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Abstract—A task can be preempted by several jobs of higher
priority tasks during its response time. Assuming the worst-case
memory demand for each of these jobs leads to pessimistic worst-
case response time (WCRT) estimations. Indeed, there is a big
chance that a large portion of the instructions and data associated
with the preempting task τj are still available in the cache when
τj releases its next jobs. Accounting for this observation allows
the pessimism of WCRT analysis to be significantly reduced,
which is not considered by existing work.

The four main contributions of this paper are: 1) The concept
of persistent cache blocks is introduced in the context of WCRT
analysis, which allows re-use of cache blocks to be captured,
2) A cache-persistence-aware WCRT analysis for fixed-priority
preemptive systems exploiting the PCBs to reduce the WCRT
bound, 3) An multi-set extension of the analysis that further
improves the WCRT bound, and 4) An evaluation showing that
our cache-persistence-aware WCRT analysis results in up to 10%

higher schedulability than state-of-the-art approaches.

I. INTRODUCTION

The existing gap between the processor and main memory

operating speeds necessitates the use of intermediate cache

memories to accelerate the average access time to instructions

and data required by the processor. The introduction of cache

memories in modern computing platforms causes big varia-

tions in the execution time of each instruction, depending on

whether the instruction and data it requires are already loaded

in the cache (cache hit) or not (cache miss).

Recent years have focused on analyzing the impact of

preemptions on the worst-case execution time (WCET) and

worst-case response time (WCRT) of tasks in preemptive sys-

tems. Indeed, the preempted tasks may suffer additional cache

misses if its memory blocks are evicted from the cache during

the execution of preempting tasks. These evictions cause extra

accesses to main memory, which result in additional delays in

the task execution. This extra cost is usually referred to as

cache-related preemption delays (CRPDs).

Many different approaches have been proposed to counter

the effect of preemptions. Some (e.g., [1], [2]) use non-

preemptive or limited-preemption scheduling schemes to elim-

inate or reduce the number of preemptions. Others [3]–[9] use

information about the tasks’ memory access patterns to bound

and incorporate preemption costs into the WCRT analysis.

These approaches differ in whether they consider the memory

access patterns of the preempted task [4], the preempting

tasks [3], [5], or both [5]–[9]. Regardless of this distinction,

they all still result in pessimistic WCRT bounds due to the

fact that they only consider the effect of preemptions on the

memory demand of the preempted task, but not the variation

in memory demand of the preempting tasks. Instead, they all

assume that every job of a high priority task τj preempting a

low priority task τi will ask for its maximum memory demand,

i.e., its worst-case memory demand in isolation. Although

this may be true for the first job released by the preempting

task τj , subsequent jobs of τj may re-use most of the data

and instructions that were already loaded in the cache during

the execution of its previous jobs. Analyses that exploit this

observation have been proposed for both direct-mapped [10]

and set-associative caches [11]. However, these are limited to

non-preemptive task sets under static scheduling and do not

apply to preemptive systems with commonly used priority-

based scheduling schemes.

This work addresses this issue by proposing a novel anal-

ysis that captures the re-use of cache blocks between job

executions, to reduce the negative impact of preemptions on

the WCRT bound. The approach presented in this work is

orthogonal to the state-of-the-art methods used for CRPD

calculations and can be integrated with any of these methods.

The four main contributions of the paper are as follows: 1)

We introduce the concept of persistent cache blocks (PCBs)

in the context of WCRT analysis. PCBs are cache blocks that,

once loaded into the cache by a task τi will never be evicted

when τi runs in isolation. This concept allows us to capture

the re-use of cache blocks between executions of the same task

and reduce the memory demand for subsequent jobs of a task,

making its memory demand variable, 2) A cache-persistence-

aware WCRT analysis for fixed-priority preemptive systems

that exploits the variable memory demand of preempting tasks

to reduce the WCRT bound, 3) An extension of the proposed

WCRT analysis to a multi-set approach that further improves

the WCRT bound by considering the total memory demand

of the preempting tasks over a task response time rather

than the worst-case memory demand of each independent job,

and 4) An experimental evaluation showing that our cache-

persistence-aware WCRT analysis results in upto 10% higher

schedulability than state-of-the-art approaches.

The rest of the paper is organized as follows. Section II

presents the system model, while Section III discusses the

state-of-the-art in CRPD calculation. Section IV then motivates

our approach and introduces the key concept of persistent

cache blocks. The basic cache-persistence-aware WCRT anal-

ysis is presented in Section V and is then extended to a multi-

set approach in Section VI. Section VII explains how the

inputs for our approach is obtained using static analysis, before

experimental results are presented in Section VIII. Lastly,

conclusions are drawn in Section IX.
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II. SYSTEM MODEL

This work targets single-core platforms with a single level

(L1) data/instruction cache. The cache is assumed to be direct-

mapped, which means that each memory block in the main

memory can be mapped to only one block in the cache.

We consider sporadic tasks with constrained deadlines

where each task has a fixed priority. Any priority assignment

scheme (e.g., Rate Monotonic [12]) is acceptable. We also

assume that the tasks are independent and do not suspend

themselves during their execution. A task τi is defined by a

triplet (Ci, Ti, Di), where Ci is the WCET of τi, Ti is its

minimum inter-arrival time and Di is the relative deadline of

each instance (or job) of τi. We assume that the tasks have

constrained deadlines, i.e., Di ≤ Ti. Similarly to [13], we

further decompose each task WCET into separate terms for

processing demand and memory demand, respectively. Here,

we use two terms, namely, the worst-case processing demand

Pi and the worst-case memory demand MD i. Pi denotes

the worse-case execution time of τi considering that every

memory access is a cache hit. Consequently, it only accounts

for execution requirements of the task and does not include

the time needed to fetch data and instructions from the main

memory. MD i is the worst-case memory demand of any job of

task τi, that is, it is the maximum time during which any job

of τi is performing memory operations. The values for Ci, Pi

and MD i are calculated assuming τi executes in isolation. It is

also important to note that the worst-case processing demand

and the worst-case memory demand may not necessarily be

experienced on the same execution path of τi, as a result it

holds that Ci ≤ Pi +MD i.

The WCRT of task τi is denoted by Ri and is defined as

the longest time between the arrival and the completion of

any of its jobs. A task τi is said to be schedulable if Ri ≤
Di. Similarly, a task set is schedulable if all of its tasks are

schedulable.

In this work, we consider that preemption costs only refer

to additional cache reloads due to those preemptions. Other

overheads, e.g. due to context switches, scheduler invocations

and pipeline flushes are assumed to be included in the WCET.

The worst-case reload time of a cache block is denoted by

dmem .

We define the following task sets:

• hp(i): the set of tasks with higher priority than τi.
• hep(i): the set of tasks with priorities higher than or equal

to τi.
• aff(i, j): the set of tasks with priorities higher than or equal

to the priority of τi (including τi), but strictly lower than

that of τj . This set contains the intermediate priority tasks,

which may affect the response time of τi, but may also be

preempted by τj .

