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Cache management is important in exploiting locality and reducing data movement. This article studies a 
new type of programmable cache called the lease cache. By assigning leases, software exerts the primary 
control on when and how long data stays in the cache. Previous work has shown an optimal solution for an 

ideal lease cache. 
This article develops and evaluates a set of practical solutions for a physical lease cache emulated in FPGA 

with the full suite of PolyBench benchmarks. Compared to automatic caching, lease programming can further 
reduce data movement by 10% to over 60% when the data size is 16 times to 3,000 times the cache size, and 
the techniques in this article realize over 80% of this potential. Moreover, lease programming can reduce data 
movement by another 0.8% to 20% after polyhedral locality optimization. 
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 INTRODUCTION 

oday’s computers, such as CP Us, GP Us, and accelerators, have complex memory systems that
ll use caches. This complexity is rapidly increasing with new technology, e.g., high-bandwidth

emory (HBM) , new material, e.g., Intel Optane, and new architectures, e.g., heterogeneous sys-
ems. This complexity is too great for purely automatic solutions to be fully effective and robust. 
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A recent design called the lease cache lets a program control cache management using leases [ 22 ,
9 ]. Each time a data block is accessed, a lease is given to specify the time of eviction if the data
lock is not accessed again. Such leases can be assigned for each load and store instruction and
ommunicated to hardware when a program is loaded. 

The lease cache enables program control of the cache. We refer to such program control as cache

rogramming . In conventional caching, all applications use the same generic caching policy such
s LRU. In the lease cache, different programs can have program-specific cache management. 

The annotation for the lease cache consists of a lease for each memory reference, i.e., each load
r store instruction in the compiled code. We call them reference-lease annotations . The problem of
ease assignment may be broken down into two distinct parts. The first is how to accurately gather
er-reference statistics for use in lease assignment. The second is how to use these statistics to
ssign leases that optimize cache performance. This work focuses on the latter problem and uses
 profiling pass to gather the per-reference statistics. 

This article studies the problem of lease assignment, which accounts for the structure of a pro-
ram, in particular, the loop structure in scientific code. A scientific application may compute in
any steps that we call phases . Each phase may have a different data reuse pattern. Naturally, we
ant to assign appropriate leases based on the usage patterns. To do so, we need to solve three
roblems: (1) how to divide a program into phases, (2) how to assign leases in each phase, and (3)
ow to consider data reuses between phases. 
In this article, we develop new compiler techniques for cache programming in scientific code

sing scoped leasing, support the new techniques with a hardware implementation on FPGA,
nd evaluate their performance on the complete PolyBench suite. The main contributions are as
ollows: 

• We formulate the problem of balanced lease cache programming using leases. (Section 2.2 )
• We present scope hooked eviction leasing (SHEL) , where each scope is a loop nest and is

optimized separately (Section 2.3 ), and cross-scope hooked eviction leasing (C-SHEL) , which
extends SHEL to consider cross-scope data reuses. (Section 2.4 ) 

• We implement the system on a CycloneV-GT FPGA, including a RISC-V processor with
single-precision floating-point and the ability to load scoped leases dynamically during an
execution. (Section 3 ) 

• We evaluate the system using the 30 programs from the PolyBench/C 4.2.1 benchmark suite
and compare scoped leases with automatic caching and two previous leasing techniques.
Furthermore, we examine the effects of polyhedral optimization and loop tiling on lease
cache performance. These two evaluations of cache programming are conducted on three
input sizes: small, medium, and large. 

This study has several limitations. Owing to the hardware prototype, we consider sequential
rograms and use hardware support to collect data reuse information in program executables using
 profiling pass (Section 4.1 ). We optimize static lease assignment given memory trace statistics.
he problem of gathering reuse statistics at compile time is not explored in this article. 

 LEASE CACHE PROGRAMMING 

.1 Lease Cache 

ease Cache Hardware Prototype . We have designed, implemented, and tested a lease cache em-
lator, whose architecture is illustrated in Figure 1 . In this preliminary hardware prototype, a
ingle core RISC-V executing integer and floating point manipulation instructions is connected to
 single-level cache. This is controlled by a Lease Cache Management Unit (LCMU) , which can
CM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023. 
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Fig. 1. Lease cache hardware prototype. 
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e configured to apply a conventional Pseudo-Least Recently Used (PLRU) , or use reference
eases. The prototype is based on the test platform used in previous work [ 28 , 29 ]. 

The following two tables compare cache programming with automatic caching and two other
rogramming problems. First, compared to the LRU cache, the lease cache is programmable in that
he eviction is determined first by a lease. Unlike the LRU cache whose actions are based on only
he history information, the lease cache can be programmed based on program information. If a
rogram requires more cache space than what is available, then the lease cache has a secondary
olicy, which randomly evicts a data block at a cache miss. 1 Second, a lease is an allocation, and

ease programming is similar to malloc-free and register allocation. These techniques all aim to
ptimize resource utilization but for different purposes. In heap management, the goal is to mini-
ize the size of a heap, but there is no fixed upper bound on heap size. In cache leasing, the goal is

o obtain as many cache hits as possible, but the use of the cache must be within a constant bound.

LRU cache Lease cache 

primary policy LRU, automatic leases, programmed 

info used history only loop analysis 

secondary policy N/A random eviction 

Heap Register Allocation Lease cache 

allocation malloc/free live range a lease 
per object per data per access 

granularity object variable cache block 

mem. size unbounded fixed fixed 

optimality minimal liveness fewest loads/stores fewest misses 

.2 Lease Balancing 

ing et al. [ 17 ] present Compiler Assigned Reference Leasing (CARL) , an optimal algorithm
or assigning leases to a program such that the miss ratio is minimized. However, their solution
ssumes a variable-sized cache that can store any number of leases at a time, so long as the av-
rage number of active leases throughout execution is equal to some target value. We call such a
ache system a virtual cache , because its storage capacity is unbounded. Furthermore, we refer to
he number of active leases in the virtual cache as the virtual cache size (VCS) . While virtual cache
ize may grow and shrink dynamically throughout execution, the physical cache size (PCS) re-
ains constant. 
Because virtual cache size grows and shrinks dynamically, it can exceed the physical cache

ize. When this happens, new data must be cached, but there is no block with an expired lease
o select for replacement. In this case, a secondary policy must be used to force-evict a cacheline
ith an active lease. We call such an event a forced eviction . If the evicted data is reused before its

emaining lease at the time of eviction, then its reuse is a hit in virtual cache, but it is a miss in
he real cache. We call this event a contention miss , and it represents the degradation of idealized
ARL performance on a real machine. 
 In Appendix A in their MEMSYS 2020 paper, Prechtl et al. [ 29 ] compared random eviction (lease oblivious) and two 
ther policies, shortest remaining lease and longest remaining lease. Through experiments, they found that “no one policy 
ominates another. Among them, random is the most space efficient and fastest to implement in hardware.”

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023. 
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We denote a program region whose virtual cache size is above-average as overallocated and a
egion whose VCS is below-average as underallocated . CARL leases achieve optimal performance
ith an average allocation equal to the physical cache size. However, this may be obtained through
 balance of overallocated and underallocated program regions, which require forced evictions
nd waste cache space, respectively. Since both of these effects degrade performance, CARL leases
re not optimal in practice. We therefore seek to augment CARL lease assignments such that the
ariance in VCS is limited and the cache allocation is balanced. 

