
 Open access Journal Article DOI:10.1109/TNET.2017.2783623

Cache Policies for Linear Utility Maximization — Source link

Giovanni Neglia, Damiano Carra, Pietro Michiardi

Institutions: French Institute for Research in Computer Science and Automation, University of Verona, Institut Eurécom

Published on: 01 Feb 2018 - International Conference on Computer Communications

Topics: Cache algorithms, Utility maximization problem, Cache, Cache coloring and Knapsack problem

Related papers:

 A versatile and accurate approximation for LRU cache performance

 Hierarchical Web caching systems: modeling, design and experimental results

 A Unified Approach to the Performance Analysis of Caching Systems

 FemtoCaching: Wireless Content Delivery Through Distributed Caching Helpers

 A utility optimization approach to network cache design

Share this paper:

View more about this paper here: https://typeset.io/papers/cache-policies-for-linear-utility-maximization-
2yb68xz0cb

https://typeset.io/
https://www.doi.org/10.1109/TNET.2017.2783623
https://typeset.io/papers/cache-policies-for-linear-utility-maximization-2yb68xz0cb
https://typeset.io/authors/giovanni-neglia-41fonn8st7
https://typeset.io/authors/damiano-carra-2x7h7f0w6v
https://typeset.io/authors/pietro-michiardi-3m980dm4m8
https://typeset.io/institutions/french-institute-for-research-in-computer-science-and-3k6jpcfg
https://typeset.io/institutions/university-of-verona-1weos2of
https://typeset.io/institutions/institut-eurecom-3kze8l46
https://typeset.io/conferences/international-conference-on-computer-communications-145lolxb
https://typeset.io/topics/cache-algorithms-u99b01nk
https://typeset.io/topics/utility-maximization-problem-1o0pkq92
https://typeset.io/topics/cache-1i1l9v6x
https://typeset.io/topics/cache-coloring-3bnx8t50
https://typeset.io/topics/knapsack-problem-3vu7m6ga
https://typeset.io/papers/a-versatile-and-accurate-approximation-for-lru-cache-1rf7qt4uhq
https://typeset.io/papers/hierarchical-web-caching-systems-modeling-design-and-29whmnlxld
https://typeset.io/papers/a-unified-approach-to-the-performance-analysis-of-caching-xcqiaddhk4
https://typeset.io/papers/femtocaching-wireless-content-delivery-through-distributed-24q0ms3248
https://typeset.io/papers/a-utility-optimization-approach-to-network-cache-design-vc3oyvfspz
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/cache-policies-for-linear-utility-maximization-2yb68xz0cb
https://twitter.com/intent/tweet?text=Cache%20Policies%20for%20Linear%20Utility%20Maximization&url=https://typeset.io/papers/cache-policies-for-linear-utility-maximization-2yb68xz0cb
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/cache-policies-for-linear-utility-maximization-2yb68xz0cb
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/cache-policies-for-linear-utility-maximization-2yb68xz0cb
https://typeset.io/papers/cache-policies-for-linear-utility-maximization-2yb68xz0cb

HAL Id: hal-01956319
https://hal.inria.fr/hal-01956319

Submitted on 15 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cache Policies for Linear Utility Maximization
Giovanni Neglia, Damiano Carra, Pietro Michiardi

To cite this version:
Giovanni Neglia, Damiano Carra, Pietro Michiardi. Cache Policies for Linear Utility Max-
imization. IEEE/ACM Transactions on Networking, IEEE/ACM, 2018, 26 (1), pp.302-313.
10.1109/TNET.2017.2783623. hal-01956319

https://hal.inria.fr/hal-01956319
https://hal.archives-ouvertes.fr

1

Cache Policies for Linear Utility Maximization
Giovanni Neglia∗, Damiano Carra† and Pietro Michiardi‡ ∗ Université Côte d’Azur, Inria, giovanni.neglia@inria.fr

†University of Verona, damiano.carra@univr.it §Eurecom, pietro.michiardi@eurecom.fr

Abstract—Cache policies to minimize the content retrieval
cost have been studied through competitive analysis when the
miss costs are additive and the sequence of content requests is
arbitrary. More recently, a cache utility maximization problem
has been introduced, where contents have stationary popular-
ities and utilities are strictly concave in the hit rates. This
paper bridges the two formulations, considering linear costs
and content popularities. We show that minimizing the retrieval
cost corresponds to solving an online knapsack problem, and
we propose new dynamic policies inspired by simulated an-
nealing, including DYNQLRU, a variant of QLRU. We prove
that DYNQLRUasymptotic converges to the optimum under the
characteristic time approximation. In a real scenario, popularities
vary over time and their estimation is very difficult. DYNQLRU
does not require popularity estimation, and our realistic, trace-
driven evaluation shows that it significantly outperforms state-
of-the-art policies, with up to 45% cost reduction.

I. INTRODUCTION

Cache policies have often been designed with the purpose

to maximize the hit rate, but different metrics can be mean-

ingful in different contexts: data rate to be served from the

upstream caches/servers, users’ delivery time, ISP/AS opera-

tional costs [1], [2], damage to flash memories in hierarchical

caches [3], service time from the HDD [4], etc. Performance

optimization in all these cases can be abstracted to the same

problem: given some cost ci that is paid upon a miss to retrieve

content i, minimize the sum of the retrieval costs. We provide

a few examples below

• ci = 1: minimize the cache miss rate,

• ci = si, the size of content: minimize the traffic from

upstream servers/caches,

• ci = τi, the retrieval time from the server where content

i is stored: minimize user’s retrieval time.

Our target is to design cache policies that minimize the time-

average retrieval cost, when content requests exhibit some sta-

tistical regularity. When the request process is unpredictable,

this problem has been studied under the name of File Caching

(FC) problem [5]. In this case, no algorithm can provide

absolute worst-case guarantees. Instead, there exist algorithms,

like GreedyDual-Size (GDS), with a known (and optimal)

competitive ratio, i.e. they achieve a cost at most a given

factor larger than the cost of the optimal offline algorithm that

knows the sequence of future requests. We want to go beyond

FC, because in many practical cases, some contents can be

requested more often than others during relatively long periods

of time, so that a caching algorithm can exploit such regularity

and perform much better. The Independent Reference Model

(IRM) corresponds to the extreme case where content popu-

larities are constant over time and contents requests are drawn

independently according to a given probability distribution.

A related problem has been formulated in [6], considering

the advantages from hits rather than the disadvantages from

misses. In particular the authors have defined the following

Cache Utility Maximization (CUM) problem under the IRM

and constant content size:

maximize
h1,...hN∈[0,1]

N
∑

i=1

Ui(hi), subject to

N
∑

i=1

hi = B, (1)

where B is the cache’s size, hi is the stationary hit probability

of content i and Ui(hi) is the utility associated to the hit

probability. The paper shows how to derive optimal TTL-cache

policies [7] when the functions Ui are increasing and strictly

concave. The constraint in (1) can be interpreted as an average

buffer occupancy constraint.

Our first contribution is to bridge the FC and CUM for-

mulations, by showing that the FC problem under the IRM

(our focus) corresponds to a CUM problem where the utility

functions Ui are linear and the constraint takes into account

content sizes. This linear case is then particularly important to

study, because most of the usual cache performance metrics

are additive over different misses (as shown above). Strictly

concave functions are instead of interest if fairness across

contents is an issue, because the optimization of linear utilities

can lead to performance dishomogeneity.

The second contribution is the proposal of new dynamic

policies to solve the linear utility maximization problem. We

leverage the fact that a CUM problem with linear utilities

corresponds to a Knapsack Problem (KP). Recognizing this

parallelism does not lead to a trivial algorithm, because the

optimal cache policy needs then to solve an online KP under

partial information (e.g. the catalogue is not known). We de-

sign then two new dynamic algorithms, OSA and DYNQLRU,

based on simulated annealing ideas, and we prove that they

asymptotically store the optimal set of contents under some

hypotheses. As an example of the difficulties indicated above,

convergence to the optimum does not follow immediately

from known results for simulated annealing. Indeed simulated

annealing methods work offline and can freely explore the

solution space, while in our online setting the possibility to

change the current tentative solution is limited by the request

process. Our analysis also leads to a novel characterization of

the convergence sets of simulated annealing methods in terms

of a specific potential function.

As a third contribution, we consider a realistic setting, where

popularities keep varying over time. Their estimation is a very

difficult task. In particular, we show through some numerical

examples that estimation may require a significant amount of

memory and estimation errors can jeopardize performance. For

these reasons, policies that do not require to estimate popular-

ities, like our DYNQLRU, can be more of practical interest.

2

TABLE I
CACHING POLICIES CONSIDERED IN THIS PAPER. FOR EACH OF THEM WE

INDICATE IN WHICH SECTION IT IS DESCRIBED AND IF IT REQUIRES THE

KNOWLEDGE OF CONTENT POPULARITIES.

Policy Section Needs
Popularities

LRU II No Least Recently Used.
GDS II No Greedy Dual Size. See Alg. 1

VGREEDY III Yes Value Greedy. It evicts content
i = argmax{pici}.

DGREEDY III Yes Density Greedy. It evicts con-
tent i = argmax{pici/si}.

OSA IV Yes Online Simulated Annealing. It
mimics a simulated annealing
optimization algorithm.

DYNQLRU VI No Dynamic qLRU. It evicts con-
tents as LRU. Upon a miss
it admits a content with a
time-varying content-dependent
probability q.

In order to use DYNQLRU also in this realistic non-IRM

setting, we propose a change detector that resets DYNQLRU

and restarts its exploration phase when the request process

appears to have significantly changed. A simple formula allows

us to configure the change detector.