III. BACKGROUND

This section discusses state-of-the-art methods in more

detail and establish the formal framework on which we later

build our analysis. As previously mentioned, when a task τi is

preempted by a higher priority task τj , it is likely that τj will

evict memory blocks of τi from the cache. On resumption, τi
might consequently have to reload cache blocks from the main

memory along with its normal memory requirements. This

CRPD caused by τj on τi is denoted by γi,j . Several methods

have been proposed in the literature to compute γi,j . In one

of the earlier works, Lee et al. [4] introduced the concept

of useful cache block (UCB), and defined it as , “a memory

block m is called a useful cache block (UCB) at program

point P , if it is cached at P and will be reused at program

point Q that may be reached from P without eviction of m”.

This definition was later improved by Altmeyer et al. [14],

however in this work we only use the basic concept provided

in [4]. Lee et al. [4] used the maximum number of UCBs

among all the tasks in aff(i, j) to upper bound the preemption

cost γi,j . Busquets et al. [3] and Tomiyama et al. [5] rather

used the notion of evicting cache block (ECB), i.e, any cache

block accessed during the execution of the task and which

can then evict the memory block cached by another task, to

upper bound the preemption cost that can be caused by each

preempting task. Other approaches by Tan and Mooney [7],

Staschulat et al. [6] and Altmeyer et al. [8] used both the

UCBs of the preempted tasks and ECBs of the preempting

tasks in order to come up with more precise bounds on the

preemption cost. Notably, the ECB and UCB-union and the

multi-set approaches presented in [8] and [9] dominate all the

existing approaches for CRPD calculation. We first detail the

ECB-union approach and then the UCB-union multi-set. The

formulations for the UCB-union and ECB-union multi-set can

be found in [9].

The ECB-union approach [8] uses the ECBs of all tasks

in hep(j) maximized over the UCBs of tasks in aff(i, j) to

calculate the preemption cost γi,j . The resulting value for the

preemption cost, denoted as γecb
i,j , is given by

γecb
i,j = dmem × max

∀k∈aff(i,j)

(

∣

∣

∣UCBk ∩
(

⋃

∀l∈hep(j)

ECB l

)∣

∣

∣

)

(1)

where dmem is the time required to reload one memory block

from the main memory to the cache, and UCBk and ECB j

are the sets of UCBs and ECBs of task τk and τj , respectively.

The preemption cost can then be accounted for in the WCRT

analysis using the following formulation:

Recb
i = Ci +

∑

∀j∈hp(i)

⌈

Recb
i

Tj

⌉

× (Cj + γecb
i,j ) (2)

When combined, the ECB and UCB-union approaches

provide a reasonably precise upper bound on the preemption

cost. However, it can also lead to over-estimations in different

situations, as shown in [9]. This is due to the fact that both

ECB and UCB-union approaches do not take into account the

actual number of preemptions of each low and intermediate

priority task. For instance, with these approaches it is assumed

that a high priority task τj can preempt any task τk ∈ aff(i, j)
the same number of times it can preempt τi. This can only be

true if τk = τi, and will lead to over-estimation in all other

cases where the cost of τj preempting τk is higher than the

preemption cost of τj on τi.
To reduce this pessimism associated to the ECB and UCB-

union approaches, Altmeyer et al. [9] proposed two new so-
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lutions, namely, the UCB-union multi-set and the ECB-union

multi-set approaches. These multi-set versions of the UCB-

union and ECB-union approaches additionally take into ac-

count the maximum number of jobs Ej(Ri)
def
=
⌈

Ri

Tj

⌉

that each

higher priority task τj can release during the response time of

τi and the number of preemptions of each low and intermediate

priority task by τj , i.e., Ej(Rk)Ek(Ri)
def
=
⌈

Rk

Tj

⌉

×
⌈

Ri

Tk

⌉

.

Under this framework, the WCRT equation becomes:

Rmul
i = Ci +

∑

∀j∈hp(i)

⌈

Rmul
i

Tj

⌉

× Cj +
∑

∀j∈hp(i)

γmul
i,j (3)

where γmul
i,j accounts for the total preemption cost that can be

caused by all jobs of τj released during the response time of

τi. We detail the UCB-union multi-set approach and refer the

reader to [9] for the ECB-union multi-set formulation. Using

the UCB-union multi-set approach γmul
i,j is upper bounded by

γucb−m
i,j defined as follows:

γucb−m
i,j = dmem ×

∣

∣Mucb
i,j ∩Mecb

i,j

∣

∣ (4)

where Mucb
i,j and Mecb

i,j are multi-sets defined as

Mucb
i,j =

⋃

∀k∈aff(i,j)





⋃

Ej(Rk)Ek(Ri)

UCBk



 (5)

and

Mecb
i,j =

⋃

Ej(Ri)

ECB j (6)

Here, Mucb
i,j is a multi-set comprising sets of UCBs of

all low and intermediate priority tasks ∈ aff(i, j) added

Ej(Rk)Ek(Ri) times, i.e., the maximum number of times τj
can preempt each τk during the response time of τi. Similarly,

Mecb
i,j is a multi-set comprising the set of ECBs of all jobs of

τj executing within the response time of τi. The final value

of the preemption cost γucb−m
i,j comes from the intersection of

both these multi-sets.

The construction of the ECB-union multi-set approach is

analogous to the UCB-union multi-set approach. Note that the

ECB-union multi-set approach dominates the ECB-union ap-

proach [8], while the UCB-union multi-set approach dominates

the UCB-union approach [7]. Yet, it is shown in [9] that the

ECB-union and UCB-union multi-set approaches are incom-

parable. For a more detailed description of the formulation of

Equations (2) to (6), the reader is referred to [9].

IV. PROBLEM DEFINITION

In this section, first we provide a basic example to affirm

the motivation behind this work. Later, using this example as

a base we provide some useful definitions that will be used in

rest of the paper.

A. Motivational Example

As presented in the previous section, the impact of a high

priority task τj on the WCRT of any lower priority task τi
can be estimated in a fairly accurate manner by analyzing

the mapping of UCBs and ECBs in the cache. However, the

Fig. 1: Schedule and cache contents for a taskset {τ1, τ2} with

C1 = 100, C2 = 400, MD1 = 60, MD2 = 80, ECB1 =
{5, 6, 7, 8, 9, 10}, ECB2 = {1, 2, 3, 4, 5, 6}, UCB1 = {6, 7},

UCB2 = {5, 6}, PCB1 = {5, 6, 7, 8, 10} and PCB2 =
{1, 2}. The schedule assumes that τ1 releases its first job with

an offset of 100 time units.

impact of τi on the memory demand of τj is ignored during

the WCRT analysis of τi. Yet, high priority tasks may often

execute more than one job during the response time of a lower

priority task. Therefore, to accurately estimate the WCRT of

a low priority task τi, one must consider the impact of the

preempted tasks on the memory demand of each job released

by the preempting tasks. In the literature, this is dealt with

by assuming that the memory demand for each job of a high

priority task τj executing within the response time of a low

priority task τi is always maximum, i.e, equal to the maximum

memory demand MDj . Following that assumption, the total

memory overhead MOi that must be accounted by τi during

its worst-case response time is upper bounded by the following

equation derived in [15].

