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Abstract: Almost all of the modern computers use multiple cores, and the number of cores is expected to
increase as hardware prices go down, and Moore’s law fails to hold. Most of the theoretical algorithmic work
so far has focused on the setting where multiple cores are performing the same task. Indeed, one is tempted to
assume that when the cores are independent then the current design performs well.
This work infirms this assumption by showing that even when the cores run completely independent tasks, there
exist dependencies arising from running on the same chip, and using the same cache. These dependencies cause
the standard caching algorithms to underperform. To address the new challenge, we revisit some aspects of the
classical caching design.
More specifically, we focus on the page replacement policy of the first cache shared between all the cores (usually
the L2 cache). We make the simplifying assumption that since the cores are running independent tasks, they
are accessing disjoint memory locations (in particular this means that maintaining coherency is not an issue).
We show, that even under this simplifying assumption, the multicore case is fundamentally different then the
single core case. In particular

1. LRU performs poorly, even with resource augmentation.
2. The offline version of the caching problem is NP complete.

Any attempt to design an efficient cache for a multicore machine in which the cores may access the same memory
has to perform well also in this simpler setting. We provide some intuition to what an efficient solution could
look like, by

1. Partly characterizing the offline solution, showing that it is determined by the part of the cache which is
devoted to each core at every timestep.

2. Presenting a PTAS for the offline problem, for some range of the parameters.
In the recent years, multicore caching was the subject of extensive experimental research. The conclusions of
some of these works are that LRU is inefficient in practice. The heuristics which they propose to replace it are
based on dividing the cache between cores, and handling each part independently. Our work can be seen as a
theoretical explanation to the results of these experiments.
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1 Introduction

Almost all of today’s computers use multiple cores,
and the number of cores is expected to increase as
hardware prices go down [4]. Yet, it is not clear what
are the important aspects of this change, and how to
design the rest of the computer, hardware and soft-
ware alike, to incorporate it. In the theory commu-
nity, there have been several recent works on the sub-
ject, as well as a dedicated workshop [20]. There are
several ways to model this setting, such as the PRAM
model [10], and the Bridging model [21] (see [13] for
a survey on the need for a good model and the chal-
lenges in finding one). However, all these models focus
on the limit where many cores are working together on
the same data (e.g. sorting a large array [6]). An im-
plicit assumption in almost all the previous theoretical
work is that if the cores are running completely inde-

pendent tasks, or if they are running algorithms which
are inherently parallel (such as brute force search in
a large space), then there is not much that needs to
be done, and the situation is similar to the single core
setting. Our goal in this work is to revisit this as-
sumption.

1) Replacement Policy for a Single Core.
In the single core case, the processor presents the

cache with a series of requests for memory locations,
where each request appears after the last one has been
served. The time to serve each request depends on
whether the memory location is in the cache (a cache
hit occurs) or not (and then a miss occurs and the lo-
cation is fetched from the main memory). If the cache
is full, the new memory location enters the cache, and
another memory location gets evicted. The exact miss
time is not important, and we measure algorithms by
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the number of misses they perform on a given series
of requests. In this case, [2] showed that the optimal
(offline) algorithm to choose which location to evict
is Furthest in the Future (FITF), which evicts
the memory location which will be used in the latest
possible time.

The more interesting question is the online version
of the problem, in which the algorithm sees the next
request only after serving the last one. In this case,
the common measure for the performance of an algo-
rithm is its competitive ratio, or the number of misses
it makes divided by the number an optimal offline
algorithm would make, on the worst case sequence.
For the caching problem, attaining a good ratio is im-
possible, as all deterministic caching strategies have a
competitive ratio which is at least k, the size of the
cache. In the same time, we know that in practice
very simple strategies give good results. In their sem-
inal paper on caching, Sleator and Tarjan elucidated
this disparity, by introducing resource augmentation,
which compares the online algorithm using a cache
of size k to an offline algorithm which uses a smaller
cache [19]. Let Least Recently Used (LRU) be
the policy which evicts the page for which his last use
was the earliest in time. [19] proved that when LRU
uses a cache which is a constant factor bigger than the
offline algorithm, its competitive ratio is constant.

