Cache Replacement Based on Reuse-Distance Prediction

Georgios Keramidas
University of Patras

keramidas@ece.upatras.gr

Abstract

Several cache management techniques have been
proposed that indirectly try to base their decisions on
cacheline reuse-distance, like Cache Decay which is a
postdiction of reuse-distances: if a cacheline has not
been accessed for some "decay interval” we know that
its reuse-distance is at least as large as this decay
interval. In this work, we propose to directly predict
reuse-distances via instruction-based (PC) prediction
and use this information for cache level optimizations.
In this paper, we choose as our target for optimization
the replacement policy of the L2 cache, because the gap
between the LRU and the theoretical optimal
replacement algorithm is comparatively large for L2
caches. This indicates that, in many situations, there is
ample room for improvement. We evaluate our reuse-
distance based replacement policy using a subset of the
most memory intensive SPEC2000 and our results show
significant benefits across the board.

1. Introduction

Despite the dedication of an increasingly larger
portion of the chip area to cache hierarchies and the
constant improvement of prefetching, main-memory
access latencies still represent a significant factor of the
performance loss in many applications. The problem is
expected to become even more serious in CMPs where,
on one hand, off-chip bandwidth becomes a serious
bottleneck and, on the other, cache interference
between different processes can be catastrophic. As a
result, offering improved cache management is a
necessity.

Reuse-distance analysis is a powerful tool to
characterize the memory behavior of applications
[4,13,14,15]. In our work, we measure reuse-distances
as the number of memory accesses between two
consecutive accesses to the same cacheline. Unlike
stack distances, which measure the number of unique
memory references between two consecutive accesses
to the same cacheline, reuse-distances can be easily
captured using functionality supported in today's
hardware and OS [4].

In this paper, we propose the concept of reuse-
distance prediction for run-time optimizations. We
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show that dynamic, instruction-based, reuse-distance
prediction is feasible and we introduce reuse-distance
predictors enhanced with the necessary confidence
mechanisms. Our prediction affords us high accuracy
with low complexity and low storage requirements.

We demonstrate run-time reuse-distance prediction
by applying it to managing the replacement policy of
L2 caches. The L2 is a critical element in the
performance of all modern computers. It is the last line
of defence before hitting the memory wall and
experiencing the long latencies posed by main memory
and off-chip busses. Thus, it becomes imperative to
manage it for the best possible hit rate. The reason why
the well known LRU algorithm is not good enough for
the L2 is twofold.

First, L2 caches are typically highly associative
which means that when a new item is placed into the
cache, it has to travel all the way down the LRU stack
until it becomes the LRU candidate for replacement.
Lines with very large reuse-distances (which are likely
misses) will still occupy useful space in the cache
without contributing to the hit rate. Ideally, those lines
should be replaced with lines with short temporal reuse-
distance, even if such decision requires a circumvention
in the time ordering introduced by the LRU algorithm.
The second reason why LRU is not ideal for L2 caches
is the filtering effect of the L1 caches. L2 caches are
hidden behind L1 caches and accessed upon an L1
miss. This often inverts the temporal reuse patterns of
the addresses as they are observed by the L2. These
reasons indicate that L2 caches require more
sophisticated replacement strategies than pure LRU
replacement decisions.

2. Reuse-Distance Prediction

Reuse-Distance provides the foundation of our
analysis. The reuse-distance of an address is defined as
the number of intervening events —a notion of time—
between two consecutive references to this address. The
wall clock of our analysis is the memory references as
they appear in the L1 data cache. Since our target is to
use the reuse-distance prediction to take informed
decisions for cache management, we consider reuse-
distances at a cacheline granularity (assuming 64B
block). Finally, we collect reuse-distances not with
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Figure 1. Structure of the Predictor.

their actual scalar value but rather as the log, of their
value, which we will refer to as buckets (see Section 3).

In the following subsection, we describe a new
predictor which is able to predict the next reuse-
distance of a cacheline. The key idea is to relate a
cacheline to the load/store instructions (PC) that access
the relevant cacheline and make a prediction according
to the instruction’s previous behavior.

2.1. A New Predictor

Figure 1 depicts the structure of the instruction-
based predictor. The predictor is composed of a Context
Addressable Memory (CAM), called PC History Table
(PCHT), that is responsible for storing active PCs. Non-
active PCs are available for replacement. LRU or
Decay can be used to manage refill. The second array
(SRAM), indexed by the CAM, is the Predicted Bucket
History Table (PBHT) which stores the predicted reuse-
distance “bucket” for the corresponding PC. Attached
to each predicted bucket is a field which contains
information concerning the confidence for each
prediction.