We use request traces from Akamai content delivery net-

work to tune IRM parameters and validate our theoretical

results. Moreover, we test the performance of DYNQLRU

coupled with the change detector under the actual traces and

four different realistic retrieval costs: miss ratio, upstream

traffic, retrieval time and HDD load. DYNQLRU outperforms

other policies like LRU or GDS always but in the case of the

upstream traffic when all the policies perform equally well.

Cost reduction can be as high as 45%.

The paper is organized as follows. In Sec. II we introduce

the FC and CUM problems and other related works. We then

formalize the retrieval minimization problem in Sec. III and

prove that optimal static policies exist and they solve some

specific KPs. We discuss how some heuristics for KP lead

naturally to cache policies. Then, in Sec. IV we introduce the

policy OSA. After having shown the difficulties to estimate

popularities in Sec. V, we illustrate the policy DYNQLRU

in Sec. VI and the change detector in Sec. VII. Simulation

results both under IRM and real content request traces are in

Sec. VIII. The policies we compare in this paper are listed

in Table I and their algorithmic complexity is discussed in

Sec. IX.

II. BACKGROUND AND RELATED WORKS

Let N denote the (potentially infinite) catalogue of contents

and rL ∈ N
L a sequence of L requests for the contents. The

File Caching (FC) problem [5] is formulated as follows: given

a cache with integer size B, and files with positive integer

sizes and non-negative retrieval costs, maintain in the cache

files to minimize the total retrieval cost. We denote by si and

ci respectively the size and the cost of content i ∈ N .

Let X(n) ⊆ N denote the state of the cache at time

n, i.e. the set of the contents stored in the cache when the

n-th request arrives. A possible state x needs to satisfy an

instantaneous buffer occupancy constraint, i.e.
∑

i∈x si ≤ B.

Then, replacement-policies are required to decide which con-

tents should be evicted to make space for a new content. The

retrieval cost experienced by a cache policy π under an arrival

sequence rL when the cache has size B is

C(π,B, rL) =

L
∑

n=1

crL(n)✶(rL(n) /∈ X(n)) . (2)

It is always possible to find a specific sequence of content

requests such that any cache policy performs arbitrarily bad. It

is then standard to perform a competitive analysis [8], [9], [10].

Let πid denote the ideal optimal policy that knows in advance

the sequence of requests. A policy π is said to be f(B′, B)-
competitive if on any sequence the total retrieval cost incurred

by π with a cache of size B is at most f(B′, B) times the

cost obtained by πid with a cache of size B′ ≤ B, i.e.

max
rL

C(π,B, rL)

C(πid, B′, rL)
≤ f(B′, B), ∀L.

It is possible to prove [11] that the best possible competitive

ratio for any deterministic online algorithm (i.e. an algorithm

that does not know the future requests) is B/(B − B′ + 1).
In [12], [11] the algorithm GDS was proven to be B/(B−B′+
1)-competitive and then optimal. This algorithm will be used

later for comparison and is shown in Alg. 1. When the two

caches have the same size, i.e. B′ = B, the best competitive

ratio is simply B, that may be huge, and then of limited

interest. Nevertheless, the performance of these algorithms

degrades in practice much slower than linearly with the cache

size B.

Algorithm 1 GDS algorithm

Input: Sequence of content requests r

W ← 0
while n ≤ |r| do

i ← r(n)
if i ∈ X(n) then

H(i) ← W + ci/si
else

while
(

si +
∑

j∈X(n) sj > B
)

do ⊲ not enough

space for content i
W ← minl∈X(n) H(l)
arbitrarily select j|H(j) = W
X(n) ← X(n)− {j}

end while

X(n) ← X(n) ∪ {i}
H(i) ← W + ci/si

end if

n ← n+1

end while

Differently from replacement-policies, TTL-policies asso-

ciate a timer to each content and the content is evicted only

when the timer expires. As a consequence, TTL-caches ideally

operate with an infinite cache size and impose only an average

constraint on the buffer occupancy, that should be equal to

a given value. We denote also this value as B.1 The timer

1 A practical implementation will require a buffer only slightly larger than
B, see [6].

3

of a given content may or may not be renewed upon a hit.

TTL-policies were first proposed as a modeling tool to study

existing replacement-policies starting from the seminal work

on LRU(the policy that evicts, if needed, the least recently

used content) from Fagin [13] and Che et al. [14]. In this

paper we use the expression characteristic time approximation

to denote the possibility to approximate a replacement policy

with an opportunely tuned TTL-policy. This approach has

been shown to be very accurate [15], [16]. More recently, the

practical use of TTL-policies has been advocated because of

their flexibility [7], [6]. In particular, as we mentioned in the

introduction, [6] derives TTL-policies that can solve the CUM

problem (1) when the utility functions Ui are strictly concave.

The framework considers a finite catalogue N and requests

arriving according to the (continuous-time) IRM: the request

process is a Poisson process and a request is for content i with

probability pi (called the content popularity) independently

from previous requests.

Many papers consider cache policies minimizing specific

retrieval costs (e.g. [1], [2], [3], [4] mentioned in the intro-

duction). None of them tries to address the general problem

we target in this paper, but we rely on two results from our

previous work [4] that do not actually depend on the specific

cost considered there. There we study which set of contents

M∗ should be duplicated in the RAM in order to reduce the

expected HDD workload generated from the next request, that

we call the one-step lookahead expected cost. We prove that

M∗ is the solution of the following problem:

maximize
M⊆N

∑

i∈M

pici, subject to
∑

i∈M

si ≤ B, (3)

i.e. minimizing the expected retrieval cost is equivalent to

maximizing the objective function in (3), i.e. the utility from

storing the contents M in the cache. We formally define the

utility U of a set of contents M as

U(M) ,
∑

i∈M

pici. (4)

Problem (3) is a KP where the knapsack has capacity B and

objects have value pici and weight si. We extend this result

by showing that minimizing the one-step lookahead expected

retrieval cost (and then problem (3)) is actually equivalent

to minimizing the time-average retrieval cost. We show a

similar result when TTL-policies with average occupancy

constraints are considered as in the original CUM problem.

Our DYNQLRU, to be described in Sec. VI, can be considered

a dynamic version of the policy qi-LRU, proposed in [4],

according to which a new content i is introduced in the cache

upon a miss with a probability that depends on the ratio ci/si.
The idea to probabilistically differentiate content management

according to the ratio ci/si had already been considered in

[17], where, upon a hit, content i is moved to the front of

the queue with some probability q̃i. Under Zipf’s law for

popularities, the authors prove that the asymptotic hit ratio is

optimized when the probabilities q̃i are chosen to be inversely

proportional to document sizes.

The interactions of caches at different ASs has been investi-

gated through game theory in [2], where a stochastic potential

“à la Young” [18] (as we do in Sec. IV) is introduced to

study Nash equilibria stability. While our caching algorithms

are randomized by choice (to explore the solution space),

in [2] randomization is rather a collateral effect of noisy

popularity estimates. Moreover, [2] does not consider the non-

homogeneous dynamics rising when the noise “converges” to

zero as time goes on, whereas we do.

Finally, we observe that, once the analogy between KP

and caching is clearly identified, it may appear natural to

explore approaches like simulated annealing to design caching

policies, but, to the best of our knowledge, this was never done

before. The annealed Gibbs sampler was instead used in [19]

to jointly solve the AP channel selection problem and the users

association problem. Moreover, we are aware that there exists a

rich literature on online KP where a sequence of objects arrive

over time (see e.g. [20] and references therein), but i) it relies

on some assumptions that do not suit a caching application

(e.g. contents cannot be removed from the knapsack once

stored), and ii) the focus is on a competitive analysis as for

the FC problem.

III. RETRIEVAL COST MINIMIZATION UNDER IRM

We want to minimize the retrieval cost under the assump-

tions that i) the total cost is the sum of the retrieval costs

due to each miss (as in FC) and ii) contents have different

popularities and in particular requests follow the IRM (as in

CUM). The catalogue N is then finite with size N = |N |.
We are interested in replacement-policies and TTL-policies

that are optimal for long content request sequences. Given an

infinite request sequence r = (r(1), r(2), . . .), we denote by

⌊r⌋n its subsequence containing the first n elements. It seems

natural to define the cost of a policy π to be the time-average

retrieval cost

lim
n→∞

C(π,B, ⌊r⌋n)

n
= lim

n→∞

1

n

n
∑

k=1

cr(k)✶(r(k) /∈ X(k)) ,

(5)

but one may (rightly) wonder if the cost in (5) is well defined,

i.e. if this limit always exists. It is indeed possible to build

policies for which the average would keep oscillating. The

main results of this section are that i) TTL or replacement

policies minimizing the one-step lookahead expected cost also

minimize the time average cost defined above and ii) they

implicitly solve two related Knapsack Problems (KPs).

We first consider classic replacement-policies that sat-

isfy the instantaneous occupancy constraint. We say that a

replacement-policy π∗
rep is expected-cost optimal, if it guaran-

tees that after a finite number of requests a set of contentsM∗,

solution of problem (3), is stored in the cache almost surely

(a.s.). For example, a policy that “waits” for the contents in

a given M∗ to be requested, and then stores them forever is

expected-cost optimal, because any content is asked by a finite

time a.s. and the set M∗ is finite. We prove now that any of

such policies π∗ is optimal in the average-cost sense.2

2 To stress that the request sequence is a sequence of random variables, we
denote it by using capital letters.

4

Proposition III.1. For any replacement-policy πrep, any

expected-cost optimal policy π∗
rep, and an IRM sequence of

content requests R it holds

lim inf
n→∞

C(πrep, B, ⌊R⌋n)

n
≥ lim

n→∞

C(π∗
rep, B, ⌊R⌋n)

n
a.s.

(6)

The proof is in the supplementary material, Appendix A.