We examine four CARL-based lease assignment techniques, which seek to balance cache allo-
ation in different ways. 

CLAM. Compiler Lease of Cache Memory , which applies CARL, setting the average VCS
of the whole program to be PCS. This is the naive solution with no balancing that causes
the most cache contention. 

SHEL. Scope-Hooked Eviction Leasing , which applies CARL at each loop nest (scope), set-
ting the VCS at each scope to be PCS. SHEL ignores cross-loop reuses. See Section 2.3 . 

C-SHEL. Cross-Scope Hooked Eviction Leasing , which augments SHEL by considering
cross-loop reuses. See Section 2.4 . 

PRL. Phased Reference Leasing , which divides the execution into equal-length intervals
and constrains its VCS at each interval. PRL is the first solution to reduce cache con-
tention [ 29 ], which we discuss in Section 2.8 . 

Lease programming in practice requires solving two problems: program analysis and lease as-
ignment. Program analysis may be based on profiling or loop analysis. To focus our study entirely
n the second problem, we use profiling, in particular, hardware sampling analysis. Profiling shows
ata reuse at binary load and store instructions and includes the effect of all compiler optimization.

.3 Scope Hooked Eviction Leasing 

e first define the concepts of scopes and phases. 

Reuse Intervals, Scopes, Phases, and Cross-scope Data Reuse . We assume scientific code has a regu-
ar structure: A program is a series of statements and loop nests. Each level of a loop nest contains
 series of statements and loops. A scope is a textual region of a program in which a binding envi-
onment is active [ 30 , Section 3.3]. It may contain a loop including its inner loops. 

We manually select scopes for assigning leases. We call them annotated scopes . In the rest of
he article, unless otherwise indicated, a scope refers to an annotated scope. A phase is a runtime
nstance of a scope. While a scope is a fragment of program code, a phase is a period of program
xecution. 

Leases are assigned based on the Reuse Interval (RI) , which is the change in logical time
etween a data block’s use and its reuse. Suppose we have a trace abc c ba , the reuse interval of the
atum a is RI = 5 . A cross-scope RI is a reuse interval that spans at least two phases of different
copes; otherwise, the RI is scope local . By this definition, an RI spanning two consecutive phases is
till scope local if both phases are of the same scope. Scope local reuses are not a problem, because
heir leases allocate the cache only in the same scope, i.e., their effect is scope local. 

Contention in a Fixed-size Cache . CLAM [ 29 ] assigns leases such that it targets an average cache

ize in the same way as CARL [ 17 ]. Leases are assigned based on global RI histograms and there-
ore blind to dynamic fluctuations in reuse behavior. CARL leases are optimal on a virtual cache,
hich can grow and shrink arbitrarily as long as the average size during execution matches the

arget [ 17 ]. 
When the cache has a bounded size, CARL leases may cause cache over-allocation or contention ,

hen the number of active leases exceeds the cache size; and cache under-allocation , when the
CM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023. 
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umber of active leases is smaller than the cache size. A lease assignment may have the correct
verage cache size because an overallocated portion of program execution is balanced out by an un-
erallocated portion. Cache over-allocation will lead to contention misses, while under-allocation
ill result in fewer hits. CLAM is the naïve lease assignment policy and has no mechanism to
itigate these effects. 

Scope Hooked Eviction Leases . Leases assigned to references based on global reuse interval his-
ograms may target an average cache size. Because these histograms contain no information about
hen different RIs (and therefore leases) occur, cache allocation may not be balanced in the event

hat access patterns change significantly throughout execution. 
If we assume RIs are uniformly distributed throughout execution, then cache usage variance

uring execution is low, and so contention misses are rare and lease assignments based on average
ache size will perform well on a fixed-size cache. However, reuse behavior is not always uniform.
rograms may be composed of multiple outer loops, or else alternate between multiple inner loops,
ach of which may have different reuse behavior. 

This problem is solved by encoding time information in RI histograms, in a technique we call
cope-Hooked Eviction Leasing (SHEL) . In SHEL, the programmer annotates a set of program
copes. These scopes indicate program phases with possibly different reuse behavior. For sim-
licity, we assume each reference belongs to a single scope. 2 Thus, by including a scope field in
eference RI histogram entries, lease assignment may be done on a per-scope, rather than global,
ranularity. This allows for leases that are less profitable globally to effectively bypass more prof-
table leases if they take up space during under-allocated phases. Hence, scope annotation allows
or lease assignments that are more balanced throughout program execution, resulting in fewer
ontention misses. 

It is possible for the allocation in one phase to spill over into the next phase. SHEL ignores such
ffects. As a result, SHEL may over-assign leases in a scope if the cache space available to the scope
s reduced by the spill-over effect from the previous phase. 

In programs with coarse-grain phases, cross-phase effects may be negligible, and scopes may be
ptimized independently. An example is a computation with two steps, and each step computes
atrix multiplication. When executed, the second step runs long enough to nullify the lingering

ffect of any lease assigned in the first step. 
Intuitively, the spill-over effects can be ignored for a program if all its phases are sufficiently

onger than the longest lease. We state this property precisely, as follows: 

Proposition 1. Let s min be the minimal number of accesses in a phase, l max the longest lease

ssigned, and c the cache size. If s min � l max c , cross-scope RIs can be ignored. 

Cross-scope RIs can be assumed to be in scope, and the resulting lease is the same. To see why
his is true, consider what happens at the end of a phase. The number of remaining resident items
n the cache is at most the cache size c , and they stay in the cache for at most l max . The leases
n a phase change the miss count in the next phase by at most l max × c . When the next phase is
ufficiently long, the miss ratio is unaffected; hence, there is no need to consider cross-scope RIs. 

In other cases, considering cross-scope RIs may lead to a different lease assignment and better
ache utilization, which we show next. 

.4 Cross-scope Leasing 

t may be the case that cross-scope reuses make up a significant portion of all reuses. This can occur
hen the program structure is composed of several alternating phases. When assigning leases in
 Our design allows for one reference to occur in multiple scopes due to branching or function calls. However, such behavior 
s not present in any of the benchmarks presented. 

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023. 
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hese phases, there is a natural question of where to attribute the cost of the allocation. The cost
ould naïvely be assigned fully in either the first phase, where the first use occurs, or the second
hase, where the reuse occurs. However, both options miss the true program behavior, and thus
ay lead to incorrect allocation that harms performance. 
To solve this problem, we introduce Cross Scope-Hooked Eviction Leasing (C-SHEL) . In

-SHEL, we record the cross-phase behavior of reuse samples and store this aggregate data along
ith RI histograms. We assume that sampled cross-phase RIs are representative of the full trace. 
For a given reference lease, there are two components that together make up the total cost. The

rst, which we denote as the head cost , is the contribution of RIs, which are less than or equal to
he lease. Accumulating the head cost of a reference lease to multiple phases is trivial; as each RI
ample is processed, we simply divide the head cost among the phases it occupies. 

The second cost component, which we denote as the tail cost , is the contribution of RIs, which
re greater than the lease. Unlike head costs, accumulating the tail costs of all RIs cannot be done
ample-by-sample. This is because the tail cost of a sample contributes to all RIs that are lesser.
hus, handling tail costs requires a second pass through the sampled RIs. 
The result of sample processing is a set of RI histograms for each reference. For each RI, the

umulative head and tail costs in each phase are stored and can be used during lease assignment
o more accurately allocate lease costs among program phases. 