MOi = MDi +
∑

∀j∈hp(i)

⌈

Ri

Tj

⌉

× (MDj + γi,j) (7)

There is a significant level of pessimism involved in Equa-

tion (7), as we will demonstrate using the example below.

Example 1. Consider the two tasks τ1 and τ2 (where τ1 has

a higher priority than τ2) presented in Figure 1. We assume

that the time dmem needed to access the main memory and

load a memory block to the cache is equal to 10 time units

and that the memory demand of τ1 and τ2 are MD1 = 60
and MD2 = 801, respectively. We also assume that memory

block {9} accessed by τ1 contains data that must be updated

at the beginning of the execution of each of its jobs. Figure 1

depicts a possible schedule together with the evolution of the

cache contents over time. The memory blocks that must be

loaded/reloaded from the main memory after each preemption

or resumption are shown in bold with a bigger font size in

Figure 1.

1Note that because the same cache block may be used by several memory
blocks of the same task τi, the worst-case memory demand MDi of τi may
be larger than the number of ECBs of τi multiplied by dmem.
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Initially, the cache is empty and τ2 loads all its ECBs from

the main memory as soon as it starts to execute. When τ1
preempts τ2 for the first time, it also loads all its ECBs into the

cache with a memory demand of MD1 = 60. Since there is an

overlap between the mapping of ECBs of τ1 and the mapping

of UCBs of τ2 in the cache, τ1 evicts some of the useful cache

blocks of τ2. In turn, when τ2 resumes its execution, it has to

account for γ2,1 = 2 × dmem = 20, in order to load cache

blocks {5, 6} again from main memory. However, when the

second job of τ1 preempts τ2, one can notice that it no longer

needs to reload all of its ECBs. In fact, most of the memory

blocks needed by τ1 are still in the cache. As a consequence,

τ1 must only reload memory blocks {5, 6}, which have been

evicted by τ2, as well as memory block {9} that must be

reloaded for each new job execution of τ1. The same scenario

happens for all jobs released by τ1, except the first one. The

actual memory demand for the second and third job of τ1 is

hence much less (i.e., 30) than MD1 = 60, illustrating that it

is not constant across all job executions.

In the presented example, memory blocks {5, 6, 7, 8, 10} are

called persistent cache blocks (PCBs), as they are never evicted

from the cache once loaded when τ1 executes in isolation.

In contrast, cache block {9} is a non-persistent cache block

(nPCB). nPCBs may be cache blocks that are shared by several

memory blocks of the same task, or simply data (e.g., sensor

readings, value on an input port, global shared data) that must

be reloaded before each access. One must note that PCBs and

nPCBs are different from the notions of UCBs and ECBs in

the sense that it does not matter if they are referenced more

than once during a single execution of a task. However, a PCB

must never be evicted from the cache by the task itself once

it is fetched from main memory.

The state-of-the-art does not consider PCBs while calcu-

lating the memory overhead suffered by a task τi in case

of preemptions. This results in pessimistic memory overhead

evaluations and hence pessimistic WCRT computations. This

can easily be shown using the example in Figure 1. If τ2’s

memory overhead is computed using Equation (7), one would

get:

MO2 = MD2+3×MD1+3×γ2,1 = 80+3×60+3×20 = 320

Equation (7) considers the worst-case memory demand, i.e.,

MD1 for each job of τ1 that executes during the response time

of τ2. As we have shown in Example 1, the actual memory

demand of the second and third job of τ1 is in fact much less.

Considering the PCBs of τ1 while calculating the memory

overhead MO2, the resulting value is given as:

MO2 = MD2 +MD1 + 2× (MD1 − |PCB1| × dmem)

+ 3× γ2,1

= 80 + 60 + 2× (60− 5× 10) + 3× 20 = 220

This simple example highlights the necessity to consider

PCBs when calculating the memory demand and hence the

WCRT of a task.

B. Problem Formalization

The previous example casually introduced the notions of

PCB and nPCB. We now formally define those two types of

cache blocks associated to the execution of a task τi.

Definition 1 (Persistent cache block). A memory block of a

task τi is persistent if once loaded by τi, it will never be

invalidated or evicted from the cache when τi executes in

isolation.

Definition 2 (Non-persistent cache block). A non-persistent

cache block (nPCB) of task τi is an ECB that is not a PCB.

That is, it is a memory block that may need to be reloaded at

some point during the execution of τi (in the same or different

jobs), even when τi executes in isolation.

The sets of PCBs and nPCBs associated to a task τi are

denoted by PCB i and nPCB i, respectively. It follows from

the two previous definitions that each cache block associated

to a task τi (ECB i) is either a PCB or a nPCB, hence the

following two relations:

PCB i ∪ nPCB i = ECB i (8)

PCB i ∩ nPCB i = ∅ (9)

By Definition 1, if τi executes in isolation, a PCB is loaded

only once from the main memory and hence contributes only

once to the total memory demand of τi. Even though all the

ECBs of τi (i.e., PCBs and nPCBs) contribute to its worst-case

memory demand in isolation (i.e., MD i), only the nPCBs,

a subset of ECB i, must be loaded by more than one job

of τi. Considering the worst-case memory demand for each

job released by higher priority tasks than τi when computing

the WCRT of τi, as is implicitly the case in Equations (2)

and (3), is thus pessimistic. Therefore, we define the residual

memory demand of a task τi as the worst-case memory demand

of τi assuming that all the PCBs of τi are already in the

cache memory and therefore result in cache hits when being

accessed.

Definition 3 (Residual memory demand). The residual mem-

ory demand MD
r
i of task τi is the worst-case memory demand

over all the jobs of τi when all its PCBs are already loaded

in the cache memory. Therefore, MD
r
i only accounts for the

accesses to the nPCBs of τi and can occur during any job

execution of τi.

An upper bound on the total memory demand MD i(t) of a

task τi within a time window of length t when τi executes in

isolation is proven in the following lemma.

Lemma 1. If a task τi executes in isolation, then its total

memory demand MD i(t) within a time window of length t is

upper bounded by M̂D i(t) where

M̂D i(t)
def
= min

{⌈

t

Ti

⌉

MD i ;

⌈

t

Ti

⌉

MD
r
i+ | PCB i | ×dmem

}

(10)

Proof. We prove that
⌈

t
Ti

⌉

MD i and
⌈

t
Ti

⌉

MD
r
i+ | PCB i |

×dmem are both upper bounds on the total memory demand
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MD i(t) of τi. Thus, the minimum of those bounds is also an

upper bound on MD i(t).