Given such a structure, the operation of the
instruction-based predictor consists of two basic
functions: lookup and update:

* Lookup: Lookup is the operation that predicts reuse-
distances (buckets) for each PC. It is a straightforward
procedure: the instruction (PC) that brings the new
address is used as an input to the PCHT. A PCHT hit
means that this PC has already appeared in the
program execution while a miss indicates that this PC
is encountered for the first time so no prediction can be
made. In case of a hit, the PCHT selects the
corresponding predicted bucket as well as the
confidence of the prediction. Predictions are issued
only if the value stored in the confidence counters is
above a given threshold.

* Update: Update is the operation to refresh the PCHT
and the PBHT when a reuse-distance of a previous
address has been collected, so the history information
of these tables is up-to-date to the extent possible. The
inputs to this mode of operation are a PC and a newly
measured reuse-distance. This information is traced by
a hardware structure, called sampler. Once the
sampler relates a reuse-distance to a PC, the predictor
is accessed for update. If no entry exists for the given
PC, a new entry is added, the measured reuse-distance
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bucket is stored in the PBHT, and the corresponding
confidence counter is cleared. If the predictor already
contains information about the particular PC, we
check if the new measured bucket and the bucket
stored in the PBHT match. The match operation
determines how should the confidence counters be
updated (incremented or decremented). Finally, if the
value stored in the confidence counters is zero and a
mismatch occurs, then the bucket stored in the PBHT
is considered as wrong and is replaced with the new
recorded bucket.

The confidence counters are a crucial parameter of
our design, since they affect the effectiveness of the
predictor in terms of accuracy and coverage. In order to
identify the appropriate parameters, we conducted an
experiment varying their size as well as their threshold
(we call this safe limif) above which the predictions can
be considered as valid. Values below the safe limit
indicate that the predictor is unable to make a
prediction. In all cases, a predicted bucket is replaced
only if the confidence counter is zero.

2.2. Effectiveness of the New Predictor

To show the predictable nature of the reuse-
distances as well as the effectiveness of the proposed
predictors, we select the 9 most memory intensive
benchmarks of the SPEC2000 suite. Details such as
benchmark initialization, phase skipping and processor
configuration are given in Section 5.

Figure 2 depicts the results of our analysis. Every
set of bars corresponds to a specific benchmark (shown
at the bottom of the set) and every pair of bars (black
and grey bars) reflects a run with different counter size
and safe limit. The numbers above the benchmark
names indicate the maximum value of the confidence
counter and the values juxtaposed to the x-axis show
the safe limit that we use in each run. Finally, the black
bars show the measured accuracy normalized to the
total number of the predictions issued in the whole trace
execution, while the grey bars indicate the coverage of
the predictions.

As we can see, different benchmarks exhibit
different behavior when the size and the safe limit of
the counters vary. art and galgel have a very stable
behavior, reporting more than 85% accuracy and
coverage irrespective of the counter configuration. mcf,
facerec and apsi are also highly predictable achieving
almost 70% of accuracy and coverage in most
configurations. On the other hand, ammp, gcc, twolf
and vpr are less predictable compared to the previous
benchmarks and they are very sensitive to the counter’s
configuration.

For the rest of this paper, we consider a constant
confidence mechanism (3 as the maximum value and 2
for the safe limit). Although this is not the optimal
configuration over all the benchmarks, it is a
compromise offering relatively high accuracy with a
reasonable coverage.
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Figure 2. Accuracy and Coverage for various confidence mechanisms
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Figure 3. Embedded sampler in the predictor
3. Practical Implementations

A practical implementation of the proposed
prediction must address a number of issues. In this
section we detail realistic run-time implementations.

Predictor Size. The results presented in Figure 2
were collected using infinitely large prediction tables.
We performed simulations to determine how a limited
size predictor influences the accuracy and the coverage
of the predictions. Our experiments have shown that, in
all benchmarks (except from a slight drop in apsi), a
512-entry predictor is sufficient to provide the accuracy
and the coverage presented in Figure 2 (where infinitely
large prediction tables were used), but due to lack of
space we do not present simulation results.

Under this scenario, the memory overhead
introduced by our predictor is the following: 512 entries
x 39 bits per entry (32 bits for each PC + 5 bits for the
predicted bucket information + 2 bits for the saturating
counters) = 2.5 KB, which is a reasonable overhead
compared to a 512KB or IMB L2 cache. Also, since the
table is small, it is not latency sensitive and can be
located on-chip.

