,

PHitL2 =

⎧

⎪

⎨

⎪

⎩

(

L2

S2

)

if L2 < S2

1 if otherwise.

(9)

Hence, taking into account the preference weights

associated with user request patterns to both sets of

cached data, the cache hit ratio for private data accesses

becomes:

PHitPrivate =

⎧

⎪

⎨

⎪

⎩

P1 if NUsers ≤ L1
(

P1L1

NUsers

)

if NUsers > L1.
(10)

The cache hit ratio associated with requests to public

data is given by equation,

PHitPublic =

⎧

⎪

⎨

⎪

⎩

(

P2L2

S2

)

if L2 < S2

1 if otherwise.

(11)

Sithole et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:1 Page 15 of 24

http://www.journalofcloudcomputing.com/content/2/1/1

Figure 8 Comparisons of cache performance for dispersed access of content.

The overall cache hit ratio for data accesses over the

both cache partitions is then given by the expression,

PL =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

P1 +

(

P2L2

S2

)

if NUsers ≤ L1

(
P1L1

NUsers
) +

(

P2L2

S2

)

if NUsers > L1.

(12)

The overall trends for the cache hit and miss ratios asso-

ciated with the requests to both sets of hosted data are

shown in Figures 10 and 11 respectively.

As shown by both Figures 10 and 11, the Private Access

Ratios i.e. the preference weights associated with requests

to private data, P1, are varied in uniform steps of 0.1 from

0 to 1. Conversely, the access weights for public data, P2,

vary in reverse order from 1 to 0 for the featured scenar-

ios in the graphs, given that the request events to public

Table 2 Parameters for concurrent requests of private and

public data

Parameter Description

P1 Probability of Requesting Private Data

P2 Probability of Requesting Public Data

L1 Capacity of Cache Partition for Private Data (users)

L2 Capacity of Cache Partition for Public Data (users)

S1 Capacity Remote Storage Partition for Private Data (users)

S2 Capacity Remote Storage Partition for Public Data (users)

PHitPrivate Cache Ratio from the requests of Private Data

PHitPublic Cache Ratio from the requests of Private Data

PL Overall Hit Ratio on the Local Cache

Sithole et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:1 Page 16 of 24

http://www.journalofcloudcomputing.com/content/2/1/1

Figure 9 Access to public and private content on separate cache partitions.

and private content are mutually exclusive. Hence, when

Private Access Ratio is 0, the cache hit and miss trends

solely emanate from requests that are directed at public

content. It also follows that when Private Access Ratio is

equal to 1, the cache performance complete derives from

the requests for private user content. Between the two

extremes as P1 is raised gradually, the cache performance

patterns associated with private data requests become

more dominant.

It can be deduced from the equation of the overall

cache hit ratio, PL, that the assignment of separate cache

partitions provides the ability to isolate and individually

control the respective cache performance trends associ-

ated with private and public data requests. Thus, within

the boundary fixed by P1, there is the ability in the spilt

cache configuration to tune L1 and fix the cut-off point,

at which cache performance begins to fall exponentially

with increase inNUsers for requests of private data. Within

the bounds of P2, the cache capacity, L2, can similarly be

adjusted with respect to S2 to determine the average cache

performance associated with the requests of public data.

The trends for overall cache misses, ML, shown in

Figure 11 can have serious QoS implications, should there

be considerable delays associated with data retrievals from

external source storage whenever requested content is not

found in the local cache. If the respective data access

times that are experienced in the event of cache hits

are also taken in account, the tuning of cache perfor-

mance can be carried out to deliver output performance

that keeps average storage access within SLA thresholds.

With the allocation of split caches providing the flexi-

bility of enabling individual adjustments of cache sizes,

Sithole et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:1 Page 17 of 24

http://www.journalofcloudcomputing.com/content/2/1/1

Figure 10 Cache hit trends: public and private content on separate cache partitions.

performance can thus be managed in a way that discrimi-

nates between different sets of content according to their

desired QoS ratings.