We consider now TTL-policies with an infinite buffer

size and a constraint on the average buffer occupancy, i.e.,
∑

i∈N hisi = B. A TTL-policy (πTTL) is identified by the

timers it associates to each content. The following results are

valid both if timers are renewed or not upon a hit. We want

to find the hit probabilities h∗
i that maximize the one-step

lookahead expected retrieval cost for a given request. They

are the solution of the following problem:

maximize
h1,...hN∈[0,1]

∑

i∈N

pihici, subject to
∑

i∈N

hisi = B. (7)

We denote by π∗
TTL a TTL-policy whose timers have been

selected so that the corresponding hit probability for any

content i is h∗
i and we call it an expected-cost optimal policy.

The following proposition (whose proof is in the supple-

mentary material, Appendix B) is the analogue of Prop. III.1

for the case of TTL policies.

Proposition III.2. For any TTL-policy πTTL, any expected-

cost optimal policy π∗
TTL, and an IRM sequence of content

requests R it holds

lim
n→∞

C(πTTL, B, ⌊R⌋n)

n
≥ lim

n→∞

C(π∗
TTL, B, ⌊R⌋n)

n
a.s.

(8)

We have then shown that, both under instantaneous and av-

erage buffer occupancy constraints, a policy that minimizes the

one-step lookahead expected retrieval cost, i.e. the expected

cost from the next request, also minimizes the time-average

retrieval cost. In particular, an optimal replacement-policy

stores, after some finite time, the set of contents that solves

the knapsack problem (3). An optimal TTL-policy stores each

content i in the cache a fraction h∗
i of time, where h∗

i are

solutions of problem (7). Problem (7) is an instance of the

CUM problem (1), where utilities are proportional to the hit

probabilities Ui = picihi.
3 The two problems (3) and (7) are

strongly related because (7) is the fractional knapsack problem

corresponding to a relaxation of (3).

In the rest of this paper, we focus on replacement-cache

policies. Nevertheless, the characteristic time approximation

and the fractional KP (7) will still make their appearance as

approximate solutions. Our purpose is to design expected-cost

optimal policies or good heuristics. We already mentioned

a possible implementation, if an optimal solution M∗ of

problem (3) is known: store forever the contents in M∗ as

soon as they are retrieved. This policy is not practical because

knowingM∗ would require to solve the NP-hard problem (3).

An additional difficulty is that in general the set of contents

3 Additionally, different sizes are taken into account in (7), but the CUM
framework developed in [6] can be immediately extended to consider such
case considering the same equality constraint as in (7).

and their popularities pi are not known, but we assume for the

moment that this is the case and we postpone this issue until

Sec. V.

For example we call VGREEDY a policy that keeps contents

ordered according to their expected value pici and removes

the contents with smallest values when space is needed. We

observe that, when retrieval costs are equal to 1, VGREEDY

corresponds to LFU, the policy that evicts the least frequently

used content. Instead, the policy DGREEDY is a policy that

evicts the contents with the smallest density pici/si, i.e. the

expected value per byte occupied in the cache. None of these

policies is guaranteed to converge to a global optimum as we

show in the following example.

Example 1 (DGREEDY and VGREEDY may not converge to

the optimum). Let s1 = 51, s2 = 100, s3 = s4 = 50, p1 =
0.26, p2 = 0.27, p3 = p4 = 0.235 and costs ci = 1 for

i = 1, 2, 3, 4 and B = 100. As soon as content 1 with value

0.26 is required, DGREEDY would store it and would never

evict it. Similarly, VGREEDY would get stuck with content

2 with value 0.27. The optimal policy should instead store

contents 3 and 4 with a utility U({3, 4}) = 0.47.

In the next section, we investigate if approaches based on

simulated annealing can converge to the optimal solution.

IV. A SIMULATED ANNEALING APPROACH

In this section we show a new approach based on simulated

annealing to design an optimal cache policy that implicitly

solves the KP problem (3). Simulated annealing [21] is based

on the idea of exploring in a random way the neighbourhood

of a potential solution accepting occasional changes that may

worsen the solution with a probability that decreases over time.

The application of simulated annealing to caching is, to the

best of our knowledge, new. As it will be evident from the

discussion below, convergence to the optimal solution does not

follow directly from standard results for simulated annealing

because in this online setting we do not have the possibility to

design the neighbourhood structure. The analysis is then more

involved.

A. The algorithm

We start describing our policy that we call Online Simulated

Annealing (OSA). Upon a miss for content i at time n, we

select a set v of contents potentially to be evicted to free space

for content i as follows. The set v is initially empty. We draw

at random a content j among those stored in the cache and we

put it in v. If removing the contents in v frees enough space

to store content i, we are done, otherwise we keep selecting

at random other contents from the cache (without resampling)

until this condition is not satisfied. Now, we actually evict the

contents in v to store i with probability p(i,v)

p(i,v) = min

(

1,

∑

j∈v pj

pi

)

×min
(

1, e
U({i})−U(v)

T (n)

)

(9)

where T (n) > 0 is a parameter decreasing to 0 over time and

U() is defined in Eq. (4).

5

Let X be the set of all the possible sets of contents that

can be stored at the cache, i.e. if x ∈ X , then
∑

i∈x si ≤ B.

If the state of the cache at time n is x (X(n) = x) and

the object required is i (r(n) = i), it is possible that the state

stays unchanged for example if the content i was already in the

cache, or that it changes to some other state z = y∪{i} where

x = y ∪ v , and v and then y are determined by the eviction

algorithm described above. We define the neighbourhood of

state x as all the possible states that are reachable from x as

a consequence of the following request, and we denote it by

I(x). It is evident that the policy OSA implicitly defines a

non-homogeneous Markov Chain (MC) over the set X , whose

probability transition matrices we denote by {P (n)}n∈N.

When we talk about the MC P (n) we refer instead to the

homogeneous MC that at any step use the transition probability

matrix P (n). We observe that the second term on the right

hand side of (9) is always equal to 1 if U({i}) ≥ U(v), and

then if U(z) = U(y)+U({i}) ≥ U(y)+U(v) = U(x), i.e. if

the utility of the state z is higher than the utility of the current

state x. If this is not the case, the cache can still move to the

new state with a probability exponentially decreasing in the

utility loss (0 > U({i}) − U(v) = U(z) − U(x)). Because

the parameter T (n) is decreasing over time, the probability to

move to z converges to 0 over time: the algorithm will explore

more the solution space at the beginning and will become more

and more “greedy” as time goes on.

The policy has been designed to operate as a simulated an-

nealing algorithm. While the neighbourhood and the transition

probabilities can be arbitrarily chosen in the offline simulated

annealing, here we cannot completely control them, because

they depend on the request sequence. We will come back later

to the consequences of such difference.

B. Convergence

As we discussed in Sec. III, we look for policies that

asymptotically store a set of contents M∗ that is solution of

problem (3). Note that the objective function of problem (3)

is U(M) (by definition (4)), hence we would like OSA

to asymptotically store a set of contents that is a global

maximizer of U(). The average utility (or the average retrieval

cost) achieved by OSA does not change if the cache state

keeps changing over time, but only a vanishing fraction of

time is spent in states that are not global optimizers of U().
These observations motivate us to study which states have

an asymptotical non-zero probability to be visited by the MC

{P (n)}n∈N. We call such states stochastically stable.

The following theorem IV.1 provides a sufficient condition

for the existence of a stationary distribution for the non-

homogeneous MC {P (n)}n∈N, and then shows that stochas-

tically stable sets are well defined. Moreover, the theorem

relates the stationary distribution of this non-homogeneous MC

to the stationary distributions of the sequence of homogeneous

MCs each with (constant) probability matrix P (n). Observe

that for a given n, the matrix P (n) identifies a homogeneous

finite state MC, that is irreducible and aperiodic. Indeed, given

two states x and y, y is reachable from x in at most |y|
transitions corresponding to a sequence of requests for each

of the contents in y. The chain is aperiodic because self-

transitions are possible. It follows that there exists a stationary

probability µ(n).
Let P (n, k) denote the product P (n)P (n+1) . . . P (n+k),

∆Umax the maximum absolute difference of utilities between

two neighbouring states and b the maximum number of

contents that may be stored in the cache (b depends on B
and the content sizes).

Proposition IV.1. If T (n) = ∆Umaxb/ log(n), the

non-homogeneous Markov Chain with transitions matrices

{P (n)}n∈N is strongly ergodic, i.e. it exists a probability

vector µ such that limk→∞ Px,y(n, k) = µy for all x,y ∈ X .

Moreover, µ is the limit of the stationary distributions µ(n) of

the Markov Chains P (n), i.e. limn→∞ µ(n) = µ.

The stochastically stable sets are the states y for which

µy > 0. The proof is in the supplementary material Ap-

pendix C and it follows from standard results for simulated

annealing (see e.g. [22]).

We are now ready to prove that OSA is expected-cost

optimal.

Proposition IV.2. If all the contents have the same size and

T (n) = ∆Umaxb/ log(n), the stochastically stable sets of

OSA store all and only the contents that are included in the

solution of the knapsack problem (3).

Proof. Because of Proposition IV.1, we know that asymptoti-

cally OSA will store in the cache a set of contents correspond-

ing to a stochastically stable state of the non-homogeneous

MC {P (n)}. In order to prove the thesis we can simply show

that all the stochastically stable states are global maximizers

of the optimization problem considered, and then only the

states with maximum utility (or equivalently minimum cost)

have a positive probability to be selected by the algorithm

asymptotically.

We observe that, when all the contents have the same size

(say it equal to 1), the policy evicts a single element, say it

j, to make space for a new content i. Let x = y ∪ {j} and

z = y ∪ {i} be two neighbouring states. If X(n) = x, the

system moves to state z if 1) i is requested, 2) j is selected

for eviction and 3) the replacement is actually accepted. The

corresponding probability is then:

Px,z(n) = pi ×
1

B
×min

(

1,
pj
pi

)

×min
(

1, e
U({i})−U(v)

T (n)

)

.