1) τi can release at most
⌈

t
Ti

⌉

jobs in a time window of length

t. By definition of MD i, each of these jobs has a worst-

case memory demand MD i. Therefore,
⌈

t
Ti

⌉

MD i is an

upper bound on the total memory demand of τi.
2) Recall from Equations (8) and (9) that PCB i ∪ nPCB i =

ECB i and PCB i ∩nPCB i = ∅. Characterizing the worst-

case contribution of the PCBs and nPCBs to the total

memory demand is therefore sufficient to quantify the

worst-case contribution of all the cache blocks of τi to

MD i(t). Since by Definition 1, the persistent cache blocks

must be loaded only once, the maximum contribution of the

cache blocks in PCB i to MD i(t) is | PCB i | ×dmem (i.e.,

the total number of PCBs times the worst-case memory

access time). By Definition 3, the worst-case contribution

of nPCBs to the memory demand of each job released by

τi is MD
r
i . Since a maximum of

⌈

t
Ti

⌉

jobs are released

by τi in a time window of length t, an upper bound on

the total contribution of the nPCBs to MD i(t) is given by
⌈

t
Ti

⌉

MD
r
i . Adding the contributions of nPCBs and PCBs,

we get that
⌈

t
Ti

⌉

MD
r
i+ | PCB i | ×dmem is an upper

bound on the total memory demand of τi.

Although Equation (10) provides an upper bound on the

total memory demand of τi in isolation, the total memory

demand of τi when executing concurrently with other tasks

can be much larger. Indeed, as can be observed in Example 1,

the PCBs of a task τj can be evicted due to the execution of

any task (i.e. tasks in hep(i) \ τj) between the execution of

two successive jobs of τj . This requires the effect of all tasks

in hep(i)\τj on the memory demand of τj ∈ hp(i) during the

WCRT of τi to be taken into account. We refer to this extra

memory demand caused by the eviction of PCBs of τj by

the tasks in hep(i) \ τj as cache-persistence reload overhead

(CPRO) and denote it by ρj,i. CPRO is formally defined as:

Definition 4 (Cache-persistence reload overhead). Cache-

persistence reload overhead, denoted by ρj,i, is the maximum

memory overhead of any task τj due to eviction of its PCBs

resulting from the execution of all tasks in hep(i) \ τj , while

τj is executing during the response time of τi.

V. CPRO UNION APPROACH

In this section, we present a simple approach similar to

the ECB-union to calculate the CPRO (i.e. ρj,i). We further

demonstrate how ρj,i can be incorporated in the WCRT

analysis of a task τi. Later, in Section VI, we extend this

simple union approach into a multi-set variant to remove some

of the pessimism associated with this analysis.

A. Computation of Cache-Persistence Reload Overhead

As discussed in Section IV-B, ρj,i accounts for the extra

memory demand of each job of τj ∈ hp(i) due to evictions of

its persistent cache blocks by other tasks running concurrently

on the processor.

As one can see in Figure 1, the PCBs of a task τj ∈ hp(i)
can be evicted by the ECBs of any other task running on

the platform between two successive jobs of τj . The memory

demand overhead ρi,j can thus be upper bounded by the

intersection of the set PCB j of all PCBs of τj with all

cache blocks (i.e., ECBs) that can be loaded by any other

task between two executions of τj . This observation leads to

the following theorem.

Theorem 1. The cache-persistence reload overhead imposed

by the eviction of PCBs of a job of task τj ∈ hp(i) on the

worst-case response time of a task τi is upper bounded by

ρj,i = dmem ×

∣

∣

∣

∣

PCB j ∩
(

⋃

∀τk∈hep(i)\τj

ECBk

)

∣

∣

∣

∣

(11)

Proof. Since a fixed-priority scheduling algorithm is used,

only tasks with priorities higher than or equal to the priority

of τi (i.e., tasks in hep(i)) can execute during the response

time of τi. Therefore, any task τk ∈ hep(i) \ τj can execute

between two subsequent jobs of τj and hence evict some or

all the PCBs of τj .

The worst-case memory interference of any task τk ∈
hep(i) \ τj on τj is when it reloads all its cache blocks (i.e.,

its ECBs) between two subsequent jobs of τj . Therefore, the

largest set of memory blocks loaded by tasks in hep(i) \ τj
between two jobs of τj is given by

⋃

∀τk∈hep(i)\τj

ECBk.

The set of persistent cache blocks that must be reloaded

by τj during each job execution is thus upper bounded

by the intersection between τj’s PCBs (i.e., PCB j) and
⋃

∀τk∈hep(i)\τj

ECBk.

Since each cache block reload takes at most dmem time

units, the CPRO due to the eviction of PCBs of τj by tasks

in hep(i) \ τj is upper bounded by

dmem ×

∣

∣

∣

∣

PCB j ∩
(

⋃

∀τk∈hep(i)\τj

ECBk

)

∣

∣

∣

∣

Having defined an expression to calculate ρj,i, we now

define ρj,i(t), i.e., the total cache-persistence reload overhead

on τj in a time window of length t due to the eviction of its

PCBs by tasks in hep(i)\ τj . ρj,i(t) tells us by how much the

memory demand of τj can vary in comparison to its memory

demand in isolation (i.e., MDj(t)) due to the interference

generated by the other tasks executing concurrently with τj .

Using Theorem 1, ρj,i(t) can be easily computed as stated in

Lemma 2 below.

Lemma 2. The total CPRO ρj,i(t) on the execution time of

τj due to the eviction of its PCBs by tasks in hep(i) \ τj in a

time interval of length t is upper bounded by ρ̂j,i(t) where

ρ̂j,i(t)
def
=

(⌈

t

Tj

⌉

− 1

)

× ρj,i (12)

Proof. It directly follows from the fact that τj releases at most
⌈

t
Tj

⌉

jobs in a time interval of length t. As a result, at most
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(⌈

t
Tj

⌉

− 1
)

evictions can happen between two subsequent

jobs of τj . Since by Theorem 1, the CPRO suffered by a job

of τj is upper bounded by ρj,i, the total overhead ρj,i(t) is

upper bounded by
(⌈

t
Tj

⌉

− 1
)

× ρj,i.

B. WCRT Analysis

After showing how the extra memory demand overhead

ρj,i of a high priority task τj can be computed, we now

describe how it can be integrated into the WCRT analysis

of any lower priority task τi. As mentioned in Section III, the

WCRT analysis for fixed-priority preemptive systems was first

presented in [16], [17] without considering memory overheads

due to preemptions. It was then extended in several works

(e.g., [3], [8], [9]) to account for the cache-related preemption

delays. Some of the most prominent approaches resulted in

Equations (2) and (3), previously presented in Section III.