Data access patterns for content on a shared cache

partition

We begin the analysis of cache performance trends for

mixed data access patterns on a shared cache partition

by assigning a value of 50 to the common cache space, L,

which is made up of L1 and L2 as the component caches

for holding the private and public data respectively. The

preference weights associated with the data request pat-

terns to L1 and L2 are P1 and P2. The remote storage

capacity for S2 is set to 200 and the parameter, NUsers,

for number of active users that generate data requests

increases uniformly from 0 to 250. Figure 12 shows the

basic setup for user requests accessing data on a shared

cache partition.

Given that the total cache space, L, is divided up

between public and data requests, we can express the

amount of space allocated to L1 as follows:

L1 =

{

P1NUsers if NUsers ≤ L

P1L if NUsers > L.
(13)

Thus, the cache space for private data is a subset of

the data requested by active users according to the pro-

portional factor which is equivalent to probability, P1,

if the number of users does not exceed L. Whenever

NUsers becomes greater than L, the average space occu-

pied by public data is P1L. Similarly, the amount of cache

Sithole et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:1 Page 18 of 24

http://www.journalofcloudcomputing.com/content/2/1/1

Figure 11 Cache miss trends: public and private content on separate cache partitions.

space, L2, that is occupied by public data is given by the

expression:

L2 =

{

(L − P1NUsers) if NUsers ≤ L

P2L if NUsers > L.
(14)

Since S2 is greater than L, the cumulative requests for

public content will inevitably fill all space (equivalent

to L − P1NUsers) that is left by public data requests if

the number of active users remains lower than L. Once

NUsers goes beyond the cache capacity, L, the storage

space is shared proportionally according to the ratios P1
and P2.

The expression for the cache performance associated

with private data requests becomes,

PHitPrivate =

⎧

⎪

⎨

⎪

⎩

P1 if NUsers ≤ L

P21L

NUsers
if NUsers > L.

(15)

For the data accesses to public content the cache trends

are given by the expression,

PHitPublic =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(L − P1NUsers)P2

S2
if NUsers ≤ L

P22L

S2
if NUsers > L.

(16)

Sithole et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:1 Page 19 of 24

http://www.journalofcloudcomputing.com/content/2/1/1

Figure 12 Access to public and private content on a shared cache partition.

From the constituent cache performance trends of the

public and private data requests, the overall cache hit ratio

is therefore given by the expression,

PL =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

P1 +
(L − P1NUsers)P2

S2
if NUsers ≤ L

P21L

NUsers
+

P22L

S2
if NUsers > L.

(17)

Figure 13 shows the overall cache hit trends on a com-

mon cache partition as the access weight, P1, that is

assigned for private data is uniformly increased from

0 to 1.

As in the case of separate cache partitions, the cache

hit ratios trends for the scenario, P1 = 0, correspond

to data requests that are going to completely public con-

tent, while that for P1 = 1, applies solely to accesses

to private content. Between these two extremes, the

cache hit ratios fall more steeply compared to the corre-

sponding scenarios considered for split caches as shown

in Figure 12. The rate of performance drops as P1 is

raised from 0.1 to 0.9 is due to limited space on L1,

which is divided up between the two sets of cached

content.

The impact of having a shared cache can be further

emphasised by Figure 14, which shows the corresponding

cache miss ratios as P1 varies between 0 and 1. Compar-

isons with Figure 10, which has the family of cache miss

Sithole et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:1 Page 20 of 24

http://www.journalofcloudcomputing.com/content/2/1/1

Figure 13 Cache hit trends: public and private content on a shared cache partition.

ratio trends for corresponding scenarios of P1, reveal that

with NUsers reaching the value of 250, the cache miss

ratios associated with the shared cache partition range

between 75 and 90% , while those for split cache con-

figuration are between 75 and 80%. The impact of the

higher cache misses on overall performance is ampli-

fied if the data access operations that are associated with

content transfers from external storage are subject to

huge delays.