It can be easily checked that each homogeneous MC P (n)
is reversible, because the probability distribution

µx(n) =
e−

U(x)
T (n)

∑

y∈X e−
U(x)
T (n)

(10)

satisfies the detailed balance equation µx(n)Px,z(n) =
µz(n)Px,z(n). The probability distribution in (10) is then the

stationary distribution of the MC P (n). Because of Proposi-

tion IV.1 µx = limn→∞ µx(n) and it is easy to verify that

limn→∞ µx(n) = 0 if x is not a global maximizer. The thesis

follows.

6

This optimality result has not much practical interest, be-

cause when all the contents have the same size, problem (3)

can be solved in linear time. Unfortunately, it is not possible

to extend this proof to the case when contents do not have

the same size. The difficulty rises from the fact that the

neighbourhood set is not symmetric, i.e. z ∈ I(x) does

not imply x ∈ I(z). For example, if introducing object i
requires to evict two objects from the cache, then it will not

be possible to go back from z to x with a single transition.

As a consequence the MC cannot be made reversible.

A few convergence results are known for simulated an-

nealing in the non-reversible case. In [23] convergence to

the optimum is proven under a weak reversibility condition.

Weak reversibility requires that for any pair of states x and

y, if there is a path from x to y (i.e. a sequence of states

x = x1,x2, . . .xp = y such that for each n = 1, . . . p − 1,

xn+1 ∈ I(xn)) along which the utility does not go below a

level L, then there is a path from y to x for which this is also

true. Unfortunately this is not the case in our problem, as the

following example shows.

Example 2 (Weak reversibility does not hold). Let s1 = s2 =
1 and s3 = 2, p1c1 = p2c2 = 4, p3c3 = 7, B = 2. Consider

the two states x = {1, 2} and y = {3}. The only way to

move from x to y is directly (y ∈ I(x)), once a request for

3 occurs. Along this path the utility decreases from U(x) = 8
to U(y) = 7. There are two possible ways to move from y to

x, corresponding to two requests for contents 1 and 2. In both

cases, the system passes through an intermediate state z with

utility U(z) = 4 < 7.

A generalization of the weak reversibility condition is in

[24], but the condition for convergence to the global maxi-

mum is implicit, because it requires to run an algorithm on

the matrix embedding all the possible transitions, produce a

specific set of states and check that this is a subset of the set of

optimal solutions. The approach is computationally infeasible

in our problem. Moreover, the same author doubts that the

condition he found can be satisfied “without some form of

reversibility.”

In what follows we provide an alternative characterization of

the states to which our algorithm converges. To the best of our

knowledge, this result was never observed in the simulated an-

nealing community. We prove that the stochastically stable sets

are the global minimizers of a potential function V (x), that is

defined below. Our analysis follows the regular perturbation

approach made popular by Young to study the stochastically

stable equilibria in games with trembling hands [18]. Using

this new characterization, we will be able to show that OSA

does not converge in general to the optimum. The reader who

is not interested in the characterization may skip what follows

and start reading again from Sec. IV-C.

Let ǫ denote e−1/T (n) and P (ǫ) be the extension of P (n)
obtained by replacing e−1/T (n) by ǫ. Observe that P (ǫ) is

continuous in 0, i.e.. limǫ→0 P (ǫ) = limn→∞ P (n) = P (0).
Moreover, for each pair x, y, such that Px,y(ǫ) > 0, there

exists a non negative real number wx,y such that 0 <
limǫ→0 Px,y(ǫ)/ǫ

wx,y < ∞. Under these properties P (ǫ) is

called a regular perturbation of P (0) [25].

In our setting wx,y is equal to

wx,y =

{

0 if U(y) ≥ U(x)

U(x)− U(y) otherwise.

It is called the resistance of the system to move from x to

y. There is no resistance if the state y has larger utility.

Otherwise, the resistance is equal to the immediate loss of

utility. Let G be the graph corresponding to the possible

transitions of P (ǫ) for ǫ > 0, whose links have weight equal

to the corresponding resistance of the transition. The graph G
for Example 1 is in Fig. 1.

1	 2	

3	 4	

3,4	

0.01	

0
.0
3
5
	

2	

3,4	

G G0

a)

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

10
0

10
1

10
2

10
3

obj 3 and 4

obj 2

obj 1

obj 3 or 4

b)

U
ti

li
ty

Number of requests

OSA
VGreedy
DGreedy

Fig. 1. Example 1: a) Resistance graphs to calculate the potentials (dashed
lines indicates transitions with null resistance), b) Utility over time for
different policies.

We say that x is a local maximizer of the function U()
(with respect to the neighborhood relation defined above), if

U(x) ≥ U(z) for all z ∈ I(x).
In the limit for ǫ → 0, only the transitions with null

resistance are possible, and these are the transitions possible in

the matrix P (0). The recurrent communicating classes of P (0)
are the local maximizers of the function U(). More precisely,

the recurrent communicating classes contain only the local

maximizers. Let B(x) be the recurrent communicating class

containing the local maximizer x. If all the states y ∈ I(x)
have smaller utility than z, then B(x) = {x}, i.e. the class

reduces to the single point x. Instead, if there is a state

z ∈ I(x) such that U(z) = U(x), then B(x) = B(z), i.e.

both states belong to the same class.

We are going to prove that the limǫ→0 µ(ǫ) exists and

it is obviously equal to µ. Only the states in the recurrent

communicating classes can be stochastically stable, but not

all of them are so. We introduce a new directed graph G′,
whose nodes are the recurrent communicating classes of P (0),
denoted by B1,B2, . . .Bl. The graph is full meshed and the

link from Ba to Bb has weight equal to the resistance of

the minimum-resistance path between any state x ∈ Ba and

y ∈ Bb in the graph G.4 We denote such weight as wBa,Bb
.

Fig. 1, also shows the graph G′ for Example 1, using two

particular states to identify the corresponding communicating

classes. Given a class Ba we define its potential V (Ba) to

be the resistance of the minimum-resistance spanning tree in

G′, where from any node there is a path to Ba. The potential

4 The resistance of a path is defined as the sum of the resistances of each
link in the path. It is immediate to check that the resistance of the minimum-
resistance path does not depend on the specific states x and y chosen in the
two classes.

7

V (Ba) can be considered as a global measure of the difficulty

to reach a state in Ba from the other classes. With some abuse

of notation we can define the stochastic potential of a local

maximizer x of U() to be the potential of the class it belongs

to, i.e. V (x) = V (B(x)). The interpretation is the same: states

with lower potential are easier to reach. The following result

formalizes this intuition and is an immediate consequence

of [25, Chapter 3, Theorem 3.1].

Proposition IV.3. A cache state x is stochastically stable

(µx > 0) if and only if x is a global minimizer for V ().

A consequence of the discussion above is that all the nodes

of G′ correspond to local maximizers of U(), and then only

the local maximizers of U() may be stochastically stable (as

it was intuitively expected). More importantly, the proposition

indicates which of these local maximizers the policy OSA will

converge to.

In Example 1, potentials are V ({3, 4}) = 0.035 and

V ({2}) = 0.2. The state {3, 4} is the unique global minimizer

for the function V (), and by Prop. IV.3 is the only stochasti-

cally stable cache state for OSA. In this case OSA converges

to state {3, 4} that is the optimal solution of problem (3).

Figures 1 shows caches dynamics over time in terms of the

utility of the current states for VGREEDY, DGREEDY and

OSA and confirms that they respectively converge to the states

{2}, {1} and {3, 4} (we simulated 108 request, but there is

no change after the first hundred requests).

Unfortunately the following example shows that OSA does

not always converge to the optimum.

Example 3 (Convergence to the optimum may fail). Let s1 =
s2 = 1 and s3 = 2, p1c1 = p2c2 = 4, p3c3 = 7, B = 2.

The system has four possible states: x = {1, 2}, y = {3},
z1 = {1}, z2 = {2}. Among those states, only x and y are

points of local maximum of U() and x is the point of global

maximum. Resistances have the following values: wx,y = 1,

wy,x = 3. It follows that there is a unique minimum-resistance

spanning tree in G′ and it is routed in y. OSA converges to

y and not to the point of global maximum.

It is definitely interesting to study under which conditions

(if any) the minimum-resistance spanning trees are rooted at

global maximizers of U() and then optimality of OSA follows.

For example, we expect it to be the case under the conditions

identified in [23], [24] and we hope that our characterization

may allow us to further extend such conditions. Moreover,

even when the convergence to the optimum cannot be guar-

anteed, if the difference between the utility of the global

minimizers of V () and the maximum utility can be bounded,

then it is possible to guarantee approximation factors for OSA.

We leave this investigation for future research and we move

now to more practical considerations for our original problem.

C. Quasi Weak Reversibility

Although our system is not weakly reversible in general, in

typical scenarios we expect its dynamics to be close to those

of a weakly reversible system and then in particular we expect

OSA to converge to the global optimum of the problem or to

a close point.

Our support to the previous claim originates from the

success of the characteristic time approximation discussed in

Sec. II. If we consider a TTL-policy mimicking OSA (as

it has been done successfully for LRU, FIFO, RANDOM,

QLRU. . . , see e.g. [16]), then the corresponding system is

weakly reversible. This follows immediately from the fact that

for any path from x to y, e.g. x = x1,x2, . . .xp = y with

xn+1 ∈ I(xn) for n = 1, . . . p − 1, the reverted sequence of

states is now a possible path from y to x.