Not only does LRU have nice theoretical features,
it also works well in practice. Although it is a little
complicated to exactly keep track of the exact time
in which every memory location in the cache was
used, heuristics which approximate LRU’s behavior
are used in most of the standard caches.

2) Our Results
The main goal of this work is to show that even

when cores are run “independent” applications, there
are still interesting theoretical problems which arise.
We give an example for one such problem: designing
a cache replacement policy. We do so by present-
ing a model for the multicore cache, and by showing
that even when different cores access a disjoint set of
memory locations the current cache replacement pol-
icy does not perform well. The main negative result
is
Theorem 3.1 (informal) For any α > 1, the compet-
itive ratio of LRU is Ω(τ/α) when the offline algo-
rithm gets a cache of size k/α, and τ is equal to the
miss time divided by the hit time.

Moreover, we prove that the offline problem is NP
complete.

On the positive side, we illustrate that a weak form
of FITF does hold:
Theorem 4.1 (informal) Given that an offline sched-

uler evicts a memory location which belongs to a spe-
cific core, it should evict the memory location which
is used furthest in the future.

Our two theorems essentially say that given the
amount of cache which is dedicated to each core, it
is easy to decide which location to evict; in contrast
the main challenge is to divide the cache between the
cores. We use this result to design a Polynomial Time
Approximation Scheme (PTAS), when the number of
cores and the ratio between miss time and hit time
are constant.

The result about the inefficiency of LRU can be
seen as a theoretical explanation to practical exper-
iments, which show that caching is problematic in
multicore machines. A more interesting connection to
practical work comes from the heuristics which are be-
ing studied today [8, 18]. These heuristics are phrased
in terms of allocating cache to each core, while in its
own allocated share the core performs LRU. This fits
well with Theorem 4.1, as LRU is a pretty good ap-
proximation of FITF (in theory and in practice), and
we know that after allocating a part of the cache to
each core then FITF is optimal.

3) Related work
There are several recent results on the design of

caches for multicore machines, e.g. [12, 14]. These
results propose quite radical designs, and show that
they have some desirable properties, such as maintain-
ing coherency, but make no attempt to give a compet-
itive analysis of the runtime.

There is a large body of work on sharing a cache,
although in very different models. [3] consider the
case of sharing a cache among threads, which can be
scheduled to perform different parts of the computa-
tion. A different approach was taken by [1], which
considers a case in which there are n processes shar-
ing a cache, but if one process makes a miss all the
processes stop issuing requests until this process gets
served. This assumption is not realistic in our case,
but simplifies greatly the design of the algorithms.

A more practical approach was taken by [5], who
proposed dynamic OS partitioning of the L2 cache be-
tween cores. This was continued in the work of [15],
who wrote a simulation to evaluate different strategies
to partition the caches between two duo-core proces-
sors. Other examples for papers which evaluate dif-
ferent sharing policies are [18] (who use Bloom filters)
and [8]. The underlying assumption in these works is
that the cache should be partitioned between cores,
and each core should manage its own cache.
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2 Preliminaries
To state the problem of multicore caching, we intro-

duce some notation. Let {1, . . . , n} denote the cores,
and let k be an upper bound on the size of the cache.
The input to the caching problem is n lists of requests
to memory locations, where we let rc1, . . . rcmc denote
the requests made by core c. We say that two requests
are equal if they ask for the same memory location,
and also allow empty requests, rcj = ⊥. This type of
request means that the core is using its L1 cache, or
performing some computation which doesn’t require
memory access. Let Xc denote the set of memory lo-
cations that core c requests. We have |Xc| ≤ mc, and
Xc ∩Xd = ∅ for c �= d.