The equations for cache performance trends of private

and public data requests are subject to the size of the

available space, L, in the common cache. As such it is

not possible to individually change the storage allocations

for given sets of content without affecting other cached

datasets. Hence, even though the shared cache configura-

tion is simpler to implement and is less computationally

expensive because of having all the cached datasets on a

single global list for cache optimisation, the design does

not permit flexible allocation of cache space that would

grade various sets of content according their assignedQoS

categories.

Discussion
We began the discussion by highlighting the need for

having capabilities for scalable solutions in storage cloud

domains so that infrastructure-based responses can be

achieved for maintaining performance within SLA thresh-

olds in the event of such challenges as increases in

user demand or, interruptions to the operating states

of the service entities making up the cloud resource

fabric. We went on to argue that for SLA-compliant

services to be provided consistently over a wide range

of load levels, an in-depth understanding of the per-

formance trends associated with storage cache resource

Sithole et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:1 Page 21 of 24

http://www.journalofcloudcomputing.com/content/2/1/1

Figure 14 Cachemiss trends: public and private content on a shared cache partition.

entities in the cloud infrastructure, is an important

foundation on which to base QoS-ready solutions. It was

further pointed out that from the performance char-

acterisations of storage cache entities, storage resource

management decisions on infrastructure sizing can be

made, which are relevant to important stages of resource

deployment such as initial roll-outs, short-term expan-

sions to deal with overflow requests, and permanent

upgrades.

Theoretical models were proposed for estimating per-

formance trends occurring at individual cache entities as

the levels of user demand for content increase. In order

to validate the derived theoretical trends, three suites

of experiments (based on Random, LFU and LRU evic-

tion policies) were defined for studying the sensitivity

of cache performance to applied loads. A noteworthy

observation from the results was that whenever the data

request patterns are characterised by rigid affinity to con-

tent (i.e. each user accessing only its own data) and with

the requested data objects being of comparable popularity,

the decay trends for the measured cache hits exhibit high

fidelity to the theoretical characterisations. Additionally,

the RandomCache replacement algorithmprovides better

results than the LFU and LRU algorithms, which although

still conforming to theoretical estimates, have lower levels

of cache hit ratio performance. Thus, the LFU algorithm

is more effective if there are distinct categories of data

popularity from the users generating the requests. Simi-

larly, the LRU algorithm performs better for cases where

the usefulness of cached content is indexed by age, and

thus the algorithm is not equipped deal with the even

scatter of requests over a wide range of file objects.

Sithole et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:1 Page 22 of 24

http://www.journalofcloudcomputing.com/content/2/1/1

Overall, the results for private data requests demon-

strate the potential utility of the models for estimating

the cache storage needs associated with computing sce-

narios involving enterprise application routines such as

Sales and Distribution (SD), Assembly-to-Order (ATO)

or Employee Self-Service Portal (EP-ESS), whereby user

requests work with their own sets of customer account

data [11].

Another important observation from the results was

the confirmation of the validity of trends for the second

set of cache performance models that is associated with

data requests for wide selections of files [12], where there

is loose coupling between users and public content. The

cache performance levels in such cases characterised by

dispersed requests are independent of the levels of input

user load i.e. the local cache hit ratio can be expressed

as a function of the respective ratios of the local cache

and remote storage capacities, PL = L
S . The accuracy of

performance measurements for scattered file requests is

based on setting the durations of the observation time

window for the experiments long enough to cover data

requests to the all the S files kept in the remote storage.

Additionally, the measurement results of the three cases

of predefined cache performance (corresponding to PL =

0.25, 0.50 and 0.75) show that the actual values of cache

hit ratios obtained from practical investigations are close

to the theoretical estimates. However performance from

results is slightly lower than the theoretical one when the

size of the local cache is increased to 0.75S. It therefore has

to be emphasised that the potential usefulness of second

set of characterisations in predicting cache performance

trends in scenarios where users interact with public con-

tent (to which there is unrestricted access) is subject to

durations of the observation time window.