V. INTERLUDE: ESTIMATION OF CONTENT POPULARITY

All the policies described in Sections III and IV require to

know content popularities pi. A possibility is to let the poli-

cies unchanged, but replace popularities with their estimates.

Unfortunately, making timely estimates of varying content

popularity is a difficult task. Classic approaches essentially

use compact data structures to perform autoregressive moving

averages of the current number or requests for each con-

tent [26]. Results are far from being satisfactory and popularity

estimation is still an open research topic itself (see for example

the recent papers [27], [28]). This is one of the reasons for

which simple policies like LRU are a de facto standard, even

when content sizes are uniform and the key performance

metric is the hit ratio.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 1 2 3 4 5 6 7 8 9 10

M
is

s
ra

ti
o

Number of requests (x 10
8
)

Memory: 1M objs

Memory: 100k objs

Memory: 50k objs

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 1 2 3 4 5 6 7 8 9 10
M

is
s

ra
ti

o

Number of requests (x 10
8
)

Memory: 1M objs

Memory: 100k objs

Memory: 50k objs

Fig. 2. Miss ratio over time for the DGREEDY (left) and the OSA (right)
policies with estimated popularity: impact of the number of objects for which
we maintain popularity estimates.

Here, we show that popularity estimation can be tricky even

under the simple IRM. In such case, the asymptotically optimal

estimator for the content request rate is simply the total number

of requests divided by the observation period. If the memory

available for estimation is of the order of the catalogue size

(Θ(N)), then it is possible to track the popularity of each

content and, after some time, the estimates are precise enough

for the policies to run as in the exact-knowledge case. If

memory is more limited, then performance rapidly degrades.

For example Fig. 2 shows the performance of DGREEDY and

OSA under IRM (details in Sec. VIII) when the popularities

of the W most recently requested contents are tracked. The

values of W considered correspond roughly to 2, 4 and 40
times the average number of objects stored in the cache (the

catalogue has 110 millions objects). A similar observation for

the case when Bloom counting filters are used is in [29]: the

counting error floor (due to false positives) does not allow to

evaluate correctly the popularity but for the most popular m
contents, where m is the number of counters used.

8

Given the difficulty to estimate content popularities, we

would like to design a policy that does not rely on popularity

estimation, but can still asymptotically store the optimal set

of contents. The next section shows that this goal is feasible.

VI. HOW TO AVOID POPULARITY ESTIMATION: DYNQLRU

The new policy we propose here is a variant of QLRU

including the dynamics of OSA. This policy, that we call

DYNQLRU is almost as simple to implement as QLRU, but

inherits the convergence properties of OSA, without the need

to explicitly estimate online popularities. DYNQLRU works

as follows. Contents are stored in a queue ordered from the

most recently requested to the least recently requested object.

It is more convenient in this case to consider the cache state

to be this sequence. With some abuse of notation, we will still

write i ∈ X(n) to indicate that content i is stored in the cache

at the time of the n-th request. If the n-th request generates a

miss, the content, say i, is retrieved and inserted at the head

of the queue with probability

q(n, i) =
1

n
αdmin

si
ci

, (11)

where α > 0 is an adimensional parameter and dmin =
mini∈N ci/si is the minimum density across all the cata-

logue.5 If space is needed to store the new content, objects

are removed from the tail. Upon a hit, the content is served

and moved to the front of the queue.

We observe that the policy qi-LRU proposed in [4] stores

a content in the cache upon a miss with probability qi =

exp
(

−β si
ci

)

(in that paper ci is the content retrieval time from

the HDD). DYNQLRU can be considered as a version of qi-
LRU where the parameter β changes over time according to

β(n) = ln(n)αdmin.

As for OSA, X(n) can be modeled as a non-homogeneous

MC with transition probability matrices {P (n)}n∈N. The

following proposition (whose proof is in the supplementary

material, Appendix D) corresponds to Prop. IV.1 for OSA,

even if the proof does not follow exactly the same steps.

Proposition VI.1. If α ≤ 1/b, the non-homogeneous Markov

Chain with transitions matrices {P (n)}n∈N is (strongly)

ergodic, i.e. it exists a probability vector µ such that

limk→∞ Px,y(n, k) = µy for all x,y ∈ X . Moreover, µ is

the limit of the stationary distributions of the Markov Chains

P (n), i.e. limn→∞ µ(n) = µ.

Now, as in Sec. IV, we should characterize the stochastically

stable states of the MC. The following result shows that

under the characteristic time approximation, DYNQLRU with

α ≤ 1/b converges to the solution of the fractional knapsack

problem (7).

Proposition VI.2. Under the characteristic time approxi-

mation, when α ≤ 1/b, the stochastically stable sets of

DYNQLRU store all and only the contents that are included

in the solution of the fractional knapsack problem (7).

5 In a practical implementation, it can simply be replaced by the minimum
density value seen until now.

The proof is in the supplementary material, Appendix E.

This result corresponds to the optimality result for OSA in

Prop. IV.2.

VII. LEARNING IN A NON-STATIONARY SETTING

In the discussion above we considered a stationary content

request process. Here we discuss how the policies can be

adapted in a setting where content popularities vary over time.

Policies like LRU or GDS are intrinsically robust to such

changes. For the policies that require to know popularities, like

DGREEDY, VGREEDY and OSA, the most natural approach

is to keep dynamic estimates of popularities, for example

using moving-average or autoregressive filters. This approach

requires to tune the filters by estimating the timescale over

which popularities may be considered constant. Moreover, the

simulated annealing approaches OSA and DYNQLRU explore

the solution space less and less over time. The risk is to

maintain stale cache states. A standard approach is to stop

decreasing the parameters T (n) or q(n, i) when they reach a

given (small) positive value, in order that some exploration is

still possible. But in this case we lose the advantage of the fast

initial exploration phase. Moreover, the final value has to be

carefully selected for the policy to be able to follow popularity

changes.

In this section, we propose a different solution that leads

to a more adaptive and simpler configuration. The idea is to

couple the system with a change detector to decide when

to “reset” the policies, bringing them back to the initial

high temperature/high q phase where they explore more. Our

solution is based on the standard CUSUM sequential analysis

technique to detect online changes of a system parameter [30],

[31]. CUSUM computes cumulative sums of the deviation of

some process samples from their expected value and it declares

that a change has happened when this sum exceeds a given

value. In our case, we use CUSUM to detect increases in the

expected miss cost, that may suggest that popularities have

changed and a new optimal set of contents to be stored need

to be found.

Let R(n) be the content requested by the n-th request and

C(n) be the corresponding cost. Hence, C(n) = 0 if R(n)
is stored in the cache and C(n) = cR(n) otherwise. Until

no change occurs the costs C(n) are assumed to be i.i.d.

random variables with expected value µC and variance σ2
C . We

implement a one-sided CUSUM filter to detect an increase of

the average cost of relative amplitude f . Algorithm 2 describes

the pseudo-code. The expected value µC and the variance σ2
C

are not known and are estimated through a sample average

(the maximum likelihood estimator). Costs of value larger than

µ̂C(1 + f/2) (then µCf/2 larger than the expected value)

contribute to increase the cumulative sum S. When S is larger

than the threshold h, it is assumed that a change has happened

and both the dynamic policy and the CUSUM filter are reset.

The CUSUM filter requires to select two parameters f and

h. As we said f corresponds to the minimum level of change

in the expected cost that we want to detect. Below we consider

f = 0.1. The threshold h allows us to trade off false positive

9

Algorithm 2 CUSUM change detector

Input: Sequence of costs (C(1), C(2), . . .), relative change

to detect (f), threshold (h)

n ← 1
while true do

k ← 1 ⊲ requests since last reset

µ̂C ← 0 ⊲ estimate current expected cost

σ̂2
C ← 0 ⊲ estimate current cost variance

S ← 0
while S ≤ h do

S ←
{

S + µ̂Cf/σ̂
2
C (C(n)− µ̂C(1 + f/2))

}+

µ̂C ← (µ̂C(k − 1) + C(n))/k
σ̂2
C ←

(

σ̂2
C(k − 1) + (C(n)− µ̂C)

2
)

/k
k ← k + 1
n ← n+ 1

end while

reset cache policy

end while

versus false negative rates. In the supplementary material,

Appendix F, we show that h can be chosen from the inequality

eh − h− 1 ≥ 10θ/α,

if we consider the exploration phase to be ended when

probabilities decrease by a factor 10θ.

VIII. SIMULATION RESULTS

In this section we evaluate the performance of the different

policies using an anonymized, aggregated set of requests for

objects collected over 30 days from Akamai. The actual

identity of the requested objects was obfuscated, but the size

of the object was known. The trace contains 2·109 requests for

110 millions contents, whose size varies from few bytes to tens

of MB. Figure 3 (left-hand side) shows the number of requests

for each object, sorted by rank (in terms of popularity). The

right-hand side shows the empirical Cumulative Distribution

Function (CDF) for the size of the requested objects (without

aggregating requests for the same object).

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

N
u
m

b
er

 o
f

re
q
u
es

ts

Object popularity

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9

C
D

F
 o

f
th

e
re

q
u
es

ts

Object size (bytes)

Fig. 3. Number of requests per object, ordered by rank (left), and cumulative
fraction of the requests for objects up to a given size (right).

Along with each object, the traces report an additional pa-

rameter called retrieval time, which is the time needed to fetch

the object either from the original server, the cache hierarchy,

the disk or the memory, along with the necessary computation

(e.g., unzipping or encoding the content). Considering the ob-

jects retrieved from the original server and the cache hierarchy,

their retrieval times are an effective measure of the pressure

on back-end servers each object impose, as computed by the

content delivery network management system. Thus, in some

of our experiments, we use as cost this retrieval time. Due

to internal Akamai confidentiality policies, the retrieval time

has been re-normalized to an integer between 1 and 10’000.