.5 Instrumentation and Sampling 

ith our instrumentation, any scope may be annotated by the programmer. Any load or store
nstruction that occurs within an annotated scope is considered as part of a phase of that scope. In
he case where no explicit phase marker is in scope, the last scope marker read in sequential order
s used. 

During trace sampling, the budget for each scope is simply determined based on the number of
amples from phases associated with that scope ID. By using programmer-annotated scopes, we
re able to assign leases that more accurately use cache resources. 

Compiler Implementation . The compiler has two parts: analysis and code generation. The first
ollects the RI histograms, and the second inserts reference leases. The code generator inserts a
able in a data segment of the binary code to store the lease annotations. We have implemented
ource-level compiler analysis in LLVM based on Static Parallel Sampling (SPS) [ 12 ]. It analyzes
nd assigns leases for array references. However, source-level analysis cannot determine the cor-
esponding load and store instructions in the binary code, nor can it determine the machine code
ddress. Therefore, we adopted an alternative solution and used profiling by running the program
wice. The first execution samples RIs and outputs their reference by its binary instruction address.
he code generator then computes and inserts reference leases based on the sampled RIs. In the
econd execution, the generated code is tested for performance. The code generator implements
ll leasing techniques, including CLAM and PRL from previous work and SHEL and C-SHEL in
his article. 

.6 Scope Annotation 

e statically place scope markers in program code. A phase is then the execution between any
wo consecutive scope markers. In loop-based code, markers are placed by the following two rules.
irst, each outermost loop is a separate scope, i.e., given its own marker. 

Some scientific computing problems are solved by an iterative method. We describe such pro-
ram structure as having cyclic phases. The second rule applies to these programs, where we insert
arkers for the outermost loops inside the time-step loop. The problem of cross-phase reuse is

articularly important for cyclic programs. 
CM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023. 
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The question of how to select scopes in general code, and how to automate this process in a
ompiler, is an interesting open problem, which is outside the scope of this work. For this reason
nd for now, we leave the problem of scope annotation to the programmer. 

Table 1 shows the statistics about the scope markers for the 30 benchmarks in PolyBench. It
hows the number of scope markers used in each program and the number of runtime phases for
ach input data size. Acyclic programs have one phase per scope, whereas cyclic programs have
ultiple phases per scope. 

.7 Lease Assignment Algorithms 

ere, we describe in greater detail the two lease assignment algorithms that use annotated scopes.
ne is Scoped Hooked Eviction Leasing (SHEL) and the other is Cross-Scope Hooked Evic-

ion Leasing (C-SHEL) . SHEL assigns leases independently for each phase without considering
ross scope RIs and C-SHEL considers the cross-scope RIs. 

Algorithm 1 presents the lease assignment process for SHEL and C-SHEL. The inputs for both
lgorithms are the same. s is the number of scopes we have for a program. For each scope, we
ecord its set of reuse interval histograms , RIHs , and cumulative phase length p. The phase
ength is assumed to be proportional to the number of RI samples among histograms of a scope.
or C-SHEL, these RIHs contain head and tail costs for each reference, as described in Section 2.4 .
ith this information, each algorithm produces reference lease assignments for a specified cache

ize c . Both SHEL and C-SHEL rank all candidate lease values according to their PPUC (profit

er unit cost) . PPUC calculates the number of hits divided by the cache use for an assignment.
igher PPUC for a lease assignment means the same time-space cost can produce more hits, i.e., it

s a more efficient use of cache space. The PPUC of a lease can be calculated from the RI histogram
f that reference. For each algorithm, the assignment procedure is a greedy process described in
lgorithm 1 . CLAM takes the reuse interval histogram RI H for each reference in the program
nd the total time-space budget. The b udдe t is initialized by c × N , which is the number of cache
locks times the number of accesses (denoted as N ) in a program. One iteration in the while loop
n line 2 will update the lease of a reference to a larger value. Line 3 chooses the new lease l and
he reference ref to be assigned. Line 4 calculates the remaining budget after assignment in Line
. This loop terminates when the budget is used up or all references have been assigned with the
eases equal to the value of their maximum RIs in Lines 5–8. 

SHEL simply applies CLAM independently for each scope in Lines 12–15. Instead of using a
 udдe t and an RI H for the entire execution, RI H and b udдe t are collected and calculated for each
cope. The scopes containing more accesses will be initialized with larger budgets based on scope
engths p in line 13. 

To consider cross-scope RIs, C-SHEL distributes the budget to all phases and updates them si-
ultaneously. Any assignment of a lease that results in cross-scope reuses increases the use of all

copes it reaches in Line 22. If a new lease has any impact in a scope whose budget is already used
p, then the lease is rejected and the next-most-profitable lease is checked. C-SHEL terminates
hen all budgets for all scopes are used up or all leases are assigned to the maximum values. 

.8 Phased Reference Leasing (PRL) 

he first solution to reduce the amount of cache contention is Phased Reference Leasing (PRL) ,
eveloped by Prechtl et al. [ 29 ]. In PRL, the overall cache capacity for the program is naïvely split
nto equal-width intervals. Leases are assigned step-by-step as in CARL, except that an assignment
tep is canceled if it causes the VCS in some interval to exceed PCS. By skipping assignment steps,
t is a constrained version of CARL. 
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023. 
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ALGORITHM 1 : Lease assignment procedure 

Input : s: number of annotated scopes 
p[0..s-1]: cumulative phase length 

per scope 
RIH[0..s-1]: reuse interval histograms 
per scope 
c: cache size 

1 Function clam ( RIH, budget) : 
2 while True do 

3 ref, l = max_ppuc (RIH); 

4 leases,budget = update(ref, l); 

5 if ( ∀ leases assigned to maximum RIs 

6 or budget is used up) then 

7 return leases; 

8 end 

9 end 

10 End 

11 Function shel ( s, p, RIH, c) : 
12 for i ∈ 1..s do 

13 budget[i] = p[i] ∗ c; 

14 leases[i] = clam (RIH[i], budget[i]); 

15 end 

16 return leases; 

17 End 

18 Function c-shel ( s, p, RIH, c) : 
19 budget[i] = p[i] * c, ∀i ∈ 1 ..s; 
20 while True do 

21 ref, l = max_ppuc (RIH); 

22 leases[i], budget[i] = update(ref, l), ∀i ∈ 1 ..s; 
23 if ( ∀ leases assigned to maximum RIs 

24 or ∀ budget[i] is used up, i ∈ 1 ..s) then 

25 return leases; 

26 end 

27 end 

28 End 
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There are several drawbacks to this approach. First, it only accounts for coarse-grained contigu-
us intervals. In programs with cyclic phases where each phase has a short length, e.g., a single
uter loop containing multiple inner loops exhibiting phase behavior, an interval includes phases
f different behavior. The interval-based constraint cannot remove imbalanced allocation across
hases. 
Compared to SHEL, PRL does not have fine-grained control to set interval boundaries to match

rogram phases. This may lead to inaccurate phase marking that can harm performance as follows:
e define a boundar y inter val as one that contains the boundary between two program phases.
 boundar y inter val contains pieces from different phases. We call others interior intervals . Now

onsider a simple case where there are two loops, L 1 , L 2 . PRL sees interior intervals for each loop
nd a boundary interval. When assigning leases for L 1 , PRL considers the behavior of its interior
ntervals and the boundary interval. Since the boundary interval contains pieces of L 2 , its behavior
iffers and may prevent PRL from assigning the best lease for interior intervals. Since the less-
han-the-best lease is used on all interior intervals, the missing opportunity of optimization can
e significant if L 1 is long running. 