The cache model extensions for the characterisations

of concurrent requests to private and public data were

developed in Sections “Validations of cache performance

trends for user requests of public data” and “Performance

characterisations for concurrent accesses to private and

public content”, the modelled trends derived for mixed

requests apply to scenarios of shared and separate storage

cache partitions holding the cached content.

Related research
A number of initiatives are being pursued towards matur-

ing performance management capabilities in cloud com-

puting infrastructures so that scalable, secure and reliable

IT services can be delivered to computing environments,

most of which run business-critical applications. Below,

we briefly highlight some of the work that is under-

way to develop SLA-based strategies for supporting firm

guarantees of performance delivery.

In [13], estimates of output performance based on the

levels of applied user loads and the mean service rates

at the resource entities are used and, from applying the

Laplace Stieltjes Transform, the overall response times at

each service node in the cloud infrastructure are calcu-

lated, with SLA mappings being derived from probability

distributions of the calculated response service times. The

study in [14] also features use of input parameters such

as the number of service requests from the consumers

and the service capacities offered by deployed resource

entities in developing SLA indices and, a trust model is

then obtained for performing predictive estimates of the

levels of resource and service availability in the cloud

infrastructure. The strategy for SLA enforcement that

is presented in [15] categorises workload instances that

are despatched to server entities into four basic classes

of resource consumption of the processor, memory and

disk entities, and from taking into account the service

constraints in the cloud infrastructure, the optimisation

function determines the number of VM instances of each

resource consumption class, which can be hosted by the

provider. The work that is presented in [16] features

fault tolerant and redundancy techniques for identifying

and filtering out compromised resource elements in the

infrastructure in order to ensure service availability and

continuity in the cloud. Apart from applying redundancy

strategies on the matrix-mapped resource collections, the

SLA enforcement in [16] also employs predefined perfor-

mance constraints on the constituent resource entities in

the cloud together with integer linear programmingmeth-

ods that eliminate faulty and malicious elements with the

greatest likelihood of compromising service quality.

By making high-level considerations regarding the over-

all resource capabilities in developing strategies for SLA

guarantees, the approaches described above thus treat the

runtime operations of CPU execution, memory and stor-

age data access as a single composite service functionality,

which differs from our work, whose focus is exclusively on

establishing internal cache performance trends pertaining

to storage access.

The studies in [17-19] have a similar focus to our

approach of isolating subsystems of server hardware in

order to characterise their resource consumption patterns

for SLA and QoS support, the difference being that the

strategies presented in all the three contributions consider

CPU and memory utilisations associated with processor-

bound workloads. Specifically, the strategy in [17] aims to

guarantee CPU QoS delivery by overcoming the common

problem of runtime interference effects that usually arises

when running multiple instances of applications that are

derived from virtualisation technologies. The interfer-

ences between the active VM application instances are

minimised through the control of the working set sizes of

allocated memory pages, thereby ensuring predictability

of memory fetch times, CPU utilisations and ultimately,

processor QoS support. In [18], the standardised metric,

Sithole et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:1 Page 23 of 24

http://www.journalofcloudcomputing.com/content/2/1/1

EC2 Compute Unit (ECU), developed by Amazon is used

for rating available computing power on various CPU

hardware architectures. Based on the ECUmetric, thresh-

olds margins can be defined for identifying the resource

utilisation levels, at which SLA violations are approached

and the reallocation of the CPU resources can be initi-

ated to protect SLA contracts. The framework presented

in [19] features a dynamic SLA template that is designed

to deal with changing user requirements by mapping con-

sumer requirements to existing capabilities in the cloud

infrastructure, with the focus also being on the allocation

of processor cores as the primary resource entities of user

interest.