It is important to note that the retrieval time is not necessarily

correlated to object sizes: Fig. 4 shows the relation between

the object size and the normalized retrieval time (each point

represents an object). We have also computed the correlation

coefficient between the size and the cost, obtaining a value

equal to 0.013, which indicates no correlation.

10
0

10
1

10
2

10
3

10
4

10
1

10
2

10
3

10
4

10
5

10
6

10
7

O
b

je
ct

 r
et

ri
ev

al
 t

im
e

Object size (byte)

Fig. 4. Relation between object size and normalized retrieval time. Each point
represents an object.

We use the trace directly (reading the request arrival times

from the trace itself), and also to tune the parameters of IRM

from the empirical joint popularity-size distribution.

In the previous sections we have proved that OSA and

DYNQLRU asymptotically store the optimal set of contents

under the characteristic time approximation and provided that

the parameters T (n) and q(n, i) decrease slow enough. In

many applications the sufficient conditions for convergence

can lead to a too long convergence time for realistic cache

size and are then of low practical interest. Moreover, in

the case of DYNQLRU, when the request process is non-

stationary, the policy may be reset before the admission

probability has significantly decreased. In this case, if α is

too small, DYNQLRU will tend to behave as LRU, whose

performance are someway the reference setpoint. In practice,

we can work with much larger α values than 1/b. The larger

α is, the faster the admission probability decreases, but then

the more likely the policy is to get stuck storing a suboptimal

set of contents, until the change detector does not restart it.

The sweet spot between improving on top of LRU, while

not hurting performance by converging too fast needs some

exploration. Similar considerations hold for OSA. In what

follows we consider T (n) = 0.001Ûmax/ log n, where Ûmax

is the maximum content utility seen until the current time.

DYNQLRU is configured with α = 10, and dmin is set to the

minimum density value seen.6

We start evaluating the performance of the different policies

under the trace-tuned IRM, considering as target the mini-

6In our experiments changing α by a factor 10 was not leading to
remarkable differences.

10

mization of the miss ratio, i.e. ci = 1. For each policy, we

evaluated its performance on 100 IRM request traces generated

with different seeds. Each IRM trace has 108 requests, the

miss ratio is calculated over the last 106 requests because we

are interested in their convergence properties. We consider the

ideal estimators that track the cumulative number of requests

for each content ever seen.

We present results for cache sizes B = 1KB and B = 1GB

(respectively in the top and bottom row of Fig. 5). When

B = 1KB, only requests for the about 30 thousand contents

with size between 1 and 10 bytes are considered. This par-

ticular scenario allow us to study a small cache for which

the settings considered for OSA and DYNQLRU are closer

to those that would guarantee convergence to the optimum.

The left-hand side of Fig. 5 shows the empirical CDF of the

miss ratio for the policies that require to estimate popularity.7

DGREEDY achieves a small miss ratio. Indeed when objects

have relatively small size in comparison to the knapsack size,

the policy that greedily stores the objects with largest density is

known to lead to very good approximations. OSA succeeds to

find a slightly better set of contents, even if the parametrization

does not allow it to consistently converge to them. The right-

hand side of Fig. 5 shows the results for the policies that do

not require the knowledge of popularities, DYNQLRU, GDS,

and LRU, as well as the DGREEDY as a reference. DYNQLRU

has a behaviour similar to OSA (not appreciable at this scale),

while the policies GDS and LRU perform significantly worse.

When the cache has size 1GB and all the content requests

are considered, DGREEDY achieves the lowest miss ratio as

shown in the bottom row of Fig. 5. The OSA policy does

not perform equally well: the temperature does not decrease

slow enough to reach the optimal allocation and the policy

gets stuck in some local minimizer of the miss ratio. We tried

temperatures up to 100 times larger, but there was no signifi-

cant improvement. On the contrary, for the largest temperature

values the transient becomes so long, that performance can

actually worsen: OSA is still randomly exploring the solution

space at the end of the simulation. Despite of this OSA still

outperforms VGREEDY policy that easily gets stuck in local

minima for the miss ratio.

DYNQLRU shows performance similar to OSA, but with

less variability and less sensitivity to parameter setting. The

gap with DGREEDY has the same explanation. On the other

hand, DYNQLRU outperforms both GDS and LRU, whose

miss ratios are respectively between 40% and 60% and be-

tween 75% and 100% larger than those of DYNQLRU.

From now on, we compare the policies using directly the

actual trace. We illustrated in Sec. V the difficulty to estimate

popularities online. Here we provide an additional experiment,

comparing the performance of DGREEDY, the “winner” under

IRM, with those of DYNQLRU coupled with a CUSUM

(configured as described in Sec. VII with f = 0.1 and θ = 2).

For DGREEDY the average request rate of each content ever

seen is maintained. Note that a comparison of popularities

would require ideally to update all the estimated request

rates at the arrival of each request, that may not be feasible.

7 Remember that in this case VGREEDY corresponds to LFU.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.22 0.23 0.24 0.25

C
D

F

Miss ratio

DGreedy
OSA

VGreedy

 0

 0.1

 0.2

 0.3

 0.22 0.222
 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
D

F

Miss ratio

DynqLRU

GDS

LRU

DGreedy

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
D

F

Miss ratio

DGreedy

OSA

VGreedy

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
D

F

Miss ratio

DGreedy

DynqLRU

GDS

LRU

Fig. 5. Miss ratio over time for B=1KB (top) and B=1GB (bottom), policies
with known object popularity (left) and unknown object popularity (right). In
both cases we use DGREEDY as a reference, which requires the popularity to
be known.

Figure 6 shows the miss ratio over time for two different

DGREEDY settings. In the first one, the request rate for a

content is updated only at the arrival of a request for that

content. In the second one, all the estimates are also updated

every 107 requests, i.e. every 6 hours. The corresponding plots

are respectively labeled without/with updates. The experiment

shows that even when memory for estimation is not a concern,

computation constraints may affect the popularity estimation

quality, to the point that the result in Fig. 5 may be reversed

and DYNQLRU may perform better than DGREEDY.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5 10 15 20 25

DynqLRU

DGreedy, with updates

DGreedy, without updates

M
is

s
ra

ti
o

Number of requests (x 10
8
)

Fig. 6. Impact of the popularity on DGREEDY policy: no updates in the
estimate, with updated, and comparison with DYNQLRU.

In the following we show the results for the DYNQLRU,

GDS, and LRU policies and four different retrieval costs: the

miss ratio, the upstream traffic, the retrieval time from the

server, and the HDD load. The upstream traffic is the amount

of data to be retrieved by parent caches or the authoritative

content servers, it corresponds to setting ci = si. For the

retrieval time, the cost ci is the average retrieval time for

content i as measured in the Akamai network we consider.

11

Finally for the HDD load, the cost of i is the work imposed

to the HDD to retrieve content i. We have estimated it as a

function of the content size and HDD characteristics using the

following empirical formula proposed in [4]:

T (si) = (σ + ρ)

⌈

si
b

⌉

+

(

1

µ
+ σr

)

si + φ, (12)

where σ denotes the average seek time, ρ the average rotation

time, µ the transfer speed, σr the seek time for read, φ the

controller overhead and b the block size. All the metrics have

been normalized to 1, by dividing them from the cost that

would be incurred if the cache were not present. Results in

Fig. 7 show significant improvement from DYNQLRU, but for

the upstream traffic, for which all the policies have almost the

same performance. Average cost reductions in comparison to

the second best policy range from 15% for the HDD load up

to 30% for the retrieval time and 45% for the miss ratio.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20 25

M
is

s
ra

ti
o

Number of requests (x 10
8
)

DynqLRU

LRU

GDS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20 25

DynqLRU, LRU, GDSU
p
st

re
am

 t
ra

ff
ic

Number of requests (x 10
8
)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20 25

R
et

ri
ev

al
 t

im
e

Number of requests (x 10
8
)

DynqLRU

LRU

GDS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20 25

H
D

D
 l

o
ad

Number of requests (x 10
8
)

DynqLRU

LRU

GDS

Fig. 7. Miss ratio (top-left), upstream traffic (top-right), retrieval time from
origin (bottom-left) and HDD load (bottom-right).

We observe that both DYNQLRU and GDS rely on the

knowledge of the size and the retrieval cost of each content,

while LRU does not use such information. Note that the size

si is required when content i is at the cache, and then this

information is immediately available. The retrieval cost ci can

correspond to different physical quantities depending on what

the policy is trying to optimize, as discussed above using 4

different examples. For two of them ci is immediately known

at the cache. Indeed for the miss cost, we have ci = 1, ∀i,
for the upstream traffic we have ci = si. For the HDD

load, the cost can be simply computed using (12). Regarding

the retrieval times, if they are relatively constant, they are

parameters that could be set directly by the CDN operator,

e.g. as a function of the location of the corresponding content

provider. On the contrary, if they vary because of network or

servers’ congestion, the cache can keep running estimates of

ci, by measuring the time needed to retrieve the content upon

each miss.

IX. COMPLEXITY

DYNQLRU differs from LRU only for its admission policy,

that requires to compute the probability q(n, i) and to generate

a random number. Its complexity is then O(1) as for LRU.

OSA requires additionally to be able to randomly access

elements to evict, but also this procedure requires only O(1)
time. VGREEDY, DGREEDY and GDS require to extract the

smallest element among a given set of numbers: an imple-

mentation using a heap would lead to O(log b) complexity

where b is the number of contents in the cache. For VGREEDY,

when costs are expressed by integer values, one can adapt the

LFU implementation in [32] that takes O(1) time for each

operation.

X. CONCLUSIONS

In this paper we have bridged the two cache utility max-

imization frameworks proposed until now and proved that

when costs are linear over the misses and requests follow the

IRM, an optimal policy solves online a knapsack problem.