 HARDWARE EMULATION SYSTEM DESIGN 

he Hardware Emulation System, Figure 2 , has two objectives: first, to be able to instantiate a
ingle-core CPU (RISC-V) and associated programmable and re-configurable cache memory, and
econd, to assess the impact of adding the former cache memory features to actual hardware. The
rst objective supports the testing and comparison of various lease cache policies, while the second
bjective offers a cost estimate of implementing the former in actual hardware. 
The lease cache hardware is able to support the application of lease policies from compilation

o program execution. Its architecture is based on that described in Prechtl et al. [ 29 ], to which the
urrent work makes two major additions: RISC-V 32F (floating point) instruction set extensions and
CM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023. 
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Fig. 2. Lease cache hardware architecture for a cache of n blocks and lease register size of m bits. The com- 

ponents in the green box are the lease look-up circuitry. The components in the red box are the replacement 

logic and lease update circuitry. 
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ardware support for scope-leasing. The prototype runs all 30 programs of the PolyBench suite,
hile previous work ran just 7 of the 30 [ 29 ]. In the interest of reading coherence, we discuss below

he detailed lease cache architecture. 
Lease Assignment . The hardware that implements a lease policy complements an existing cache
emory infrastructure through the addition of a lease policy controller (Figure 2 ). In support of

he latter, the request bus to the cache is augmented with the address of the reference invoking
he access. Both target and reference addresses propagate through lookup tables and provide con-
urrently cache location and lease policy information to the controller. A combination of four
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28 entry lookup tables comprise the Lease Lookup Tables (LLUTs) and resolve the following
ignals: 

(1) Lease Valid [1 bit] - flag indicating a lookup table hit. 
(2) Primary Lease [ n bit] - lease associated with the higher probability assignment. 

There is a single secondary lease associated with a single reference per phase. Its assignment
s based on an associated probability value, specifically, the probability that this lease will not be
ssigned. These are provided in the header that pre-appends each phase and are stored in software
ccessible registers. 

The primary and secondary leases are multiplexed by probability evaluation. An LFSR generates
 random number that is compared against the probability value output by the lease probability
ookup table. If the random value is greater than the one output by the LLUT the secondary lease
s passed through, else the primary lease is passed through. A second multiplexer makes the final
election. If the access results in an LLUT hit, then the current lease assignment is validated and
assed. Else if the reference is not found in the table, a default lease assignment, stored in a soft-
are accessible register, is instead passed through. In this way, lease selection is not transparent

o the policy controller and strictly abides by CLAM/PRL/SHEL/C-SHEL. References without an
ssociated lease assignment are assumed to have no near future re-reference and provide little
enefit to cache performance regardless of cache utilization. We elect to assign a default lease of
ne to these references, so after their immediate use these are eligible for eviction. 
Line Vacancy . Each cache line has an associated lease register with two control ports and a
ulti-bit output bus. The output bus of each register drives a NOR reduction operator, essentially
 comparator with zero, which produces an expired bit per lease register. A priority encoder ex-
mines all expired bits and identifies the first occurrence (lowest address) of an expired lease. A
ointer to this address is produced and transferred to the controller to be used in case an eviction

s necessary. The pointer is validated by a reduction OR (inequality with zero comparison) of all
xpired bits. If at the time an eviction is necessary and the pointer is invalid (no lease has expired),
hen the replacement follows the auxiliary policy, i.e., random replacement. 

The auxiliary replacement policy is also employed if there are a large number of default leases
ssignments in a row. This is to handle the possibility that the assumption that references without
n associated lease assignment have no near future re-reference is invalid. If that is the case, then
he lease cache would perform poorly, as it is just evicting the highest expired line in the set
nd completely ignoring any type of data locality. Hence, the lease cache is designed such that if
here are more than x (for this work 1,024 was chosen) default leases assigned consecutively, the
ease cache will exclusively use the auxiliary policy until an LLUT hit occurs, whereupon normal
peration resumes. 

The Application of a Lease Policy is illustrated in Figure 3 . At every cache access, all non-expired
ease registers are decremented. If the access resolves as a cache hit (not a lease lookup table hit),
hen the lease register at the translated address is load-enabled, regardless of lease assignment. If
he access is a miss, then the item is cached in the location generated by the relevant policy (either
ease or the auxiliary policy) and then assigned a lease value as described above. 

Hardware Support for Scoped Lease Policies is illustrated in Figure 4 . After reset, the Lease

ookup Table (LLUT) is populated with the leases of the first phase and the lease cache config-
ration information: secondary lease value, secondary lease probability, the number of references

n the phase, default lease value, and the address of the reference assigned the secondary lease.
uring benchmark kernel execution, if a phase marker for a phase different than the current one

s encountered in the software, the CPU adjusts the value of the current phase register to that
CM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023. 
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Fig. 3. Lease cache operation flowchart. Fig. 4. Scoped leases flowchart. 
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f the marker. The lease cache detects this change and sets a flag that stalls the CPU. The lease
ache then requests the leases for this new phase from main memory, writes them to the LLUT,
nd additionally updates the lease cache configuration information with the values from the new
hase header. The lease cache then clears the flag it sets to take the CPU out of stall and to resume
enchmark execution. This process repeats at every phase marker, denoting a new phase until the
enchmark kernel execution finishes. 

Expanded RISC-V Instruction Set Support . The RISC-V core used by Prechtl et al. [ 29 ] supported
nly the RISC-V 32IM extensions, which limited the testing to only 7 out of the 30 benchmarks in
he PolyBench suite. The current RISC-V core has been redesigned to support the 32F extension
single-precision floating-point), which allows the execution of the entire PolyBench suite. 

 EVALUATION 

.1 Experimental Setup 

Implementation The cache size is 8 KB with 128 cache blocks. The baseline is automatic caching,
or which we use the Pseudo Least Recently Used (PLRU) eviction policy, a commonly used
pproximation of LRU that is more time- and space-efficient to implement (using a single status bit
n each cache line) [ 31 ]. We compare four cache programming techniques: CLAM, which does not
onsider phase variation; PRL, which divides a program execution into a fixed number of phases
Section 2.8 ); SHEL, which uses scope local leases (Section 2.3 ), and C-SHEL, which assigns inter-
cope leases (Section 2.4 ). For PRL, we divide executions into five equal-length phases, as was done
n Reference [ 29 ]. In addition, we have implemented the FPGA to output the aggregate vacancy
nd the remaining lease values for visualization (Section 4.2 ). 