In a related contribution on data caching mechanisms

featured in [20], models have been developed for cache

hit performance, with emphasis however being on the

performance of multilevel cache configurations based

on hierarchical and cooperative models for data sharing

across distributed environments. Another endeavour on

developing caching solutions for improve data availability

is in the form of the Tuxedo caching framework presented

in [21], which is based on the use of protocols to enhance

traditional CDN and local caching strategies and thereby

ensure that user requests for both personalised and pub-

lic content are fulfilled incurring minimum latency. While

the objectives behind Tuxedo are very similar to the moti-

vations for our work particularly as considered in Section

“Performance characterisations for concurrent accesses to

private and public content”, the approach taken in the for-

mer approach is different from ours in that the emphasis

of Tuxedo is on an architecture-based solution as opposed

to the quantitative analyses for cache performance that we

consider in this paper.

Future directions
It has been highlighted that the relative inadequacies of

LRU and LFU cache algorithms in the scenarios that were

featured in our studies, stem from the inherent bias of the

cache optimisation logic to index the usefulness of cached

content according to age and popularity respectively. It is

therefore necessary to build within our cache algorithms

the ability to capture and respond to the complexity in

the behaviours of user requests. Hence, one strand of

further work will proceed in the direction of establish-

ing and characterising the relevant dynamics affecting

the likelihood of repeat requests of cached content based

on both popularity and passage of time. A significant

part of proposed investigations on this aspect will con-

sider developing strategies for breaking down the cached

content into principal categories of popularity (such as

High, Moderate and Low popularity) and building time

profiles for the request events so that the decay of con-

tent popularity is defined as a function of time. The

proposed extension will be a further step in the study

of the heterogeneity of data access patterns, which in

our current models involves two broad classes of data

requests; private and public content requests. From the

results of this study, we intend to calibrate the cache

replacement algorithms on the basis of hybrid criteria

that employ adjustable time windows for rating content

value.

The allocation of storage cache space for accessed data

in our initial studies was simplified through the choice

of uniform file sizes. In the next phase of the study,

we will therefore also investigate approaches, by which

cached content is classified according file sizes. In work-

ing towards the overall estimates of the required cache

capacity, it will be important to investigate how to charac-

terise patterns of the variability of the range of all file sizes

grouped together within each category.

Another dimension worth exploring in the future work

is employing the utilisation of the strategy proposed in

[22] to harness the cloud infrastructure as a data gather-

ing and dissemination engine to achieve ready availability

of context information in supporting informed caching

decisions. The information collection and dissemination

technique considered in [22] is predicated on the idea

that context data exhibits predominantly temporal trends.

Hence, cache optimisation mechanisms (most likely in

the form of enhanced versions of the LRU policy) can be

developed for characterising the time-related properties

of cached items in such a way that their values are indexed

and, the eviction and retention of content can then fol-

low formal criteria. An additional aspect of scoring the

cached files would determine how to categorise the rates

of expiration of cached objects based on the frequency of

modifications to original files. Typically, the public con-

tent which becomes stale more quickly would be based

on volatile updates such as live sports news and business

feeds.

As has been highlighted in Section “Experimental facil-

ity for validations of cache performance Trends”, our

experimental scenarios employ the Tier 2 configura-

tion i.e. application executions and data fetch opera-

tions are conducted on the same physical server. In the

next phase, part of the focus will involve deployments

based on the Tier 3 setting, whose configuration is such

that application routines and data transfer operations

are handled in server entities. Based on the outcome of

the experiments conducted so far, we consider network

delays that are associated with the transfers of requested

data to be the most likely factor that can impact the

accuracy of the future experiments. Hence, an impor-

tant aspect of the work on analysing cache performance

in Tier 3 server settings will involve characterisations

of the network delays so that the time windows for

the measurement epochs are properly calibrated accord-

ing to prevailing conditions on the data transfer paths

Sithole et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:1 Page 24 of 24

http://www.journalofcloudcomputing.com/content/2/1/1

such as available bandwidth, propagation and congestion

delays. And since our current theoretical models basi-

cally apply to standalone cache configurations, the Tier 3

scenarios can also be considered in the context of more

complex caching environments based on redundant and

hybrid physical deployments. Thus, the follow up work

will study of the joint use of network management and

replica location services on our infrastructure-monitoring

framework in order to characterise service performance

profiles associated with wide-area data accesses in

cloud environments.