We say that the n lists of requests can be satisfied in
time T , if there exist sets S1, . . . , ST (which describe
the content of the cache at each time step), and func-
tions f1, . . . , fn (which describe when each core gets
served), such that

1. Size constraint: For every time 1 ≤ t ≤ T , |St| ≤
k.

2. Requests served in order: fc : {1, . . . ,mc} �→
{1, . . . , T} is strictly monotone.

3. Requests are served: If rci requests item xc ∈ Xc
then xc ∈ Sfc(i).

4. The cache contains memory locations, or is fetch-
ing memory locations: For every t, we have

St ⊂
⋃
c

(Xc ∪ X̃c)

where X̃c = {x̃c : xc ∈ Xc} is a set of formal
variables which mean that the cache is currently
copying the memory location xc into some cache
cell. We say that xci is evicted at time t, if xci ∈
St−1 but xci �∈ St. We say that xci is fetched at
time t, if xci , x̃ci �∈ St−1 and x̃ci ∈ St.

5. Fetching takes time τ : If xc ∈ St and xc �∈ St−1,
then for every t− τ ≤ j < t, we have x̃c ∈ Sj .

6. No prefetching: For every t, if x̃c ∈ St then there
exists a request rci for the location xc such that
fc(i) ≤ t, and fc(i+ 1) > t

Some of the design choices, e.g. no prefetching,
are necessary for the model to have meaning, and
are completely standard, while others require expla-
nation. One such convention is to enable the cache
to fetch multiple memory locations at the same time,
if they are requested by different cores. Any system
which does not satisfy this assignment will have a seri-
ous bottleneck as the number of cores grow. Practical
designs usually allow a bus which is wide and can pass
multiple memory locations1. Most of our results carry

1The analogy between the model and the real world is tricky

over to the setting where the bus has some width lim-
itations, but this changes the proofs and complicates
the presentation.

An important property of the model, is that if one
core makes a request which is a miss, this specific core
does not issue any more requests until it gets served,
but the rest of the cores continue independently. This
means that the interleaving of requests that the algo-
rithms sees in the late stages depends on its actions in
the earlier stages. Larger values of τ can cause larger
deviations in the request sequences. Due to this de-
pendency we focus on the Makespan, and not on the
number of misses; most of the results would hold also
when counting the number of misses.

A technical convention that we use is that first the
contents of a cache cell is evicted, and τ time units
later the cell gets the new data from the memory;
in the meantime the cell can not be used. This is
not important to the results of the paper, and indeed
doesn’t change the model by much as long as k � n.
2.1 Real World Parameters

Having presented the model, it is important to see
that it captures some aspect of reality. To do so, we
present common values of the parameters, as well as
the current trends. Modern computers usually have
2 or 4 cores, and this number is expected to grow [4].
For example, the new Nehalem architecture presented
by Intel can work with 2,4,6 or 8 cores [22]. Each core
has its own private cache, and all the cores share some
high level cache2. The time to fetch a memory loca-
tion grows, as it is fetched from more distant caches.
For example, in the Intel Pentium M it takes about
3 cycles to fetch from the level 1 cache, 14 cycles to
fetch from L2, and 240 cycles to fetch from the main
memory [7]. When considering the L2 cache replace-
ment policy, this means that the ratio between hit
time and miss time is τ = 240/14 ≈ 17. This ra-
tio is not expected to change much, as technological
improvements affect all layers of the cache.

Finally, the parameter k is not the size of the cache,
but rather its associativity. When a core needs to read
a certain memory location, it is usually inefficient to
search the entire cache and check if it is there. Thus,
the cache is partitioned into sets, such that each mem-
ory location can be stored in a single set (usually de-

here, as real caches operate with cache lines, which span multi-
ple locations. A bus can be more wide than a memory location,
and less wide than a cache line. In this case, the design is based
on spacial locality of the memory which the processor uses.