Although these approaches are beneficial, their WCRT

analysis still rely exclusively on the WCET Cj of high priority

tasks when computing the worst-case response time of a low

priority task τi. That is, it assumes that each job of a task

τj ∈ hp(i) executing within the response time of τi asks for its

worst-case memory demand MDj . As discussed in Section IV,

this assumption is pessimistic. In fact, due to the existence of

persistent cache blocks, once τj loads all its ECBs (i.e., PCBs

and nPCBs), subsequent jobs of τj will only need to reload

nPCBs and some of the PCBs that may have been evicted

due to the execution of tasks in hep(i) \ τj . As a result, for

subsequent jobs of τj the memory demand will be significantly

lower than MDj . To exploit this variable memory demand, we

present a more elaborate formulation of the WCRT analysis.

We propose that for any task τi the WCRT of task τi is upper

bounded by the smallest positive value Ri such that

Ri = Ci +
∑

∀j∈hp(i)

(Pj(Ri) +MDj(Ri)+

ρj,i(Ri) + γi,j(Ri)) (13)

In this WCRT formulation, we separately account for the

maximum processing demand Pj(Ri) and memory demand

MDj(Ri) (in isolation) that can be claimed by each higher

priority task τj within the response time Ri of τi. The

terms ρj,i(Ri) and γi,j(Ri) denote the total cache-persistence

reload overhead due to the eviction of PCBs of τj by tasks

in hep(i) \ τj , and the total cache-related preemption delay

due to the preemptions caused by τj within the response

time of τi, respectively. The terms (Pj(Ri) + MDj(Ri))
assume values obtained in isolation, while the two last terms

(ρj,i(Ri) + γi,j(Ri)) account for the overheads introduced by

the eviction of cache blocks by other tasks sharing the cache.

As already discussed in Section III, γi,j(Ri) is upper

bounded by γmul
i,j . Furthermore, as proven in Lemmas 1 and 2,

MDj(Ri) and ρj,i(Ri) are upper bounded by Equations (10)

and (12), respectively. Finally, because each task τj releases

at most
⌈

t
Tj

⌉

jobs in a time window of length t, Pj(Ri) is

smaller than or equal to
⌈

Ri

Tj

⌉

Pj .

Replacing each term with its given bound, we get that

Ri ≤Ci +
∑

∀j∈hp(i)

⌈

Ri

Tj

⌉

Pj +
∑

∀j∈hp(i)

M̂Dj(Ri)+

∑

∀j∈hp(i)

ρ̂j,i(Ri) +
∑

∀j∈hp(i)

γmul
i,j (14)

In systems where the number of PCBs is high and the cache

interference is low, the value provided by M̂Dj(Ri)+ ρ̂j,i(Ri)

should always be smaller than
⌈

Ri

Tj

⌉

MD i, and therefore we

should often have
⌈

Ri

Tj

⌉

Pj + M̂Dj(t) + ρ̂j,i(Ri) smaller than
⌈

Ri

Tj

⌉

Cj . In this case, Equation (14) will result in a tighter

WCRT bound than Equation (3). However, in some situations,

since M̂Dj(t) and ρ̂j,i(Ri) are upper bounds and not exact

values, this formulation can result in an over-estimation of

the interference generated by τj on τi. In order to counter

this effect, and knowing that Equation (3) is already an

upper bound on the WCRT of τi, we further improve Equa-

tion (14) by always taking the minimum between
⌈

Ri

Tj

⌉

Cj

and
⌈

Ri

Tj

⌉

Pj + M̂Dj(t) + ρ̂j,i(Ri) as the total interference

caused by τj on τi (see Equation (15) below). Following

this simple modification to Equation (14), Equation (15) will

always return a value that is smaller than or equal to the

solution to Equation (3). Our approach hence dominates the

UCB union multi-set approach defined in [9].

Run
i =Ci +

∑

∀j∈hp(i)

min

{⌈

Run
i

Tj

⌉

Cj ;

⌈

Run
i

Tj

⌉

Pj+

M̂Dj(R
un
i ) + ρ̂j,i(R

un
i )
}

+
∑

∀j∈hp(i)

γmul
i,j (15)

Note that Equation (15) is recursive. However, a solution can

be found using simple fixed-point iteration on Run
i initiating

Run
i to Ci. The iteration stops as soon as Run

i does not evolve

anymore or Run
i > Di, in which case the task is deemed

unschedulable.

VI. CPRO MULTI-SET APPROACH

The formulation in Equations (11) and (12) considers the

ECBs of all tasks τk ∈ hep(i) \ τj as interfering with every

job of τj released within the response time of τi. This is

pessimistic. Indeed, considering two different tasks τk and τl
pertaining to hep(i) \ τj , the number of times τl can execute

between two successive jobs of τj is not necessarily equal to

the number of times τk can execute between two successive

jobs of τj . This situation is discussed in Example 2.

Example 2. Let τ1 = (1, 4, 4), τ2 = (4, 30, 30) and τ3 =
(10, 50, 50), where τ1 has the highest priority and τ3 the

lowest. Figure 2 presents a possible schedule that generates

the worst-case response time of τ3. As one can see, τ1
releases 5 jobs during the response time of τ3. As a result,

Equation (15) upper bounds the total cache overheads on the

PCBs of τ1 with 4 times ρ1,3. That is, it assumes that both

τ2 and τ3 execute and reload all their ECBs between every

6



Fig. 2: Illustration of the pessimism associated with Equa-

tion (12) using the task set {τ1, τ2 τ3} when τ1 and τ2 releasing

their first jobs with an offset.

two successive jobs of τ1. As can be seen in Figure 2, this

is pessimistic. In fact, τ2 execute only twice between jobs of

τ1! Its impact on the total CPRO of τ1 is therefore clearly

overestimated.

In order to reduce the pessimism associated with the com-

putation of ρj,i, we must consider the actual number of times

each task τk ∈ hep(i)\τj can execute between two successive

jobs of τj . For this reason, this section presents a multi-set

variant of Equation (12). The resulting quantity is an upper

bound on ρ̂j,i(t) denoted by ρmul
j,i (t).

A. Computation of ρmul
j,i (t)

In this section, we first characterize the maximum number

of times a task τk ∈ hep(i) \ τj can execute between two

successive jobs of τj . To do so, we separately analyze the tasks

in hep(j) \ τj (Lemma 3) and aff(i, j) (Lemma 4). We then

use this information to upper bound the total cache-persistence

reload overhead ρj,i(t) in Theorem 2.

Lemma 3. The maximum number of times a task τk ∈
hep(j) \ τj can execute between two successive jobs of τj
within the response time Ri of τi is upper bounded by Ek(Ri).

Proof. Remember that the maximum number of jobs that each

higher priority task τk can release during the response time of

a task τi is given by Ek(Ri)
def
=
⌈

Ri

Tk

⌉

. Furthermore, because

τk has a higher or equal priority than τj , τj cannot preempt τk.

Hence, the maximum number of time τk can execute between

two successive jobs of τj within a time window of length Ri

is upper bounded by its number of released jobs Ek(Ri) (see

Figure 3 for an example).