We have proposed two new policies based on simulated

annealing that are optimal. Experiments on real traces show

that DYNQLRU outperforms both LRU and the competitive-

ratio-optimal GDS.

REFERENCES

[1] A. Araldo, D. Rossi, and F. Martignon, “Cost-aware caching: Caching
more (costly items) for less (ISPs operational expenditures),” Parallel

and Distributed Systems, IEEE Trans. on, vol. 27, no. 5, pp. 1316–1330,
2016.

[2] V. Pacifici and G. Dán, “Coordinated selfish distributed caching for
peering content-centric networks,” IEEE/ACM Trans. on Networking,
2016.

[3] S. Shukla and A. A. Abouzeid, “On designing optimal memory damage
aware caching policies for content-centric networks,” in Proc. of WiOpt

2016, 2016, pp. 163–170.

[4] G. Neglia, D. Carra, M. D. Feng, V. Janardhan, P. Michiardi, and
D. Tsigkari, “Access-time aware cache algorithms,” in Proc. of ITC-28,
September 2016.

[5] E. N. Young, Encyclopedia of Algorithms. Boston, MA: Springer US,
2008, ch. Online Paging and Caching, pp. 601–604.

[6] M. Dehghan, L. Massoulié, D. Towsley, D. Menasche, and Y. Tay, “A
Utility Optimization Approach to Network Cache Design,” in Proc. of

IEEE INFOCOM 2016, 2016.

[7] N. C. Fofack, P. Nain, G. Neglia, and D. Towsley, “Performance evalu-
ation of hierarchical TTL-based cache networks,” Computer Networks,
vol. 65, pp. 212 – 231, 2014.

[8] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E.
Young, “Competitive paging algorithms,” Journal of Algorithms, vol. 12,
pp. 685–699, 1991.

[9] N. Buchbinder and S. Naor, “Online primal-dual algorithms for covering
and packing problems,” in Proc. of 13th Annual European Symposium

on Algorithms (ESA 2005), 2005.

[10] S. Albers, “Competitive online algorithms,” BRIC, Lecture Series LS-
96-2, 1996.

[11] N. E. Young, “On-line file caching,” Algorithmica, vol. 33, no. 3, pp.
371–383, 2002.

[12] P. Cao and S. Irani, “Cost-aware www proxy caching algorithms,” in
Proc. of the USENIX USITS, 1997.

[13] R. Fagin, “Asymptotic miss ratios over independent references,” Journal

of Computer and System Sciences, vol. 14, no. 2, pp. 222 – 250, 1977.

[14] H. Che, Y. Tung, and Z. Wang, “Hierarchical Web caching systems:
modeling, design and experimental results,” Selected Areas in Commu-

nications, IEEE Journal on, vol. 20, no. 7, pp. 1305–1314, Sep 2002.

[15] C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate ap-
proximation for LRU cache performance,” in Proceedings of the 24th

International Teletraffic Congress, 2012, p. 8.

12

[16] M. Garetto, E. Leonardi, and V. Martina, “A unified approach to the
performance analysis of caching systems,” ACM Trans. Model. Perform.

Eval. Comput. Syst., vol. 1, no. 3, pp. 12:1–12:28, May 2016.
[17] P. R. Jelenkovic and A. Radovanovic, “Optimizing LRU Caching for

Variable Document Sizes,” Comb. Probab. Comput., vol. 13, no. 4-5,
pp. 627–643, Jul. 2004.

[18] H. P. Young, “The Evolution of Conventions,” Econometrica, vol. 61,
no. 1, pp. 57–84, January 1993.

[19] B. Kauffmann, F. Baccelli, A. Chaintreau, V. Mhatre, K. Papagiannaki,
and C. Diot, “Measurement-based self organization of interfering 802.11
wireless access networks,” in Proc. of IEEE INFOCOM 2007, May 2007,
pp. 1451 –1459.

[20] H.-J. Böckenhauer, D. Komm, R. Královič, and P. Rossmanith, “The
online knapsack problem: Advice and randomization,” Theor. Comput.

Sci., vol. 527, pp. 61–72, Mar. 2014.
[21] P. J. M. Laarhoven and E. H. L. Aarts, Eds., Simulated Annealing:

Theory and Applications. Norwell, MA, USA: Kluwer Academic
Publishers, 1987.

[22] S. Anily and A. Federgruen, “Simulated Annealing method with general
acceptance probabilities,” Journal of Applied Probability, vol. 24, no. 3,
pp. 657–667, 1987.

[23] B. Hajek, “Cooling schedules for optimal annealing,” Mathematics of

Operations Research, vol. 13, May 1988.
[24] J. N. Tsitsiklis, “Markov chains with rare transitions and simulated

annealing,” Math. Oper. Res., vol. 14, no. 1, pp. 70–90, 1989.
[25] H. Young, Individual Strategy and Social Structure: An Evolutionary

Theory of Institutions. Princeton University Press, 2001.
[26] A. Broder and M. Mitzenmacher, “Network applications of bloom filters:

A survey,” Internet Math., vol. 1, no. 4, pp. 485–509, 2003.
[27] S. Li, J. Xu, M. van der Schaar, and W. Li, “Popularity-driven content

caching,” in Proc. of IEEE INFOCOM 2016, 2016.
[28] M. Leconte, G. Paschos, L. Gkatzikis, M. Draief, S. Vassilaras, and

S. Chouvardas, “Placing dynamic content in caches with small popula-
tion,” in Proc. of IEEE INFOCOM 2016, 2016.

[29] G. Bianchi, K. Duffy, D. J. Leith, and V. Shneer, “Modeling conservative
updates in multi-hash approximate count sketches,” in Proc. of ITC-24,
2012.

[30] E. S. Page, “Continuous Inspection Schemes,” Biometrika, vol. 41, no.
1-2, pp. 100–115, 1954.

[31] P. Granjon, “The CUSUM algorithm a small review,” 2012. [Online].
Available: http://chamilo2.grenet.fr/inp/courses/ENSE3A35EMIAAZ0/
document/change detection.pdf

[32] K. Shah, A. Mitra, and D. Matani, “An O(1) algorithm for
implementing the LFU cache eviction scheme,” 2010. [Online].
Available: http://dhruvbird.com/lfu.pdf

[33] D. Williams, Probability with Martingales. Cambridge University Press,
1991.

[34] S. Anily and A. Federgruen, “Ergodicity in parametric non stationary
Markov chains: An application to simulated annealing methods,” Oper-

ations Research, vol. 35, no. 6, pp. 867–874, 1987.
[35] P. Brémaud, Markov chains : Gibbs fields, Monte Carlo simulation and

queues. New York, Berlin, Heidelberg: Springer, 1999.
[36] M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes: Theory

and Application. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.,
1993.

Giovanni Neglia received the master’s degree in electronic engineering and
the PhD degree in telecommunications from the University of Palermo,
Italy, in 2001 and 2005, respectively. He has been a researcher at Inria,
Sophia Antipolis, France, since September 2008. In 2005, he was a research
scholar with the University of Massachusetts, Amherst, visiting the Computer
Networks Research Group. Before joining Inria, he was a post-doctorate with
the University of Palermo and an external scientific advisor with the Maestro
Team at Inria. His research is focused on modeling and performance evaluation
of networks.

Damiano Carra received his Laurea in Telecommunication Engineering from
Politecnico di Milano, and his Ph.D. in Computer Science from University
of Trento. He is currently an Assistant Professor in the Computer Science
Department at University of Verona. His research interests include modeling
and performance evaluation of large scale distributed systems.

Pietro Michiardi received his M.S. in Computer Science from EURECOM
and his M.S. in Electrical Engineering from Politecnico di Torino. Pietro
received his Ph.D. in Computer Science from Telecom ParisTech (former
ENST, Paris), and his HDR (Habilitation) from UNSA. Today, Pietro is a
Professor of Computer Science at EURECOM, where he leads the Distributed
System Group, which blends theory and system research focusing on large-
scale distributed systems (including data processing and data storage), and
scalable machine learning algorithms. Currently, Pietro is the Head of the
Data Science Department.

http://chamilo2.grenet.fr/inp/courses/ENSE3A35EMIAAZ0/document/change_detection.pdf
http://chamilo2.grenet.fr/inp/courses/ENSE3A35EMIAAZ0/document/change_detection.pdf
http://dhruvbird.com/lfu.pdf

13

Supplementary material for the article

Cache Policies for Linear Utility Maximization

APPENDIX A

PROOF OF PROPOSITION III.1

We first prove that the LHS and the RHS are well de-

fined. The limit inferior in the LHS always exists because

C(π,B, ⌊R⌋n)/n ≥ 0. For the limit in the RHS, observe that

with probability 1 there is a request m such that X(n) =M∗

for n ≥ m. The status of the cache in the first m−1 timeslots

does not affect the limit, we can simply consider that the cache

always stored the contents in M∗. By the strong law of large

numbers it follows then that

lim
n→∞

C(π∗, B, ⌊R⌋n)

n
=

∑

i/∈M∗

pici.

We observe that
∑

i/∈M∗

pici =
∑

i∈N

pici −
∑

i∈M∗

pici = U(N)− U(M)

and similarly

C(π,B, ⌊r⌋n)

n
=

1

n

n
∑

k=1

cr(n)✶(r(n) /∈ X(n))

=
1

n

n
∑

k=1

cr(n) −
1

n

n
∑

k=1

cr(n)✶(r(k)∈X(k)) .

The first term converges by the strong law of large numbers

to the expected cost per request, i.e. to U(N). If follows then

that (6) is equivalent to

lim sup
n→∞

1

n

n
∑

k=1

cr(k)✶(r(k)∈X(k)) ≤ U(M∗) a.s. (13)

If the states X(n) were independent from the request se-

quence, the result would follow immediately by the strong

law of large numbers for independent r.v.s and the fact that

M∗ is a solution of problem (3), but this is not the case. We

are going to define some auxiliary supermartingales.