Benchmarks . We use PolyBench/C 4.2.1, which contains 30 numerical kernels [ 26 ]. We use Poly-
ench for several reasons. First, the benchmark suite is relatively easy to port through the FPGA

ool chain to allow testing on a real system. Second, the current emulation system is not yet
quipped to execute other benchmark suites due to limited RISCV instruction set coverage. De-
pite the latter limitations, PolyBench kernels are extracted from linear algebra, image processing,
hysics simulation, dynamic programming, and statistics, which are all common workloads in sci-
ntific computing and have been extensively used in studying performance analysis [ 1 , 25 ] and
ptimizations [ 2 , 19 ]. We compile each program with the GCC -O3 optimization level without vec-
orization, which our CPU does not currently support, and report the results for small, medium,
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023. 
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Table 1. Phase Markers Inserted for PolyBench 

# of scope # of phases for different datasets 
benchmark markers small medium large 
2mm 2 2 2 2 
3mm 3 3 3 3 
adi 3 80 200 1,000 
correlation 4 4 4 4 
covariance 3 3 3 3 
deriche 6 6 6 6 
fdtd-2d 3 120 300 1,500 
gemver 4 4 4 4 
heat-3d 2 80 200 1,000 
jacobi-2d 2 80 200 1,000 
lu 2 240 800 4,000 
ludcmp 4 242 802 4,002 
mvt 2 2 2 2 
atax, bicg, cholesky, doitgen, durbin, 

1 1 1 1 
floyd-warshall, gemm, gesummv, 
gramschmidt, jacobi-1d, nussinov, seidel-2d, 
symm, syr2k, syrk, trisolv, trmm 

17/30 of them only have single scope/phase across all three datasets. 
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nd large dataset sizes. Approximately, the amount of program data in these sizes are 128 KB, 1 MB,
nd 25 MB, respectively. 

PLUTO Compiler . Version 0.11.4 of the PLUTO optimizing compiler was additionally used to
ptimize the PolyBench benchmarks [ 9 ]. The compiler was invoked using only the --tile option,
o enable cache tiling and polyhedral optimizations. The compiler was configured to produce 16 ×
6 × 16 tiles to effectively fit in our cache size. For the code run with the CLAM and PRL leasing
olicies, the PLUTO output was unchanged. For codes run with the SHEL and C-SHEL policies, the
LUTO output needed to be manually annotated to work with the current lease generator applica-
ion with scope markings. For benchmarks that produced large optimized output, we separate the
on-optimized source into several subregions and let the PLUTO compiler be invoked in each sub-
egion. The code, after the PLUTO optimization, was then compiled and run exactly as described
reviously. All of the benchmarks were able to be optimized with the PLUTO compiler, excluding
eat-3d , which we were not able to run and collect data for after optimization. We present the
esults of lease cache on programs compiled without PLUTO optimization in Section 4.2 , and we
xplore the combined effects of lease cache and PLUTO optimization in Section 4.3 . 

.2 Performance of Cache Programming in Unoptimized Loops 

e divide the benchmarks into two groups based on the number of scopes in them (shown in
igure 5 ). The first group consists of 13 benchmarks that have two or more scopes, and the sec-
nd group has the remaining 17. Figure 5 shows the two groups side-by-side in three rows, each
howing a different data size from small (top row) to large (bottom). The x-axis shows program
ames, and the y-axis shows the miss ratio of the cache. We discuss the multi-scope group in this
ection and single-scope group later in Section B . For the multi-scope group, the red vertical line
n each graph separates those with non-cyclic phases (Left) and those with cyclic phases (Right).
heir phase counts are shown in Table 1 . 
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Fig. 5. Miss ratios for 13 multi-scope benchmarks (left) and 17 single-scope benchmarks (right) as well as 

their geometric means. Lower is better. Values are reported for small (top) medium (middle), and large (bot- 

tom) inputs. The red vertical line separates multi-scope benchmarks into those with non-cyclic (left) and 

cyclic phases (right). 
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Overall Comparison . Overall, cache programming improves significantly over automatic
aching. The four techniques are used to provide leases for 13 multi-scope tests on each input,
or a total of 156 ( 4 × 13 × 3 ) lease solutions. When compared with PLRU as shown in Figure 5 , in
53 out of 156 cases, lease cache matches or performs better than PLRU, reducing the number of
isses by over 15% in 75 (about half) solutions, by over 75% in 16 (over 10%) solutions, and by as
uch as 87% in the best case. Hence, we have the first finding: 
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023. 



39:14 B. Reber et al. 

 

 

T  

s  

i
 

t  

g  

t
 

s  

1  

9

 

W  

d  

s  

6  

a  

n  

S  

s  

f  

h
 

t  

r  

e  

i  

i  

i  

i  

p  

m  

b

 

 

 

A

Finding. 

(1) Caching programming using leases is overwhelmingly better than automatic caching (using

PLRU), reducing the miss count by over 15% in one of every two cases and over 75% in every

ten. 

his shows the benefit of using program information when managing the cache. Note that, in this
tudy, we use profiling, and the test run is the same as the training run. Hence, this improvement
s an ideal case. 

For the multi-scope group for the small dataset, the baseline technique CLAM and PRL reduce
he miss count by 55% and 58%, on average. As a reminder, PRL considers phases but not the pro-
ram structure. SHEL increases the average reduction to 60%, and C-SHEL to 61%, by considering
he program structure, and in the case of C-SHEL, considering cross-scope reuses. 

The data sizes in medium and large inputs are 1 MB and 25 MB and much greater than the cache
ize 8 KB. The improvement in caching has a smaller effect. For medium, the average reduction is
2%, 15%, 26%, and 21% for CLAM, PRL, SHEL, and C-SHEL, respectively. For large, these are 8%,
%, 11%, and 11%. 

Effect on Multi-scope Programs . Lease optimization is most important for multi-scope programs.
e focus on the three methods that treat scopes differently, while using CLAM, which does not

istinguish scopes, as a baseline. Indeed, except a few cases, they all outperform CLAM by con-
idering each scope and assigning scope-local leases. SHEL, for example, outperforms CLAM by
%, 15%, 4% for the three inputs, respectively. Within each scope, they use the same algorithm
nd differ only in how they treat the boundary effect. Among the three, no single method domi-
ates in all cases. On average, the lowest miss count is obtained by C-SHEL on the small dataset,
HEL on the medium, and both SHEL and C-SHEL on the large. SHEL performs well except on the
mall input, where it performs the worst. While all three methods assign different leases for dif-
erent program phases, SHEL ignores cross-loop reuses when assigning leases. On the small input,
owever, phases are the shortest, and cross-loop reuses are important to cache management. 
By considering these reuses, both C-SHEL and PRL outperform SHEL on small inputs. Between

he two, C-SHEL performs better than PRL on average on all three input sizes, for mainly two
easons. First, C-SHEL phases are marked according to program structure, while PRL intervals are
ven divisions. PRL optimization is less effective in boundary intervals where the reuse behavior
s mixed. Second, as discussed in Section 2.8 , PRL considers cross-loop reuses only in a boundary
nterval but uses the same leases on all interior intervals. The lease assigned based on a boundary
nterval may be sub-optimal for interior intervals. The first weakness can be ameliorated by us-
ng more intervals, but the second cannot. In comparison, C-SHEL considers the boundary effect
roportionally. For our tests, however, the results show that it is better to ignore these effects on
edium and large inputs. C-SHEL gives no significant advantage over SHEL on any of these tests

ut is significantly worse on some of them. In summary, we find the following: 

Finding. On multi-scope tests, the three lease-optimization methods show that: 

(2) It is best for lease optimization to ignore cross-loop reuses, that is, SHEL is the best or close to

the best in all cases. 

(3) C-SHEL, by considering boundary reuses, has significant benefits on small inputs, is counter

productive on medium inputs, and has no effect on large. 

(4) PRL, by constraining CARL using intervals, is always beneficial compared to CLAM, but less

effective than SHEL on medium and large inputs 
CM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023. 
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Fig. 6. Cache occupancy spectra for CLAM (left) vs. SHEL (right) for 2 mm with the small dataset. Over- 

allocation is visible as large chunks of dark blue and under-allocation as chunks of yellow. 
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It is worth noting that the weakness of PRL, i.e., leases are constrained by the behavior of all
ntervals, is also a strength in robustness in that PRL never increases cache contention compared
o CLAM. This is shown in the comparison where in all but one test, PRL performs the same as or
etter than CLAM. 