Finally, the per-cacheline storage overhead is
reasonable as well. Every cacheline should be 5 bits
wider to accommodate its predicted bucket if available.
Assuming an L2 cache with 64B cachelines, this
overhead is equivalent to 1% additional memory.

Sampling. At first sight, the collection of the
reuse-distances seems impractical for run-time
implementations. Many addresses (corresponding to
unverified predictions) must be traced, waiting for a
match (next access) in order to identify their reuse-
distance and associate it with an instruction (PC). This
requires very large tables to store the addresses and
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additional hash tables to speed up the update operations
of the predictors. Fortunately, previous work proved
that there is no need to collect reuse-distances for all the
addresses. By selecting a few addresses at random and
trace only those addresses for their reuse-distance, it is
possible to capture the memory behavior of the
executable program [4,13]. Sampling allows us to keep
only a small number of watchpoint registers and still be
able to measure very large reuse-distances.

In our case we sample reuse-distances by tracing
only one unverified prediction per PC even if further
predictions are made for those PCs. Figure 3 shows an
embedded sampler. An address CAM is coupled with
the predictor. The address CAM matches addresses to
unverified predictors. The sampler overhead besides the
address CAM includes a “timestamp” field that is used
to compute the reuse-distance as the difference of the
current “time” to the timestamp. This raises the storage
overhead of our base 512-entry predictor to 6.5 KB,
which is still quite reasonable.

Quantization. The second fundamental
technique that allows a practical implementation is the
quantization of the reuse-distances to buckets. It would
be impractical to store very large reuse-distances since
the predicted reuse-distance should be stored in every
line of the managed caches. This will lead to an
unacceptable increase of the cache size, but quantizing
the reuse-distances to buckets comprising power-of-two
ranges, only a few additional bits per cacheline are
required. We choose to use the following 20 buckets for
quantization:

[0][1:2][3:6]...[2"-1:271.2]...[0.5M: 1M][ 1 M-inf]

We refer the reader to [4] for more information
about the sampling and the quantization techniques.

4. Managing Replacements

Having reuse-distance information for each
cacheline allows us to approximate an optimal
replacement algorithm because we can “see” the
future. The idea is to replace the cacheline that is going
to be used farthest in the future according to the reuse-
distance information. There are a few caveats, however.

These will be discussed below where we first explain



what we are trying to accomplish in simple terms and
leave the actual implementation details last.

Assume each time we access a cacheline we tag it
with a timestamp and its reuse-distance prediction if
available. On a miss we search the cache set. We look
for the cacheline that is going to be accessed farthest in
the future by computing its Estimated Time of Access
(ETA). The ETA of a line is the time it was last
accessed plus its predicted reuse-distance minus the
current time. In other words, a cacheline’s ETA is the
(predicted) number of accesses that separate the present
moment from its next access (Figure 4). But what
happens if we do not have reliable reuse-distance
information about a cacheline, or no prediction at all?
In this case we are conservative and since we have very
low visibility into the future we prefer to look in the
past. Thus, cachelines without reuse-distance prediction
or whose ETA is negative —the predicted access time
has passed— receive an ETA of 0 as if they were going
to be accessed immediately.

Assume now that we select the line with the ETA
farthest in the future. Is this enough for making a
replacement decision? The answer would be yes if we
had full information about a// the cachelines. Since we
are dealing only with partial information, the line with
the largest known ETA is not necessarily the best
candidate for replacement. Thus, we need to also look
in the past. For this we use the notion of Decay to
compare the importance of cachelines for replacement.
The difference of the current time and a line’s last
access time is the Decay time of a line, i.e., how long
the line has remained unaccessed (Figure 4). The longer
a line remains unaccessed the higher the probability
that it is useless. Cache Decay [7] is based on this
principle. This line of reasoning is also consistent with
LRU: the line with the longest Decay time is the LRU.

We now have two candidates, quantified by
exactly the same metric: time measured in accesses.
One candidate is the line with the largest ETA (the ETA
line), and the other is the line with the largest Decay
time (the LRU line). We pick the largest of the two for
replacement (Figure 4). This guarantees that if we have
reliable information about large reuse-distances, the
replacement decision will be based on those; otherwise
we revert to LRU replacement.