Lemma 4. The maximum number of times a task τk ∈
aff(i, j) can execute between two successive jobs of τj within

the response time Ri of τi is upper bounded by

(Ej(Rk) + 1)× Ek(Ri) (16)

Proof. Ej(Rk)
def
=
⌈

Rk

Tj

⌉

provides the maximum number of

jobs that τj can release during the response time of a task

τk. Each of these released jobs may preempt the execution

of τk. Considering an arrival pattern such that τk started to

execute just before the first arrival of τj preempting τk (see

Figure 3), the maximum number of times a job of τk may

execute between two successive jobs of τj is then given by

(Ej(Rk)+1). Since Ek(Ri) jobs of τk are released within the

response time of τi, the maximum number of times τk may

Fig. 3: Illustration of the maximum number of times the tasks

in aff(i, j) and hep(j)\τj can execute between two successive

jobs of τj . When calculating ρ2,3, τ1 ∈ hep(2)\τ2 can release

maximally 3 jobs (with each job loading all its ECBs in the

worst case). In contrast, the one job released by τ3 ∈ aff(3, 2)
can execute and load its ECBs maximum 4 times.

execute between two successive jobs of τj within the response

time of τi is upper bounded by (Ej(Rk) + 1)×Ek(Ri).

Using Lemmas 3 and 4, one can derive an upper bound on

ρj,i(t). This upper bound is denoted by ρmul
j,i (t) and is defined

in the following theorem.

Theorem 2. The total cache-persistence reload overhead

ρj,i(Ri) on τj due to the eviction of its PCBs by tasks in

hep(i)\τj during the response time Ri of τi is upper bounded

by

ρmul
j,i

def
= dmem ×

∣

∣

∣Mecb
j,i ∩Mpcb

j,i

∣

∣

∣ (17)

where Mecb
j,i and Mpcb

j,i are multi-sets defined as

Mpcb
j,i =

⋃

Ej(Ri)−1

PCB j (18)

and

Mecb
j,i = Mecb−aff

j,i ∪Mecb−hp
j,i (19)

with

Mecb−aff
j,i =

⋃

∀k∈aff(i,j)





⋃

(Ej(Rk)+1)Ek(Ri)

ECBk



 (20)

and

Mecb−hp
j,i =

⋃

∀l∈hep(j)\τj





⋃

El(Ri)

ECB l



 (21)

Proof. The proof is based on the three following facts:

1. τj releases at most
⌈

t
Tj

⌉

jobs in a time window of length t.

At most
(⌈

t
Tj

⌉

− 1
)

evictions can therefore happen between

two subsequent jobs of τj . The largest set of PCBs of τj that

can be evicted between successive jobs of τj released during

the response time of τi is therefore given by the multi-set

Mpcb
j,i =

⋃

Ej(Ri)−1

PCB j .

2. By Lemma 3, the maximum number of times a task

τl ∈ hep(j) \ τj can execute between two successive jobs

of τj during the response time of τi is upper bounded by

El(Ri). Hence, the largest set of ECBs that can be loaded by

τl and interfere with the PCBs of τj is given by
⋃

El(Ri)

ECB l

7



(assuming that τl reloads all its ECBs at each of its execution).

This results in that the largest set of ECBs loaded by the tasks

in hep(j) \ τj between successive executions of τj is upper

bounded by Mecb−hp
j,i =

⋃

∀l∈hep(j)\τj

(

⋃

El(Ri)

ECB l

)

.

3. By Lemma 4, the maximum number of times a task τk ∈
aff(i, j) can execute between two successive jobs of τj during

the response time of τi is upper bounded by (Ej(Rk) + 1)×
Ek(Ri). Hence, the largest set of ECBs that can be loaded

by τk between successive jobs of τj during the response time

of τi is given by
⋃

(Ej(Rk)+1)Ek(Ri)

ECBk (assuming that τk

reloads all its ECBs whenever it resumes its execution). This

results in that the largest set of ECBs loaded by the tasks in

aff(i, j) between successive executions of τj is upper bounded

by Mecb−aff
j,i =

⋃

∀k∈aff(i,j)

(

⋃

(Ej(Rk)+1)Ek(Ri)

ECBk

)

.

Therefore, by 2. and 3. the largest set of ECBs that can

interfere with the PCBs of τj during the response time of τi
is upper bounded by Mecb

j,i = Mecb−aff
j,i ∪Mecb−hp

j,i .

Finally, the largest set of PCBs of τj that can be evicted

by the tasks in hep(i) \ τj within the response time of τi
is upper bounded by the intersection of Mpcb

j,i with Mecb
j,i .

Since reloading a cache block takes at most dmem time units,

the total cache-persistence reload overhead ρj,i(Ri) is upper

bounded by dmem ×
∣

∣

∣
Mecb

j,i ∩Mpcb
j,i

∣

∣

∣
.

B. Improving the Accuracy of Mecb
j,i

Theorem 2 provides a good upper bound on the total cache-

persistence reload overhead ρj,i(Ri) during the response time

of τi. However, Equations (20) and (21) still consider that each

job released by the tasks τk ∈ hep(i)\τj reload all their ECBs

(i.e., PCBs and nPCBs) whenever they resume their execution.

Even though this assumption may be valid for the tasks τl ∈
hep(j) \ τj , since each of their jobs contributes only once to

Mecb
j,i (hence assuming that each job of τl accesses all its cache

blocks during its execution), it is quite pessimistic for the tasks

τk ∈ aff(i, j). Indeed, by Lemma 4 and Equation (20), each

job of a task τk ∈ aff(i, j) is assumed to contribute (Ej(Rk)+
1) times to Mecb

j,i . However, a PCB of task τk will be accessed

at most once during each job execution unless this PCB is

also a UCB (in which case it may be used at several program

points of the task). The nPCBs must always be considered

to be loaded several times during each job execution though.

Indeed, since they are not persistent, it means that several

memory blocks of τk are mapped to that same cache block,

which can therefore be accessed more than once during each

job execution.

It results from this discussion that Mecb
j,i can be more

accurately modeled by the following equation:

Mecb
j,i = Mecb−aff ′

j,i ∪Mecb−hp
j,i (22)

with

Mecb−aff ′

j,i =
⋃

∀k∈aff(i,j)









⋃

Ek(Ri)

(PCBk \UCBk)





⋃





⋃

(Ej(Rk)+1)Ek(Ri)

(

nPCBk ∪ (PCBk ∩ UCBk)
)









(23)

where (PCBk ∩ UCBk) is the set of PCBs of τk that are

also UCBs, and (nPCBk ∪ (PCBk ∩ UCBk)) is therefore

the set of ECBs that may be loaded more than once by

each job of τk. All the other ECBs (those that are not

in (nPCBk ∪ (PCBk ∩ UCBk)) and are thus in (PCBk \
UCBk) are loaded at most once per job of τk and are therefore

accounted separately in the first term of Equation (23).