Limit Analysis . CARL computes the miss ratios for an ideal cache, which, as proved by Ding et al.
 17 ], is the best for the same average virtual cache size for all lease solutions. No lease optimization
an perform better than CARL. Note that CARL bounds may not be tight, i.e., what is included in
he potential may not be reachable. What is valuable, however, is that they show what is excluded,
hich is definitely not realizable. No lease optimization can perform better than CARL. 
Compared to PLRU, the potential for cache programming depends on the input size. On our

ystem, the cache size is 8 KB, and the amount of program data is approximately 128 KB, 1 MB, and
5 MB for the three input sizes, respectively. The average potential is 62%, 36%, and 11% reduction
ver PLRU for the three input sizes. Given these potentials, the average realized by our three
echniques is 84% for small by SHEL, 46% for medium by C-SHEL, and 82% for large by C-SHEL. 

The CARL bound is not tight, because they require variable cache sizes. The realizable bound
ies in the gap between the best actual result and the CARL bound. Among the three input sizes,
his gap is narrowest in the large input, so the CARL bound is closest to the actual potential, so is
he realized portion of the CARL bound to the realized potential. Hence, we have two additional
ndings based on the limit analysis: 

Finding. The limit analysis shows that: 

(5) Lease-based cache programming may improve cache management over LRU by over 60%

when data size is 16 times the cache size and may still improve by over 10% when the data

size 3,000 times larger. 

(6) The techniques in this article have realized over 80% of the potential of lease cache

programming. 

The limit of cache programming is also bounded by optimal fixed-size caching, i.e., the OPT or
IN method [ 13 , 23 ]. Optimal caching is automatic but unrealizable, because it requires precise

uture knowledge. Two earlier studies have shown that ideal lease cache performs as well as or
etter than OPT for both storage traces [ 22 ] and PolyBench programs [ 17 ]. 

Lease Visualization . Prechtl et al. [ 29 ] showed that leases give a user the ability to visualize
he state of the cache at each moment, and by taking samples and showing them in a sequence,
ache dynamics over an execution. We use visualization in Figure 6 to show the effect of lease
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023. 
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ptimization on one of our test programs. The graphs plot the individual cache line status , which
hows the current lease for each cache block. At each moment, the entire cache space of 128 blocks
s shown as a column of 128 cells, colored individually to show the current remaining lease in that
lock. Previous work [ 29 ] calls this a cache tenancy spectrum. From the execution start time at the
eft boundary to the execution end time at the right boundary, we plot the execution as a matrix of
olored cells. Yellow means no lease (empty block) and blue means occupied. The darker the blue
s, the longer the lease. Thus, over-allocation is visible as large chunks of blue and under-allocation
s chunks of yellow. 

Figure 6 clearly shows the benefit of phase-aware lease assignment strategies. This program is
omposed of two top-level nested loops, whose effect can be clearly seen in the cache occupancy
pectra. CLAM allocation is blind to this structure; it simply assigns all the most profitable leases
ntil the budget has been met. Unfortunately, a disproportionate number of the most profitable

ease assignments lie in the first loop, and fewer of them lie in the second loop. The result is over-
llocation during the first loop and under-allocation during the second loop. SHEL, however, is
ble to optimize each loop individually, resulting in a balanced cache use, with fewer contention
isses in the first phase and more hits in the second phase. 

Effect on Single-scope Programs . Figure 5 shows the normalized miss count for the 17 single-scope
ests. Because these programs have only a single scope, SHEL and C-SHEl lease assignments are
dentical to those of CLAM. On average for the small dataset, PRL reduction, 54%, is slightly better
han CLAM’s 52%. For medium and large, the two results are effectively the same, with reductions
f 27% and 26%, respectively. This can be explained by behavior variations in single-scope tests.
RL considers them separately using intervals, but CLAM does not. The effect, however, is signif-

cant only in small inputs. For the other two inputs, PRL sometimes performs worse than CLAM,
ikely because optimal leases assigned some intervals are sub-optimal overall. 

.3 Performance of Cache Programming in Optimized Loops 

ata locality can be greatly improved by the compiler using the polyhedral abstraction [ 7 , 20 ]. We
onsider compiler transformations and lease caching to be complementary solutions for improving
ache performance. Lease caching seeks to improve the hit ratio via optimization of the cache
eplacement policy given a memory access stream. Compiler transformations seek to improve
he hit ratio by reordering the memory access stream itself, such that locality is improved. We
xamine the combined effect of polyhedral loop optimization done by the PLUTO compiler [ 9 ]
nd our method of lease caching. We evaluate all four caching techniques (CLAM, PRL, SHEL, and
-SHEL) on 12 multi-scope benchmarks and CLAM and PRL on 17 single-scope benchmarks, each

un with three different data sizes. 
Overall Comparison . Comparing the PLRU results (black bar) in Figure 5 and Figure 7 , the cache

erformance can be greatly improved by the PLUTO compiler. Cache programming still improves
erformance over automatic caching for locality-optimized code. As shown in Figure 7 , in 168 out
f 246 cases, lease cache matches or performs better than PLRU. In 146/168 tests, the programmable
ache improves the cache performance by 25%. Another 14 solutions reduce the cache misses by
ver 50%, and the best reduction can reach as high as 82%. It is worth noting that PLUTO triples the
ache misses in ludcmp on PLRU, but such a negative impact does not happen in a programmable
ache: Both PLU TO and non-PLU TO codes have the same cache performance in ludcmp . For the
emaining 78 cases where the lease cache does not perform well, more than 90% of them add
ess than 50% misses, and none of them makes the cache perform worse than the non-PLUTO
erformance. In addition, their cache miss ratio is relatively low, and the degradation is smaller in

arger data inputs. The geometric mean miss ratios in the programmable cache are 1.00% (0.75% in
LRU) for small data size, 0.84% (0.63% in PLRU) for medium, and 0.34% (0.26% in PLRU) for large.
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Fig. 7. Miss counts for 12 multi-scope benchmarks (left) and 17 single-scope benchmarks (right) as well as 

their geometric means after optimized by PLUTO compiler. Lower is better. Values are reported for small 

(top), medium (middle), and large (bottom) inputs. 
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Table 2 summarizes the average (geo-mean) cache miss reduction by the lease cache under two
roups of benchmarks with three data inputs. Negative number means lease cache performs worse
han automatic caching (PLRU). For multi-scope tests, except for one anomaly lu , the same dis-
overy discussed in the previous section still applies to PLUTO-optimized code: C-SHEL performs
he best on small dataset, SHEL on medium dataset, and SHEL and C-SHEL on the large. The same
bservation also applies to single-scope. Excluding one anomaly gramschmidt , the best perfor-
ance is obtained by PRL on small dataset but later switched to CLAM on medium and large

atasets. These two anomalies significantly impact the lease cache performance. For PLUTO re-
ults, Table 2 shows the effect without these anomalies in parentheses. Next, we discuss why such
nomalies happen in lease cache. 
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023. 



39:18 B. Reber et al. 