The conceptual description of our replacement
algorithm relied on timestamps, calculations (to find
ETA and Decay times), and comparisons; rather
complicated to implement. In fact, a realistic and

efficient implementation does not need to use
timestamps or  perform  calculations. The
implementation is based on hierarchical decay

counters that measure time automatically as in [7]. The
global counter is incremented by processor accesses.
An important change we introduce is that our local
cacheline counters count in exponential steps. This is
accomplished by triggering each successive transition
of the local cacheline counters from a successively
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Figure 4. The Proposed Replacement Algorithm

more significant bit of the global counter. To reduce
overhead we can truncate a few low-order bits (e.g., 6
to 8) from the local counters reducing the resolution of
time for small reuse-distances and decay times without
a significant impact on results.

Both the Decay time and the ETA of a line are
local cacheline counters. Decay counters start counting
when a line is accessed and are read when are needed
for replacements. The ETA counters are set whenever a
reuse-distance prediction is made for a cacheline and
count backwards towards 0 (where they stop). It is
evident that at replacement time the ETA counters will
contain the time /eft for the next access and the Decay
counters the time that passed since the last access. The
remaining functionality consists of selecting the largest
ETA and Decay in the set and then selecting between
them.

5. Evaluation

We performed our experiments using detailed
cycle accurate simulations. Our baseline processor is a
dynamic 8-way superscalar processor. We simulate a
16K, 64B block, 4 way, dual-ported, 1 cycle L1 data
cache and 8-way, 15 cycle, unified L2 cache of various
sizes. The main memory has a 250 cycles latency and is
able to deliver 16 bytes every 8 cycles. We use various
L2 cache sizes in order to have a good understanding
about the L2 cache behavior. The instruction-based
predictor utilizes 2-bit confidence counters and a
prediction is considered safe if the value stored in the
confidence counters is greater or equal to two.

For this study, we select a subset of the SPEC2000
suite for which Belady’s optimal algorithm [1] exhibits
more than 5% miss rate reduction over the LRU. As a
result the applications under optimization are art, mcf,
gcc, facerec, vpr, galgel, ammp, twolf, and apsi. These
applications are also the most memory intensive
applications in the SPEC2000 suite. We simulate 200M
instructions for every benchmark after skipping 2B
instructions for mcf and vpr, 3B for ammp, and 1B for
the rest of the benchmarks.

Figure 5 shows the results of our experiments in
terms of miss rate reduction compared to the LRU for
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various L2 cache sizes. Our replacement policy reports
significant improvements for the majority of the
benchmarks and cache sizes. More specifically, in art,
our proposal reduces the misses by 37% in the 1M
cache, 22% in the 512K cache, and 9.6% in the 256K
cache. However, there is no performance benefit for the
2M cache. art is an interesting benchmark for cache
management. According to [13], art is characterized by
large working sets, reporting very high miss rates, but
this trend is inverted in caches larger than 2M, since art
fits in these caches and so there is no space to enforce
better replacement decisions. On the other hand, our
algorithm does very well in reducing the number of
misses in the 1M cache. In this case, we manage to
lower the miss rate to 25%, while the LRU reports 62%
miss rate. The 1M case offers the best improvement
ratio, because the possibility for a cacheline to be
replaced promptly before it is used is maximized.
Hence, the potential benefit of better replacement
decisions is significant (many misses turn into hits).

gcc follows a similar behavior although in smaller
caches. A 512K cache is able to accommodate its
memory requirements, so the 256K cache is the best
candidate for management. In fact, gcc experiences the
greatest miss rate reduction (almost 40%). Actually, the
miss rate reduction is totally correlated with the
application’s working set size relative to the cache size.
Going to larger caches, the improvement decreases
because most of the benchmark’s working sets fit in the
cache. Under this scenario, ammp, galgel, twolf, and
apsi show the best improvements in the 512K cache
(8.8%, 4%, 5.1%, 6.1% respectively), while facerec
offers the higher reduction in the 256K cache (6.8%).
However, the situation differs in mcf. mcf is a very
memory intensive application and a 2M cache is still
not able to accommodate its working set. As a result,
the best improvements are achieved in larger caches
(10% miss rate reduction in the 2M cache).

Finally, vpr is the only benchmark where our
management lags behind the LRU. The reason for this
reduction —albeit very small— is that the specific
confidence mechanism used in those experiments
reports only 14% coverage and 34% accuracy. Of
course, there is always the opportunity of increasing
accuracy and coverage by choosing a different
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Figure 6. IPC improvement

predictor configuration or creating more sophisticated
predictors.