Let Yn , cr(n)✶(r(k)∈X(k))−U(X(k)), then IE[Yn] = 0.

Moreover, the variance of Yn is finite for each n, in particular

Var(Yn) ≤ c2max, where cmax , maxi∈N {ci}. The stochastic

process defined by M0 = 0 and Mn+1 = Mn + Yn+1 is

a martingale relative to the filtration {Fn, n = 1, 2, . . . }
induced by the request process. In fact IE[|Mn|] < ∞
and IE[Mn|Fn−1] = Mn−1 for each n. Because of the

Pythagoras’s theorem for martingales [33, Sec. 12.1], it holds

IE[M2
n] ≤ nc2max.

We consider now the stochastic process Sn = Mn/n. From

what we proved for the process Mn, it follows that IE[Sn] = 0
and it variance converges to 0 because Var(Sn) ≤ c2max/n.

The process Sn can also been written recursively as S0 = 0
Sn+1 = Snn/(n+ 1) + Yn+1/(n+ 1). It holds

IE[Sn+1|Fn] = IE[Sn|Fn]
n

n+ 1
< IE[Sn|Fn],

and then Sn is a supermartingale. Moreover, Sn is L1 bounded

because supn IE[|Sn|] ≤ cmax. Doob’s convergence theo-

rem [33, Th. 11.5] guarantees that, almost surely limn→∞ Sn

exists and is finite. We denote by S∞ the limit r.v.. By Fatou-

Lebesgue theorem it follows that IE[S∞] = IE[limn→∞ Sn] =
limn→∞ IE[Sn] = 0 and Var[S∞] ≤ lim infn→∞ Var[Sn] =
0. Then S∞ is a.s. the constant 0. In conclusion we have

proved that

lim
n→∞

1

n

n
∑

k=1

(

cr(n)✶(r(k)∈X(k))− U(X(k))
)

= 0 a.s.

(14)

We are now ready to prove Eq. (13) by contradiction. If

Eq. (13) were not true, there would exist a diverging sequence

nm such that

lim
m→∞

1

nm

nm
∑

k=1

cr(k)✶(r(k)∈X(k)) > U(M∗) a.s. (15)

It holds:

lim
m→∞

1

nm

nm
∑

k=1

cr(k)✶(r(k)∈X(k)) = lim
m→∞

1

nm

nm
∑

k=1

U(X(k))

≤ lim
m→∞

1

nm

nm
∑

k=1

U(M∗) = U(M∗) (16)

where the first equality follows from Eq. (14) and the inequal-

ity fromM∗ being the solution of Problem (3). Equation (16)

contradicts (15) and then the thesis follows.

APPENDIX B

PROOF OF PROPOSITION III.2

Proof. The proof is simpler than that of Prop. III.1 because

in this case contents management at the cache are decoupled.

It holds

lim
n→∞

C(πTTL, B, ⌊R⌋n)

n
=

∑

i∈N

lim
n→∞

1

n

n
∑

k=1

ci✶(R(k) 6= i)

=
∑

i∈N

ci(1− hi) ≥
∑

i∈N

ci(1− h∗
i) = lim

n→∞

C(π∗
TTL, B, ⌊R⌋n)

n

where hi is the occupancy/hit probability for content i. The

second equality follows from standard renewal arguments and

the inequality from h∗
i being a solution of (7).

APPENDIX C

PROOF OF PROPOSITION IV.1

Proof. The acceptance probabilities tx,y(n) can be lower

bounded as follows

tx,y(n) ≥ t(n) = e−
∆Umax
T (n) ∀x,y ∈ X ,

and it holds

∞
∑

k=1

t(kb)b =

∞
∑

k=1

(

e−
log(bk)

b

)b

=

∞
∑

k=1

1

bk
=∞.

The result follows from [34, Theorem 2].

14

APPENDIX D

PROOF OF PROP. VI.1

Proof. We first prove that the MC is weakly ergodic.

Let yi denote the i-th element of the sequence y. Given two

states x and y, it is always possible to move from x to y in at

most b steps. for example if the following sequence of content

requests occurs: y|y|, y|y|−1, . . . , y1 and all these contents are

stored in the cache (if not already present), followed by b−|y|
further requests for content y1. The probability that a given

content in the cache is requested at time n and it is then stored

in the cache is at least pmin1/n
α, where pmin = mini∈N {pi}

is the minimum popularity. Then the probability to move from

state x to state y between step nb and step (n+1)b is bounded

as follows

Px,y(nb, (n+ 1)b) ≥

(

pmin
1

((n+ 1)b)α

)b

. (17)

Remember that the Dobrushin’s index of a (finite) transition

matrix A with state space X is defined as follows

δ(A) = 1− min
x,y∈X

∑

k∈X

min(Ax,k, Ay,k)

Then from bound (17), it follows

δ(P (nb, (n+ 1)b)) ≤ 1− |X |
pbmin

bbα
1

(n+ 1)αb

and

∞
∑

n=0

(1− δ(P (nb, (n+ 1)b))) ≥ |X |
pbmin

bbα

∞
∑

n=0

1

(n+ 1)αb
,

but this series is divergent whenever αb ≤ 1. It follows from

the block criterion [35, Ch. 6, Th. 8.2] that the MC is weakly

ergodic whenever α ≤ 1/b.
We now move to prove strong ergodicity. We consider

that costs ci can be expressed by integer values, and we

let γ denote the least common multiple of the set of costs

γ = LCM{ci, i ∈ N}. Consider that the variable n can

assume any positive real number value and define the matrix

function over (0, 1] as follows P̄ (a) = P
(

1/a
γ

dminα

)

. P̄ (a) is

a regular extension of the matrix P (n) [34, Def. 1]. Moreover

it can be checked that it is polynomial in the variable a and

then all its entries belong to a closed class of asymptotically

monotone functions (CAM) [34, Def. 3]. These properties of

the regular extension P̄ (a), together with the weak ergodicity

of the MC {P(n)} imply strong ergodicity of the MC [34,

Th. 2]. Moreover, for n large enough there is a unique

stationary distribution µ(n) of the homogeneous MC P (n),
and limn→∞ µ(n) = µ.

APPENDIX E

PROOF OF PROP. VI.2

Proof. Without loss of generality we assume that contents are

ordered so that λici/si > λjcj/sj for i < j. Moreover, let

b̂ be the largest index value such that
∑b̂−1

i=1 si ≤ B and
∑b̂+1

i=1 si > C. Let A∗ be the set of stochastically stable

states of DYNQLRU. The probability hi to find content i
asymptotically in the cache is

hi =
∑

x∈X|i∈x

µx =
∑

x∈A∗|i∈x

µx.

It follows that 1) if i has null hit probability, all the states

x containing i have zero probability and then they are not

stochastically stable, and 2) if i has positive hit probability,

it needs to belong to at least one stochastically stable state.

Then, the stochastically stable states contain all and only the

contents that have a positive hit probability asymptotically.

When n diverges, β(n) = ln(n)αdmin diverges and it has

been proved in [4, Prop III.1] that, under Che’s approximation,

the hit probabilities converge to the solution of the fractional

knapsack problem (7)

lim
n→∞

h∗
i =

1 if i < b̂

0 if i > b̂
C−

∑b̂−1
i=1 si

s
b̂

for i = b̂

Combining the two remarks the thesis follows.

APPENDIX F

CUSUM CONFIGURATION

It is usual to express the performance of CUSUM filters

in terms of the Average Run Length (ARL), i.e. the ex-

pected number of requests before a reset. In particular, one

distinguishes the ARL under the hypothesis that no change

happened (ARL0) or that a change happened (ARL1). ARL0

quantifies how often false positives occur, while ARL1 corre-

sponds to the delay before a change is detected. Ideally we

would like ARL0 to be large and ARL1 to be small, but the two

goals are conflicting. The threshold h allows us to trade off the

two conflicting issues. In our case we want ARL0 to be longer

than a characteristic timescale of the exploration process of

the dynamic policy to avoid false positive to reset the policy

when it is still in the exploration phase. We can define such

timescale as the number of requests required for the policy to

reduce the probability values of a factor 10θ for the contents

with the smallest density ci/si. A typical value for θ may be 2.

Then the characteristic exploration timescale of DYNQLRU is

10θ/α. We want to select h so that ARL0 ≥ 10θ/α. The exact

expression of ARL0 requires to solve some complex integral

equations [30]. Here we adopt the Wald’s approximation [36,

Chapter 5, eq. (5.2.44)]:

ARL0(h) ≈
1

IE[∆S]

(

h+
e−ω0h

ω0
−

1

ω0

)

,

where ∆S = µ̂Cf/σ̂
2
C (C(n)− µ̂C(1 + f/2)) and ω0 is the

unique non-zero solution of IE[e−ω0∆S = 1]. Approximating

C(n) with a gaussian variable, we obtain

IE[e−ω0∆S] = exp

(

−ω0IE[∆S] + ω0
Var(∆S)

2

)

.

15

It holds IE[∆S] = 1
2

(

µCf
σC

)2

and Var(∆S) =
(

µCf
σC

)2

. Then

the unique non-zero solution of IE[e−ω0∆S = 1] is ω0 = −1.

Imposing ARL0(h) ≥ 10θ/α, we obtain

eh − h− 1 ≥
1

2

(

µCf

σC

)2

10θ/α.

In practical settings content retrieval costs exhibit high vari-

ability so that µC/σC << 1, and we can consider the simpler

inequality:

eh − h− 1 ≥ 10θ/α,

from which h can easily be determined.