Table 2. Cache Miss Reduction (in Geomean) by Lease Cache in PolyBench 

Input Size Multi-scope Single-scope 

CLAM PRL SHEL C-SHEL CLAM PRL 

SMALL 56.9% 61.5% 60.5% 62.9% 43.0% 43.7% 

No PLUTO MEDIUM 10.4% 13.4% 25.3% 22.3% 21.3% 21.0% 

LARGE 7.7% 8.7% 11.4% 11.4% 28.0% 27.9% 

SMALL 10.9% (12.1%) 9.1% (14.1%) 7.0% (14.4%) 8.0% (15.4%) 20.8% 16.4% 

PLUTO MEDIUM −4.4% ( −2.1%) −4.2% ( −2.3%) −20.9% (8.5%) −3.0% (8.0%) 5.0% 4.7% 

LARGE −4.2% −4.3% 4.5% 4.5% 0.8% 0.4% 
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Lease Cache Anomalies. There are two anomalies, lu from multi-scope programs and
ramschmidt from single-scope programs. Lease cache has 2.3 × and 35 × more misses on small
nd medium dataset in lu and 2.5 × more on small dataset in gramschmidt . PLUTO transforms
 loop and increases the number of references in it. This poses two problems for the lease cache.
he first is information loss. The effect of sampling is “diluted” in that the RI distribution for each
eference may have fewer RIs. This is likely the problem in gramschmidt . The anomaly happens
nly for PRL and not for other methods, because PRL divides a program into five phases. The
econd problem is lease-table truncation. Our current hardware has 128 entries. If a program has
ore than 128 references, then the top 128 most profitable leases are loaded, and the remaining

eferences are assigned the default lease (which is 1). This is likely the case of the two lu anomalies.
In summary, we have the following discovery on the effect of programmable cache on

olyhedral-optimized code: 

Finding. The three programmable caching schemes on PLUTO-optimized code show that: 

(7) Programs after polyhedral optimization can still benefit from the lease cache optimization,

and their best performance can be achieved by considering the scope. 

Interaction between Cache Programming and Compiler Optimization . The PLUTO compiler will
ransform the original loop structures to remove dependencies to improve parallelization and lo-
ality. These transformations include loop distribution (fission) and loop fusion. Such transforma-
ions have two impacts on the lease cache: (1) The program scope can be altered by these trans-
ormations, making the scope marker we set on the original program less optimal. (2) More array
eferences are inserted to handle boundary conditions when performing loop blocking or tiling.
s the number of references increases, lease caching is negatively affected by two problems: infor-
ation loss and lease-table truncation. The two problems happen on 3 of the 246 cases, 2 of them

or the small input size, all by only SHEL and PRL (not CLAM or C-SHEL), and only for PLUTO
ptimized loops. Other tests are not significantly affected by these problems. 
Finally, we observe that lease cache is beneficial for compiler optimized code. Polyhedral opti-
izations may not always provide perfect locality. In some cases, a compiler cannot eliminate all

ache misses because either a program cannot be further optimized, the compiler fails to apply the
ull optimization possible, or a user fails to configure the compiler properly. Providing an addi-
ional layer of optimization can be beneficial for cases where there is still room for improvement
n the cache replacement policy when applied to a transformed program. 

Our results show improvement in geomean performance in all cases with SHEL and C-SHEL
fter PLUTO optimization, excluding the anomalous results of a single outlier program (lu).
or deriche and ludcmp , PLUTO makes no locality improvement among all three input sizes.
or ludcmp on the small size, PLUTO optimization is counter-productive. It more than triples
he miss ratio in the PLRU cache. The lease cache has no such problem. It performs the same
CM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023. 
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ith and without PLUTO on all three sizes. PLUTO is slightly worse in the medium size and
he same in the large size. This shows that compiler optimization may falter in rare cases, and
he programmable cache provides another line of defense, and in this case, largely removes the
egradation. 
In this work, we show the results of lease cache on benchmarks whose loops are Static Control

arts (SCoP) [ 9 ], because the reuse interval information required by the lease assignment can be
athered statically. For parts of programs that are not SCoPs, a dynamic lease cache policy, which
athers statistics and assigns leases at runtime, could be applied to more parts beyond those that
re amenable to such compiler transformations. However, the development of such a system is
eyond the scope of this article, in which we seek to evaluate the performance of our design,
hich uses static leases. 

 RELATED WORK 

Programmable Cache . Prechtl et al. [ 29 ] presented the first study of lease-cache prototype and
ease-based programming using CLAM and PRL (Section 2.2 ). Ding et al. [ 17 ] extended the study
o show formally that the greedy algorithm, called Compiler Assignment of Reference Leases

CARL) , is optimal in that no other leases based on the same information can perform better. The
ptimality is for virtual cache only. This article formulates and solves the problem of a fixed-size
ache. 

CLAM is the first design and implementation of the lease cache in hardware and with a fixed
ize [ 29 ]. The current work adds hardware support for scope-based leasing. In addition, by adding
ISC-V 32F (floating point) instruction set extensions, our prototype runs all 30 programs of the
olyBench suite, while previous work ran just 7 of the 30. 
Prechtl et al. [ 29 ] tested for only CLAM and PRL. Ding et al. [ 17 ] included all PolyBench tests but

nly for the virtual cache. The past work did not consider the over- and under-allocation problem
f lease programming, except in PRL. Based on intervals, PRL forgoes a lease in all intervals if it
auses over-allocation in any interval (Section 2.8 ). SHEL and C-SHEL in this article are based on
copes. SHEL performs better than PRL on medium and large inputs (Finding 4 in Section 4 ). 

The greedy algorithm was first used by Li et al. [ 22 ] to assign Optimal Steady-state Lease

OSL) for storage caches. Like CARL, OSL targeted the virtual cache. Unlike CARL, which assigned
eference leases, OSL assigned a lease for each data page. The CARL optimality for reference leases
mplies OSL optimality for page-based leases [ 17 ]. Since the number of references in a program
an be many orders of magnitude less than the size of data, reference leases are more practical for
ardware caches. 
A hardware technique, Protecting Distance-based Policy (PDP) “prevents replacing a cache

ine until a certain number of accesses to its cache set” [ 18 ]. Its hardware support is similar to
ur design, including the RI sampler and cache tags. Unlike our work, PDP assigns the protecting
istance at runtime, so it stores an RI histogram in hardware. The technique is shown to improve
he performance of single-core caches and the throughput and fairness of multi-core caches. Using
 protecting distance is the same as assigning the same lease to every data access. Chen et al.
 11 ] called such a policy the uniform lease (UL) and showed the theoretical conditions when
L is equivalent to LRU and the common cases in practice when one is better than the other. In

ease programming, a program may assign a different lease for each reference. Lease programming
erforms better than LRU (Finding 1). 
Lease programming uses dual leases, supported by our hardware prototype (Section 3 ). In cache
anagement, Talus [ 6 ] and SLIDE [ 33 ] partitioned the access stream to have the effect of dividing

he working set for LRU and other cache policies. The dual lease creates a similar effect through
ache programming, which localizes their use for a single reference rather than for all. 
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023. 
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Working-set Caching . As cache allocation, lease programming is related to the working-set the-
ry. Denning defined the working set as the data touched in the last τ accesses [ 13 –15 ]. In virtual
emory management, physical memory is allocated based on the dynamic working set. In a recent

urvey paper, Denning summarized key properties including the optimality of the working-set pol-
cy [ 16 ]. The optimality has two conditions: the first is steady-state behavior within each phase;
he second is variable size cache memory. 