Figure 6 shows the percentage of IPC improvement
over the LRU, for various cache sizes and for the
applications that we consider in this analysis. Our
reuse-distance based replacement policy manages to
speedup all applications (except vpr). art, gcc, and
ammp show the greatest performance gains —for
specific cache sizes. A 60% speedup is achieved in art,
43% in ammp (in the 1M cache), and 44% in gcc (in the
256K cache). Our proposal reports considerable
speedups in the other benchmarks as well, albeit in
different cache sizes. As we have already mentioned,
the improvement in each benchmark is related to the
cache size. The best improvement (over all cache sizes)
is 19% in facerec, 26.7% in galgel, 16% in twolf, and
10.6% in apsi. On the other hand, the LRU algorithm
performs better than our proposal in vpr which shows
an almost 6% slowdown as a result of selecting the
specific confidence counter configuration.

6. Previous Work

Replacement Algorithms. The limits of the cache
replacement algorithms were initially studied by
Belady [1] who formulated the area by comparing
random replacement algorithm, LRU and an optimal
replacement algorithm that looks into the future. In this
work, program traces were used and it was more of a
way to provide a better understanding of the cache
behavior rather than to implement a real cache and
related replacement algorithms. Since then many
researchers proposed schemes aiming to provide better
replacement decisions. A very popular scheme is the
LRU-K algorithm [2] which is observes past reuse
distances. Jeong and Dubois introduce the idea of cost
sensitive replacement algorithms [5]. The authors
proposed different variations of the LRU by assigning
finite costs between load and store misses. A different
approach is presented by Karlsson and Hagersten [3].
Their method reduces the miss rate by carefully
selecting L1 blocks.

Another class of replacement techniques involves
the exploitation of the generational behavior of a cache
block [7]. According to the authors, it is possible to
identify dead blocks in the cache as well as to predict



the time at which the next reference to a cacheline will
occur. Takagi and Hiraki further explore the predictable
nature of the time between two consecutive uses of the
same cacheline and provide a replacement algorithm
which collects access interval distributions [10].
However, their algorithm requires very large per-
cacheline counters and complex computational effort.
Abella et al. [8] proved that the original cache decay
methodology, although very successful in the context of
the L1, is not directly applicable to the L2. The authors
propose flexible event counters to adapt the decay
interval.

Most of the work in the context of the L2 caches
focuses either in the identification of dead lines (called
last touch prediction) or in cache bypassing schemes. In
these studies, decisions are made either based on the
program counter (PC) of the instruction that generates
the cache access [9], or on the memory address of the
access [12]. The later techniques suffer from low
accuracy, long training times and require significant
storage to yield replacement benefits. The former
techniques were inspired by the work of Lai and Falsafi
[11] who used the PC-based last-touch prediction
information in the context of multiprocessor cache
coherent protocols. Compared to these approaches, our
instruction-based (PC) prediction predicts the reuse-
distance of the memory references which allows us to
directly decide which cache block is going to be
accessed farthest in the future.

Predictability of Reuse Distances. Reuse-
distance analysis has proven to be a good mechanism to
predict the memory behavior of the programs. Previous
work has shown that both whole program [14] and
instruction-based [15] reuse-distances can be predicted
accurately across program inputs using a few profiling
runs. Recently, Fang et al. [15] use profiling and then
statically predict reuse-distances across various data
sets in order to estimate whole-program miss rates for
L1 and L2 caches. While this paper is the first to collect
reuse-distance information at run time and not at
compile time, the proposed predictors are trained by
profiling runs and used statically for analysis. In
contrast, we propose dynamic, instruction-based, reuse-
distance prediction that directly applies its predictions
to optimize the execution of the (running) program.

7. Conclusions

In this work we demonstrate that the instruction-
based reuse-distance prediction can be used for cache
optimizations. We propose a simple, small and highly
accurate reuse-distance predictor which are triggered by
the instructions that touch cachelines and we evaluate
the accuracy and the coverage of the predictors. In this
paper, we choose to apply the proposed approach in
improving the replacement decisions in the L2 cache.
Our experiments, using cycle accurate simulations,
report a significant increase of the overall performance
in the most memory intensive applications of the
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SPEC2000 suite. For specific cache sizes, we obtained
a 60% speedup in art, a 44% in gcc and 43% in ammp.
A modest, although noticeable, speedup is observed in
the rest of the applications. The storage overhead of the
predictor is negligible compared to a large L2 cache
(less than 2% in total). We believe the concepts
presented here can be the source for many cache-level
optimizations.
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