C. WCRT Analysis

Using the exact same argumentation as in Section V-B, the

worst-case response time of task τi can be upper bounded by

the smallest positive value Rmul
i such that:

Rmul
i = Ci+

∑

∀j∈hp(i)

min

{⌈

Rmul
i

Tj

⌉

Cj ;

⌈

Rmul
i

Tj

⌉

Pj+

M̂Dj(R
mul
i ) + ρmul

j,i (Rmul
i )

}

+
∑

∀j∈hp(i)

γmul
i,j

(24)

It is important to note that, by construction, the WCRT

formulation of Eq. (24) using the improved variant of the

multi-set approach dominates the WCRT given by standard

multi-set approach (Eq. (15)) which in turn dominates the

simple union approach presented in Section V-A.

VII. STATIC ANALYSIS

Having presented our proposed cache-persistence-aware

WCRT analysis, we proceed by explaining how the required

input quantities, defined in Section IV-B, are obtained using

standard static analysis techniques integrated in WCET esti-

mation tools.

Static cache analysis techniques use abstract interpretation

to determine the worst-case behavior with respect to caches

for each memory reference. The outcome of such techniques

is a classification of references (e.g. always-hit when the

reference will always result in a cache hit, always-miss when

the reference will always result in a cache miss, first-miss

when all successive occurrences of a reference but the first

one will result in hits). The classification of each reference

allows to determine if a reference will never require a memory

access (always-hit) or may require an access to memory. For

the purpose of this paper, the method presented in [18] is used.

Most WCET estimation tools use IPET (Implicit Path

Enumeration Technique) for WCET calculation. IPET is based

on an Integer Linear Programming (ILP) formulation of the

WCET calculation problem [19]. This formulation reflects the

program structure and the possible execution flows using a set

of linear constraints. The WCET estimate for a task is obtained

by maximizing the following objective function:
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∑

b∈BasicBlocks

Eb × fb (25)

Eb (constant in the ILP problem) is the timing information

of basic block b. fb (variables in the ILP system, to be

instantiated by the ILP solver) correspond to the number of

times basic block b is executed.

For a task τi, quantities Pi and MD i are calculated using

IPET by setting constant Eb accordingly for all basic blocks

of τi. For the computation of Pi, only the execution time

of instructions is included in Eb, ignoring memory accesses.

Conversely, when computing MD i, only memory accesses (as

detected by static cache analysis) are included in Eb and the

execution times of instructions are ignored.

For the particular case of direct-mapped caches, determining

PCB i and ECB i is straight-forward. A memory block of task

τi belongs to PCB i if it is the only one to map to a given

cache block. ECB i is simply the set of memory blocks of task

τi. Determining UCB i is achieved using the method presented

in [4]. Finally, determining MD
r
i is very similar to MD i. IPET

is applied with an execution cost of 0 and considering memory

accesses, but in contrast to the computation of MDi, only

memory accesses for cache blocks in nPCB i are considered.

VIII. EXPERIMENTS

In this section, we evaluate the effectiveness of our proposed

approaches in comparison to state-of-the-art techniques. We

conducted different experiments by varying the task utiliza-

tions, number of tasks and the size of cache.

The different inputs previously defined in Section VII were

computed using the Heptane2 static WCET estimation tool.

Heptane produces upper bounds on the execution times of

hard real-time applications. It computes WCETs using static

analysis at the binary code level. In this paper, all experiments

were conducted on C-code compiled with gcc 4.1 with no opti-

mization for MIPS R2000/R3000. The default linker memory

layout is used, i.e. functions are represented sequentially in

memory, and unless explicitly stated, no alignment directive

is used. Without loss of generality, all instructions are assumed

to execute in 1 cycle (cache access included). Each memory

access, regardless of its source, results in a penalty of dmem =
100 cycles. By default a direct-mapped instruction cache of

size 2 KB with a line size of 32 B is considered.

We have integrated the results obtained from Heptane using

static analysis with the MRTA framework developed by Alt-

meyer et al. [15] for multi-core response time analysis. The

MRTA tool provides a compositional framework for timing

verification in multi-core systems by explicitly modeling the

interferences of the different components. We modified the

MRTA tool to account for the new task parameters introduced

in this paper. We have added a module in the MRTA frame-

work that enables the calculation of the total CPRO ρj,i(Ri)
using the multi-set approaches detailed in Section VI-B. Also,

as we only consider a single-core system, the preemption

overhead calculation and the WCRT analysis are altered

2https://team.inria.fr/alf/software/heptane/

TABLE I: Task parameters for a selection of benchmarks from

the Mälardalen Benchmark Suite [20]

Name Ci Pi MD i MD
r
i ECB i PCB i UCB i nPCB i

lcdnum 3440 984 2740 192 20 20 20 0

insertsort 7574 5974 2343 752 16 16 10 0

bs 1399 203 1223 34 11 11 9 0

bsort100 712289 710289 90893 88907 20 20 15 0

ludcmp 45135 27036 21511 11629 98 30 43 68

fdct 17350 6550 11525 11525 106 22 58 84

ud 28427 20627 10415 10415 75 53 31 22

nsichneu 316409 22009 294400 294400 1377 0 110 1377

statemate 190496 10586 180110 180110 275 0 81 275

accordingly. All the experiments were performed using the

Mälardalen benchmark suite [20].

All the experiments are performed by randomly generating

a large number of task sets and determining the schedulability

of those tasksets using Equations (2) (denoted by ECB-Union

in the plots), (3) (denoted by UCB-Union Multiset) and (24)

(denoted by CPRO). Each task within the task set is randomly

assigned parameters from the Mälardalen benchmarks. A

subset of them is shown in Table I. Note that due to space

limitations, it is not possible to show the details of all the

benchmarks in Table I.

Also it should be clear from the numbers in Table I that

the benchmark suite comprises tasks with both small and big

memory footprint (that fill the entire cache), consequently

removing any bias in the results.

With the exception of parameters defined in Table I, We

used the following other parameters in our experiments:

• The default number of tasks in each task is 10.

• Task utilizations were generated using UUnifast [21].

• Each task was randomly assigned one benchmark from

the Mälardalen benchmark suite [20] with values of Ci,

Pi, MD i, MD
r
i along with sets of UCB , ECB , PCB

and nPCB obtained from the values given in Table I.

• Task periods are set according the WCET assigned to

each task from the benchmarks and the randomly gener-

ated utilization, i.e., Ti = Ci/Ui.

• Task deadlines are implicit with priorities assigned in

deadline monotonic order.

1) Total Utilization: To evaluate how our proposed CPRO

based WCRT analysis (i.e. Eq. (24)) performs in terms of

schedulability in comparison to the ECB-union [8] and UCB-

union multi-set approaches [9], we generated 100 task set at

each utilization with task set utilizations varied from 0.1 to

1 in steps of 0.05. Each task set comprised 10 tasks, with

benchmark parameters generated for a 2kB cache with 64

cache sets. The WCRT analysis is performed for all three

approaches using the same task sets. A task set is deemed

unschedulable if the calculated WCRT for any task within the

task set is greater than its deadline.