Similar to the working-set policy, PRL divided an execution into fixed length intervals but tar-
eted a fixed-size cache. PRL intervals may be too coarse, so it misses phase variation inside a PRL
nterval, or too fine, so it misses the effect of cross-scope RIs. This article presents scope-based so-
utions and solves the programming problem using the structure of loops. Each scope is a loop nest
hat has a uniform data usage pattern. In addition, C-SHEL accommodates cross-loop reuses with
ross-scope leases. PRL requires a profiling step, while SHEL and C-SHEL can use profiling (as in
his study) or compiler analysis, for example, static sampling [ 12 ], which has been demonstrated
or (virtual-cache) lease programming by Ding et al. [ 17 ]. 

Program Optimization . Loop-nest optimization has long been developed and is critical in im-
roving the cache performance [ 3 , 4 , 36 , 37 ]. Recent work includes polyhedral optimization [ 27 ]
nd sparse optimization [ 24 ] for computation and for data [ 32 ]. Program optimization targets LRU
aches. This has led to a growing list of compiler and runtime techniques to model the LRU cache
erformance [ 5 , 8 , 10 , 12 , 21 , 34 ]. While it is beyond the scope of this article, programmable cache
as the potential to enable greater optimization than what is possible with automatic caches, as
ell as being a new target for static analysis. 

 CONCLUSION 

e have designed, implemented, and tested a lease cache architecture prototype with support
or RISC-V with floating point instructions. We have formulated the problem of optimal cache
rogramming using leases, presented two novel algorithms, SHEL and C-SHEL. Furthermore, we
ave compared four solutions on the full suite of PolyBench programs with three input sizes. The
esults show that (1) cache programming is overwhelmingly better than automatic PLRU caching;
2) this improvement potential is significant even when program data size is far larger than the
ache size; (3) the best strategy is SHEL, which ignores inter-scope reuses; (4) SHEL realizes most
f the potential of cache programming; and (5) after polyhedral optimization, apart from a few
utliers, programs still benefit from the lease cache, and their best performance is achieved by
onsidering the scope as in SHEL or C-SHEL. 

PPENDICES 

 REUSE INTERVAL SAMPLER 

he objective of the sampler is to profile a program and provide the lease compiler with the RI
istribution necessary to generate leases. This allows the lease compiler to operate independently
f instruction set architectures (ISAs) . The lease cache hardware is designed to support lease
olicy management for all eviction possibilities: 

• Zero vacancy : no cache line has an expired lease. 
• Single vacancy : exactly one cache line has expired. 
• Multiple vacancies : more than one cache line has expired. 

For a single vacancy, the eviction selection is obvious. The zero vacancy case requires the appli-
ation of an auxiliary policy, because there is no line eligible for eviction according to the current
ease values. Multiple vacancies are handled by prioritizing the eviction of low index cache lines.
CM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023. 
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Fig. A.1. Reuse interval (RI) histograms for four of the references of the five-point stencil program. Each row 

represents a different reuse interval that is observed for each reference. References with no reuses (b[i][j] 

and a[i-1][j]) are omitted. 

Fig. A.2. Hardware reuse interval sampler system overview. The text file snapshot shows the sampler output. 
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e  
he current lease cache hardware handles all eviction cases, stochastically assigns dual leases to
ccesses, and monitors cache utilization/vacancy. 

Consider the five-point stencil; from its inspection there are six memory references. The result-
ng reuse interval distribution of the program is straightforward, as given in Figure A.1 . When
ssembled and linked, however, additional references are present in the form of stack manipu-
ations and similar operations. The manner in which the binary is compiled has a direct impact
n how the leases are to be practically applied. This is not limited to compiler nuance. Take, for
xample, the RISC-V ISA [ 35 ], which defines 32 general purpose registers. When compiled for the
mbedded variant of the ISA only 16 registers are used. This results in increased memory ref-
rences to data that would otherwise be stored in the register file. The clairvoyance breadth of
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he compiler required is a practical issue when considering lease policies as a solution towards a
rogrammable cache. 
The hybrid solution to this issue is a front-end lease cache hardware integrated with the lease

ompiler as the back-end. The hardware generates the reuse interval distribution for the compiler,
hich then generates leases based on it. In this way, the lease compiler requires no ISA/compile
nowledge and can be applied to any system, given that this reuse interval sampler hardware can
e integrated. 
Operation of the Hardware Reuse Interval Sampler . The sampler is essentially a communication

nooper. It is integrated within the request bus between the core and next level memory, which
n this case is the internal cache. The sampler monitors the memory accesses between the RISC-V
ore and memory, periodically sampling bus transactions, and generates the resulting reuse inter-
als. The sampling period is an application heuristic—the objective is to gather reuse intervals for
ll memory references within a program. However, this is not a necessary condition. References
ithout collected reuse intervals are assumed sparse and contribute minimally to program exe-

ution. This subset of references is instead associated with a default lease. A 64-entry hardware
ookup table caches two access fields—the target address (search field) and address of the reference
nvoking the access. An additional counter is associated with each entry of the table to record the
unning reuse interval of the reference (incremented at every access). The table is populated at
ariable intervals using a nine-bit linear feedback shift register (LFSR) . The LFSR generates a
seudo-random sequence that seeds a sampling counter, which decrements at every access. When
he counter expires, a new sample is started by adding the current access fields to the table. The
ampling counter is re-seeded with the next number generated by the LFSR. Using a nine-bit LFSR
esults in an average sampling rate of 1 sample per 256 accesses. 

A block reuse is indicated by an access target address matching an entry of the table. At this
oint, the sample is complete, and the reuse interval for the memory reference should be recorded.
he entry of the table that resulted in the match is evicted and its fields are stored into a sample
uffer, along with the current time (current trace length). Eviction also forcibly occurs if all entries
f the table are active when the sampling counter elapses. To allocate space for the new sample, the
ldest entry of the table is evicted. Because this entry was not evicted due to a reuse, it is written
o the buffer with a negative RI to flag it as a non-reuse for the lease assignment algorithm. 

Reuse interval sampler parameter selection is heuristic and depends on the program being exam-
ned. Furthermore, there is a direct relationship between population and eviction rates. Increased
ampling frequency results in more active table entries, bringing the table to full capacity more
uickly. The rate at which the table becomes bottle-necked limits the magnitude of reuse inter-
als that can be recorded by the table. As the sample rate increases, capacity evictions become
ore frequent—removing entries with the largest active running intervals, and so long RIs have a

maller chance of being recorded. 

Hardware Sampler Extension to Support Scoped Lease Policies . The reuse interval sampler pro-
osed in Prechtl et al. [ 29 ] is modified to record not only the instruction address of the memory
eference, but also to record the specific phase of that access (Figure 2 ). This modification is what
nables the SHEL and C-SHEL algorithms to determine which references belong to which scope
uring lease generation. 

 RUNTIME RESULTS 

igure B.1 shows the runtime of each benchmark in terms of clock cycles. The penalty of a cache
iss in our system is 16 cycles. SHEL and C-SHEL require CPU stall cycles to repopulate the lease
CM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023. 
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Fig. B.1. Clock cycles for execution of all benchmarks using each cache leasing technique, normalized to 

PLRU performance. 
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c

ookup table on phase change. This effect is greatest on cyclic benchmarks with small data sizes,
.g., lu and ludcmp . However, for medium and large data sizes, this effect is minimal. At each
ataset size, SHEL and C-SHEL still outperform policies with no CPU stall. 
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