2Usually either each core has its own L1 cache, and they all
share an L2 cache, or both the L1, L2 are private, and there
is a shared L3 cache, as in the Nehalem. As long as there are
private caches and public caches, the hierarchy does not effect
our model and results.
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termined according to the memory address). The size
of this set is called the associativity of the cache. If
this set has size 1, we the cache implements direct
mapping; if the entire cache is such a set, the cache
is fully associative; and in any other case the cache is
set associative. Most of the caches are set associative
(the TLB cache is sometimes fully associative - but it
is very small), where the size of the set grows as we
get to higher caches. A typical set size for an L2 cache
is 24 [7] or 32 [22]. Even for this set-size, the heuristic
used in practice is often an approximate LRU, as it is
hard to keep track of all the uses. Experimental re-
search about multicore caching shows that increasing
the associativity improves the runtime for multicore
machines. This requires more sophisticated replace-
ment policies, which would be efficient and easy to
implement [18].

3 Lower Bounds
3.1 Inefficiency of LRU

Sleator and Tarjan introduced resource augmenta-
tion in the design of online algorithms, as a way to
explain the poor worst case behavior of online algo-
rithms, as opposed to their success in practical scenar-
ios. In caching, this amounts to comparing an online
algorithm which has a cache of size k, with an offline
algorithm which has a cache of size h for h < k. In-
deed, [19] show that First-In-First-Out, or FIFO
for short, the strategy which evicts the item which
first entered the cache3, has a competitive ratio of
k/(k−h+1). This means that for any k cache misses
made by FIFO, any algorithm which has a cache of
size h must make at least (k−h+1) misses. In partic-
ular, if the online cache is a constant factor better, we
get constant competitive ratio. Unfortunately, when
there are multiple cores, the scenario changes, as the
following theorem shows

Theorem 3.1. For any α > 1, the competitive ratio
of LRU (or FIFO) is O(τ/α) when h = k/α. In
particular, if we give LRU a constant factor resource
augmentation, the ratio is O(τ). There is a setting
with this ratio with just α�+ 1 cores.

Proof. Let n = α� + 1. Consider the following se-
quence of requests for core c

xc1, x
c
2, . . . x

c
h, . . . , x

c
1, x
c
2, . . . x

c
h

where the request sequence xc1, xc2, . . . xch appears 1+τ
times.

3The worst case guarantees of LRU can only be worse than
those of FIFO. In this case, they are the same.

The offline algorithm can first serve only the first
core, then proceed to the second core, etc. Serving
the first h requests of each core takes time τ · h (as
they are all misses). The next τh requests also take
time τh, as they are all hits. The total runtime of this
solution is 2τnh = O(τhα).

The online algorithm tries to serve all cores to-
gether. Similarly to the offline, it misses all the re-
quests in the first cycle. However, for each core c,
when the request for xc1 appears in the second time,
xc1 is no longer in the cache - it was evicted to serve
request k/(�α+1) < h. A similar analysis shows that
every request is a miss. As the online solution fetches
n pages at the same time, it has a total runtime of
τ · (τ + 1)h = O(τ2h), as required. Note that FIFO
and LRU are identical for this example.

Note that a competitive ratio of τ can be achieved
by not using the cache at all (in the classical set-
ting when we count misses for the single core case
we implicitly assume that τ is unbounded). Note also
that when the number of cores is δ · α for δ < 1, the
competitive ratio is at most 1/(1− δ), by just giving
each core k/(δ · α) cache space (which is more than
the offline algorithm can distribute between all the
cores it needs to serve). Weaker results hold for other
common heuristics, including randomized ones, e.g.
MARK [9]. The bad example is similar to the one
presented here.