Competing interests

The author declare that they have no competing interests.

Author’s contributions

ES and GP designed the basic caching strategies for the experimental studies

and the combined data scenarios that were featured in the paper. SM and BS

developed the analytical models for characterising the caching scenarios that

were considered. AM developed the test cloud infrastructure and the code

that was deployed in the User Request, File Manager and Master Storage

Virtual Machines. DB and AM helped with the structure and the Introduction

of the paper. All authors read and approved the final manuscript.

Acknowledgements

The authors acknowledge support for this work from the Engineering and

Physical Sciences Research Council (Grant References EP/G051674/1 and

EP/J016748/1). Any views or opinions presented herein are those of the

authors and do not necessarily represent those of IU-ATC, their associates or

their sponsors.

Author details
1Networking and Computing Technologies Laboratory, University of Ulster at

Coleraine, Coleraine - BT52 1SA Northern Ireland, United Kingdom.. 2School of

Computing and Information Engineering, University of Ulster at Coleraine,

Coleraine - BT52 1SA Northern Ireland, United Kingdom.

Received: 11 March 2012 Accepted: 28 November 2012

Published: 10 January 2013

References

1. Oracle Inc. Oracle platform for SaaS. http://www.oracle.com/us/

technologies/saas/index.html. Accessed 12 December 2012

2. SAP Inc. On-demand solutions from SAP that fit your needs now. http://

www.sap.com/solutions/technology/cloud/index.epx

3. Varia J (2010) Amazon Web Services., Architecting for the cloud: best

practices, AWS white paper, (January 2010), pp 1–21. https://aws.amazon.

com/whitepapers/

4. VMWare Inc. (2010) Architecting a vCloud, technical white paper, version

1.0, pp 1–30. http://www.vmware.com/solutions/cloud-computing/

index.html

5. Piech M (2009) Oracle Corporation., Platform-as-a-service private cloud

with oracle fusion middleware, oracle whitepaper (October 2009),

pp 1–20. http://www.oracle.com/us/technologies/cloud/index.htm

6. VMware Inc. (2010) VMware vSphere - The best platform for building

cloud infrastructures. http://www.vmware.com

7. VMware Inc. (2009) vSphere basic system adminstartion VCenter server

4.0, (2009), pp 1–370. http://www.vmware.com

8. Rackspace Hosting, Hosting solutions for business. http://www.rackspace.

co.uk/managed-hosting/solutions-for-business/.

Accessed 12 December 2012

9. Mozy, Mozy products for business. http://mozy.co.uk/products. Accessed

12 December 2012

10. Eucalyptus Systems, Eucalyptus open source cloud computing

infrastructure - an overview, Euclayptus Whitepaper. http://www.

eucalyptus.com/. Accessed 12 December 2012

11. Alexa - Site Inforamtion. http://www.alexa.com/siteinfo.

Accessed 14 December 2012

12. Finkelstein S, Brendle R, Jacobs D, Hirsch M, Marquard U (2008) The SAP

transaction model: know your applications. In: ACM. SIGMOD. Conference

13. Xiong K, Perros H (2009) Service performance and analysis in cloud

computing. In: SERVICES ’09 proceedings of the 2009 congress on

Services - I, Los Angeles, CA, USA, July 6-10, 2009

14. Kim H, Lee H, Kim W, Kim Y (2010) A trust evaluation model for QoS

guarantee in cloud systems. Int J Grid Distributed Comput 3(1): 1–10

15. Tordsson J, Montero RS, Moreno-Vozmediano R, Llorente (2012) IM cloud

brokering mechanisms for optimized placement of virtual machines

across multiple providers. Future Generation Comput Syst 28(2): 358–367

16. Deng J, Huang SCH, Han YS, Deng JH (2010) Fault-tolerant and reliable

computation in cloud computing. In: Globecom Workshops

(GCWkshps 2010), Miami Florida (December 2010)