Figure 4a shows an average number of task sets that

were schedulable using the three analyzed approaches. It is

important to note that we only show a cropped version of

the plot starting from a utilization of 0.5 mainly because for

task set utilizations less than 0.5 all approaches produced

identical results. The ECB-union approach of Altmeyer et

al. [8] performs the worst. This is mainly due to the fact
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Fig. 4: Schedulability ratio on randomly generated task sets based on the Mälardalen Benchmark

that they only use WCET (effectively the worst-case memory

demand) of tasks during the WCRT analysis along with the

CRPD cost defined by Equation (1), which is very pessimistic.

As a result, a high number of tasks tend to be unschedulable

especially at higher utilizations. However, the UCB-union

multi-set approach [9] performs better in comparison to the

ECB-union approach.

This is clearly due to the fact that the UCB-union multi-

set approach also takes into account the actual number of

preemptions of each task when calculating the CRPD. Yet,

it can be seen from the presented results that our proposed

WCRT analysis with CPRO (Eq. (24)) outperforms the other

approaches. In fact, we can have substantial gains in term

of schedulability in comparison to UCB-union multi-set ap-

proach, for example at a utilization of 0.85, we gain around

10% of schedulability.

2) Number of Tasks: In preemptive systems, the number

of tasks adversely affects the schedulability of the task set.

Increasing the number of tasks will lead to more preemptions,

resulting in increased memory overhead due to cache evictions.

We varied the number of tasks from 5 to 25 increasing 5

tasks in each step. All the parameters other than the number

of tasks have the same values as used in the previous section.

Figure 4b shows the results of our experiment. We can see that

the average schedulability (varying from 0.1 to 1 by step of

0.05) for all approaches decreases when the number of tasks

increases. Indeed, this is due to an incresing number of cache

evictions and reloads. On the other hand, we also observe

that our CPRO-based WCRT analysis performs significantly

better in comparison to the other two approaches. The average

schedulability for our approach at each point in Figure 4b is

up to 10% higher than the UCB-union multi-set and the ECB-

union approach. Consequently, this proves the robustness of

our approaches against the number of tasks.

3) Cache Size: The cache size is an important factor that

can affect the schedulability of tasks. If the cache is large

enough to accommodate all the tasks without any cache

reuse no additional memory accesses are required. In fact,

in this case all the ECBs of a task will be PCBs and will

never be evicted from the cache. Another case is when the

cache is very small and each task can fill the entire cache

during its execution. Consequently, this will result in higher

memory demand for each job of the task. To evaluate the

impact of cache size on the performance of the analyses, we

varied the number of cache sets from 32 to 512, keeping

all other task parameters constant as in the case of the

schedulability analysis described in Section VIII-1. Figure 4c

shows the resulting average schedulability for each approach

as a function of the number of cache sets. As the cache line

size is kept constant (i.e. 32 B), increasing the number of

cache sets effectively increase the cache size. We can see

that our proposed CPRO-based WCRT dominate the other

two approaches. In fact, by increasing cache size the overall

schedulability also increased from 0.76 (with 32 cache sets) to

0.81 (with 512 cache sets) with our approach. This is due to

the fact that with a bigger cache the number of PCBs for each

task will also increase (hence reducing the residual memory

demand). Whereas, for the other two approaches (consistently

with [9]) the schedulability decreases due to an increase in the

number of ECBs resulting in higher preemption overheads.

IX. CONCLUSION

This paper build upon the observation that a task can re-use

cache contents between different jobs. A method is presented

to capture these persistent cache blocks (PCBs) resulting

in variable memory demand for different jobs from a task.

The notion of cache-persistence reload overhead (CPRO) is

introduced and different approaches are presented to calcu-

late CPRO. These approaches are orthogonal to the state-

of-the-art methods used for CRPD calculation and can be

integrated with any of these methods. A WCRT analysis is

then presented that exploits this variable memory demand to

reduce the preemption cost of higher priority tasks under fixed-

priority preemptive scheduling, thereby reducing the WCRT

and improving schedulability.
We evaluated the performance of our approach against

two prominent approaches from the state-of-the-art in terms

of schedulability. Experiments were performed by varying

different parameters with most of the values taken from the

Mälardalen benchmarks. Experimental results show that our

proposed WCRT analysis with CPRO dominates the UCB-

union multi-set and the ECB-union approach with an average

improvement of 10% in terms of schedulability.
In future work, we aim to extend this approach to multi-

level set associative caches. We would like to evaluate our

10



approach against methods such as cache coloring and cache

locking. We also plan to extend our analysis to multicore

platforms.
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[10] F. Nemer, H. Cassé, P. Sainrat, and A. Awada, “Improving the worst-
case execution time accuracy by inter-task instruction cache analysis,” in
Industrial Embedded Systems, 2007. SIES’07. International Symposium
on. IEEE, 2007, pp. 25–32.

[11] F. Nemer, H. Casse, P. Sainrat, and J. Bahsoun, “Inter-task WCET
computation for a-way instruction caches,” in Industrial Embedded
Systems, 2008. SIES 2008. International Symposium on, June 2008, pp.
169–176.

[12] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” JACM, vol. 20, no. 1, pp. 46–61,
1973.

[13] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and
R. Kegley, “A predictable execution model for COTS-based embedded
systems,” in Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2011 17th IEEE, April 2011, pp. 269–279.

[14] S. Altmeyer and C. M. Burguière, “Cache-related preemption delay
via useful cache blocks: Survey and redefinition,” Journal of Systems
Architecture, vol. 57, no. 7, pp. 707–719, 2011.

[15] S. Altmeyer, R. I. Davis, L. Indrusiak, C. Maiza, V. Nelis, and J. Reineke,
“A generic and compositional framework for multicore response time
analysis,” in RTNS’15. ACM, 2015, pp. 129–138.

[16] M. Joseph and P. Pandya, “Finding response times in a real-time system,”
The Computer Journal, vol. 29, no. 5, pp. 390–395, 1986.

[17] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings,
“Applying new scheduling theory to static priority pre-emptive schedul-
ing,” Software Engineering Journal, vol. 8, no. 5, pp. 284–292, 1993.

[18] H. Theiling, C. Ferdinand, and R. Wilhelm, “Fast and precise WCET
prediction by separated cache and path analyses,” Real-Time Systems,
vol. 18, no. 2-3, pp. 157–179, 2000.

[19] Y.-T. S. Li and S. Malik, “Performance analysis of embedded software
using implicit path enumeration,” in LCTES ’95: Proceedings of the
ACM SIGPLAN 1995 workshop on Languages, compilers, & tools for
real-time systems, R. Gerber and T. Marlowe, Eds., vol. 30, no. 11, New
York, NY, USA, Nov. 1995, pp. 88–98.

[20] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The Mälardalen
WCET benchmarks: Past, present and future,” in OASIcs-OpenAccess
Series in Informatics, vol. 15. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2010.

[21] E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-
bility tests,” Real-Time Systems, vol. 30, no. 1-2, pp. 129–154, 2005.

11