3.2 NP Completeness of the Offline Prob-
lem

In this subsection we show that computing the opti-
mal offline schedule is NP complete, using a reduction
from 3-Partition. An instance of 3-Partition consists
of n numbers y1, . . . , yn. Letting B = 3

n

∑
i yi, it is

NPC to decide if it is possible to partition them into
sets T1, . . . Tn/3 such that |Tj | = 3 and

∑
yi∈Tj yi = B

for all j. The problem is NP hard in the strong sense
(i.e. it is NP complete even when the inputs are
given in unary representation [11]), and we can as-
sume without loss of generality that B/2 ≥ yi ≥ B/4.
Given an instance to 3-Partition, we generate the fol-
lowing caching problem:

1. There are n processors.
2. The cache has size k = n/3
3. The miss time τ can be any constant
4. The goal is to see if it is possible to schedule all

cores in time T = B + 3τ − 3
Core c only requests one page xc1, and it requires is
yc times. Formally, the requests of core c are

xc1, x
c
1, . . . , x

c
1
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and there are yc such requests, that is rc1 = rc2 = . . . =
rcyc .

We sketch a proof for the reduction. It is easy to
see that each core must miss at least once. Each miss
uses a cache line for time τ , for a total time of τn.
If it is possible to finish satisfying the requests until
time T , every cell of the cache has to be busy at each
time step t (either there is a hit to it or it is used to
fetch something from the memory). Also, each cell is
used to serve exactly three different cores. The cores
who use the i’th cell in the cache constitute the set
Ti. In a similar manner, a solution to the 3-Partition
admits a solution to the caching instance.

4 Properties of the Offline Solution
In the case of one core, the optimal solution is

Furthest-In-The-Future, or FITF. Upon a re-
quest, FITF scans the cache, and attaches each mem-
ory location inside the cache the time in which it will
be needed again (or infinity if it will not be needed
again). It then evicts the location for which this time
is maximal [2]. A similar theorem holds in the multi-
core setting:

Theorem 4.1. Let S be a solution to the caching
problem, and suppose that at time t, S evicts xci . Then
there exists another solution S̃ which is identical to S
until time t, but at time t, S̃ evicts the page in St∩Xc
for which the next usage time is maximal. The cost
of S̃ is at most that of S.

In particular, there is an optimal solution which at
each step evicts a page which is used furthest in the
future for some core.

The proof of this theorem is somewhat tedious, and
is deferred to the full version. This is in contrast to the
single core case, where the proof of this greedy scheme
is very simple. To demonstrate the difference between
the single core and the multicore case, we consider
a generalization of caching called weighted caching
[16]. In this generalization, each memory location xi
is associated with a cost g(xi), which describes how
much time it takes to fetch it from the memory4. For
a single core, a generalization of FITF is optimal: if
an optimal solution evicts a memory location x with
cost g(x), the memory location evicted will be the
one which is used in the furthest future, out of all
the memory location with this cost5. This property is

4This model of caching is especially relevant for web brows-
ing [17, 23]. In a multicore scenario, it can be used if different
parts of the high level cache is located at different place on the
chip, and thus the fetching time is not uniform.

5In fact, sometimes a better model is to assume that each
memory location has a different fetching cost, and also takes a

no longer true for the multicore case, as the following
lemma shows

Lemma 4.2. FITF is not an optimal strategy, when
different pages used by the same core have a different
fetching cost.

Proof. We present an example with n = 2, and k = 5.
For ease of notation, in the proof of this lemma we
denote

X1 = {X,Y, α, β, γ}, X2 = {a, b, c, s}

The cost of fetching a, b, c, s, α, β, γ is τ > 18, and the
cost of fetching X,Y is T > 20τ + 18. To simplify
notation, when a core asks for the empty page ⊥ for
r times in a row we denote this by r⊥. The sequences
of requests are

X,Y, 4τ⊥, X, α, β, γ, α, β, γ, α, β, γ,
10τbot, α, β, γ, α, β, γ, α, β, γ, Y

a, b, c, 2T⊥, s, 6τ⊥, a, b, c, a, b, c, a, b, c,
10τbot, a, b, c, a, b, c, a, b, c, (T − 3τ − 2)bot