17. Nathuji R, Kansal A, Ghaffarkhah A (2010) Q-Clouds: managing

performance interference effects for QoS-Aware clouds. In: Proceeding

EuroSys ’10 proceedings of the 5th European conference on computer

systems, Paris, France, 13-16 April 2010

18. Goiri I, Julia F, Fito JO, Macias M, Guitart J (2010) Resource-level QoS

metric for CPU-based guarantees in cloud providers. In: GECON’10

proceedings of the 7th international conference on economics of grids,

clouds, systems, and services, Ischia, Italy, August 31, 2010

19. Maurer M, Emeakaroha VC, Brandic I, Altmann J (2012) Cost-benefit

analysis of an SLA mapping approach for defining standardized cloud

computing goods. In: GECON’10 proceedings of the 7th international

conference on economics of grids, clouds, systems, and services.

Vol.28, No.1, Jan. 2012

20. Dykes SG, Robbins KA (2001) A viability analysis of cooperative proxy

caching. In: IEEE INFOCOM, Anchorage, Alaska, USA, April 2001

21. Shi W, Shah K, Mao Y, Chaudhary V (2003) Tuxedo: a peer-to-peer caching

system. In: Intl Conf on Parallel and Distributed Processing Techniques

and Applications (PDPTA) 2003

22. Kiani SL, Anjum A, Antonopoulos N, Munir K, McClatchey R (2011)

Towards Caching in the Clouds. In: International Workshop on Intelligent

Techniques and Architectures for Autonomic Clouds (ITAAC 2011)

co-located with 4th IEEE/ACM international Conference on Utility and

Cloud Computing (UCC 2011), Melbourne, Australia, 8th December, 2011

doi:10.1186/2192-113X-2-1
Cite this article as: Sithole et al.: Cache performance models for quality of
service compliance in storage clouds. Journal of Cloud Computing: Advances,
Systems and Applications 2013 2:1.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://www.oracle.com/us/technologies/saas/index.html
http://www.oracle.com/us/technologies/saas/index.html
http://www.sap.com/solutions/technology/cloud/index.epx
http://www.sap.com/solutions/technology/cloud/index.epx
https://aws.amazon.com/whitepapers/
https://aws.amazon.com/whitepapers/
http://www.vmware.com/solutions/cloud-computing/index.html
http://www.vmware.com/solutions/cloud-computing/index.html
http://www.oracle.com/us/technologies/cloud/index.htm
http://www.vmware.com
http://www.vmware.com
http://www.rackspace.co.uk/managed-hosting/solutions-for-business/
http://www.rackspace.co.uk/managed-hosting/solutions-for-business/
http://mozy.co.uk/products
http://www.eucalyptus.com/
http://www.eucalyptus.com/
http://www.alexa.com/siteinfo

	Abstract
	Keywords

	Introduction
	Proposed strategy for QoS compliance support in storage clouds

	Derivations of cache performance models
	Cache performance analysis of user requests for private data
	Cache performance analysis of user requests for public data

	Experimental facility for validations of cache performance Trends
	Definitions of scenarios for the experimental study

	Validations of cache performance trends for user requests of private data
	Random eviction criterion
	Least frequently used criterion
	Least recently used criterion
	Summary of validation experiments for private data requests

	Validations of cache performance trends for user requests of public data
	Performance characterisations for concurrent accesses to private and public content
	Data access patterns for content on separate caches
	Data access patterns for content on a shared cache partition

	Discussion
	Related research
	Future directions
	Competing interests
	Author's contributions
	Acknowledgements
	Author details
	References