It is possible to satisfy all requests in time 3T +17τ+
16, where both cores finish at the same time. How-
ever, this requires that the second core misses at most
4 times (which is also the minimum number of times
it has to miss). To see that this makespan is possi-
ble, note that the first replacement choice is made
at time 2T + 3τ , when s is requested by the sec-
ond core. At that point, the cache contains elements
{X,Y, a, b, c}, and the the optimal algorithm evicts X
from the cache. Given this eviction, the rest of the re-
placement policy becomes very simple. Upon seeing a
request for X , the optimal algorithm evicts s at time
2T + 4τ . Finally, by the time X is fetched from the
main memory, the second core no longer requires the
cache (it is in the last stage of requesting the dummy
page T − 3τ − 2 times), and therefore a, b, c can be
evicted to make room for α, β, γ.

The total time it takes the first core is

2T + 4τ + T + 3τ + 6 + 10τ + 9 + 1
= 3T + 17τ + 16

The total time it takes the second core is

τ + 2T + τ + 6τ + 9 + 10τ + 9 + (T − 3τ − 2)
= 3T + 17τ + 16

different amount of cache space. The appropriate generalization
of FITF performs well.
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Giving a makespan of 3T + 17τ + 16 as required.
Consider now solution which makes the FITF de-

cision in time 2T + 3τ upon seeing the request for s.
If it evicts a, b or c, the second core will later suffer
an extra miss, and satisfying its request will take too
long.

If it evicts Y , then it will hit on X . In this case, the
requests for the α, β, γ triplets and the requests for the
a, b, c triplets will be interleaved, and the makespan
will grow.

Note that Theorem 4.1 gives the strong guarantee,
that given that we are evicting a memory location
which belongs to a specific core, we are evicting the
one which is furthest in the future. Thus, to contra-
dict it, we didn’t need to consider the case in which
the schedule evicts a, b, c, - it’s enough to show that
evicting X is strictly better than evicting Y .

Lemma 4.2 shows a complicated scenario, where
FITF is not optimal. However, the proof of Theo-
rem 4.1 has to explicitly use the fact that the fetching
time of memory locations which belong to the same
core is uniform. We note that if each core has a fixed
cost for all its possible memory locations, Theorem 4.1
still holds (even if each core has a different fetching
cost which is uniform across its pages).

5 The Approximation Algorithm
In this section we present a polynomial time ap-

proximation scheme (PTAS), when n, τ are constant.
According to theorem 4.1, once the algorithm knows
which core should evict a memory location, the deci-
sion which location to evict is obvious. Equivalently,
each core is facing a cache of varying size, and the
algorithm has to decide how much cache to allocate
each core at every time step. When considering the
algorithms, we will adhere to the latter, and show how
much cache each core gets.

We begin by presenting an algorithm when the
number of requests each core makes is small. We then
extend it to lists of requests of arbitrary length by
flushing the cache every once in a while (thus elimi-
nating long term dependencies).

5.1 Short Sequences of Instructions
In this subsection we assume that each core only

asks for a small number of locations, and give a PTAS
for this case. It is formalized in the next lemma:

Lemma 5.1. Assume that for some α > 0, kα > mc
for all c. If the makespan of the optimal solution is
Tk, then for any ε > 0, upon input Tk, ε, Algorithm 1
finds a solution with makespan (1+ ε)T . The runtime
of the algorithm is exponential in τ, α, n, 1/ε.

Proof. Let Optk denote the optimal solution for
a cache of size k, which ends in time Tk. Let
Optk(1−ε/nτ) be the optimal solution for a cache of
size k(1− ε/nτ), with makespan Tk(1−ε/nτ). To upper
bound Tk(1−ε/nτ) in terms of Tk, consider the number
of times each cell in the original cache was accessed
in Optk. Since there are at most nTk operations, the
average cell was accessed at most nTk/k times. How-
ever, if a cell was accessed r times, we can remove
it from the cache, by increasing the makespan by at
most τr. Removing the cells which were least ac-
cessed, gives that

Tk(1−ε/nτ) < (1 + ε)Tk

Let gc(t) denote the amount of cache that
Optk(1−ε/nτ) gives core c at time t. It is enough to
show that the solution produced by Algorithm 5.1
gives each core c at least gc(t) cache space at each
time step t. As a core can only get one new memory
location loaded to its part of the cache every τ time
steps, we have that for every time t

gc(t) + 1 ≥ gc(t+ τ)
As
∑
c gc(t) = k(1 − ε/nτ), we also have that g can

not decrease too fast, and in particular

gc(t)− n ≤ gc(t+ τ)
So g is Lipschitz, with constant n/τ . Let

βci = max
i·r≤t<(i+1)r

gc(t)

d earlier]
where r = εk/n3 and i is at most to Tk/r . Let-

ting hc(t) = βct/r, we have hc(t) ≥ gc(t). Therefore,
βci ∈ Lc, when we run Algorithm 1, with input Tk, ε.
Moreover, for every i

n∑
c=1
βci ≤

n∑
c=1

(
gc(i · r) + rn

τ

)

=
n2r

τ
+
n∑
c=1
gc(i · r)

= εk

nτ
+
n∑
c=1
gc(i · r)

≤ εk

nτ
+ k(1− εn

τ
) = k

And thus the solution (β11, . . . , β
1
m), . . . (βn1, . . . , β

n
m)

survives the consistency check, and some solution is
returned.

Analysis of the runtime can be done by following
each step. It is deferred to the final version.
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We note that it is not necessary to be precise about
the amount of cache given to each core. For example,
one can use O(1/ε) different values for βci , instead
of k values. Moreover, it is possible to find different
approximate solutions. These improvements lead to a
better dependency in the parameters, but this is not
important for the main algorithm.

5.2 Long Sequences of Requests
After analyzing SHORT, we can use it as a subrou-

tine to handle long sequences of requests, presenting
a PTAS for constant n and τ . The approximation is
done via dynamic programming. Let B be a matrix,
of dimensions m1 ×m2 . . .×mn. We set B[i1, . . . , in]
to be the minimum over p1, . . . , pn < 2τk/ε of

[i1 − p1, . . . , in − pn] + τk +
COST

(
r1[i1 − p1 : p1], . . . rn[in − pn : pn]

)
where rc[ic−pc : pc] is a shorthand for rcic−pc , . . . , r

c
ic

,
and COST

(
r1[i1 − p1 : p1], . . . rn[in − pn : pn]

)
is a

(1+ε/2) approximation to the optimal solution for the
requests

(
r1[i1 − p1 : p1], . . . rn[in − pn : pn]

)
, which

is obtained using SHORT. Finally, the output is
B[m1, . . .mn].

Theorem 5.2. The dynamic programming procedure
returns a 1 + ε approximation to the makespan of the
requests, where the runtime is exponential in n, τ, 1/ε.

Proof. Let Opt be the optimal solution, with
makespan T . Consider a solution Õpt, which flushes
the cache every 2kτ/ε time steps6. We have

T
Õpt
≤ (1 +

ε

2
)TOpt

where TOpt is the makespan of Opt, and T
Õpt

is the
makespan of Õpt.

The solution Õpt is divided into stage, where in
each stage, each core performs at most 2kτ/ε instruc-
tions. Thus, performing these instructions together
will be considered as one of the options when comput-
ing the minimum solution in the dynamic program-
ming matrix B. As we loose a multiplicative factor of
(1 + ε/2) when computing the COST of a short series
of requests, the solution given by B satisfies

B[m1, . . .mn] ≤ (1 + ε/2)T
Õpt
≤ (1 + ε)TOpt

as required.
6According to the exact definition in the preliminaries Õpt

may not be a legal solution, because it violates the technical
condition used to prevent prefetching. This point can be over-
come by giving a more exact (and less restrictive) definition in
the preliminaries, or by a more careful definition of Õpt. We
keep the notation simple, and ignore this point for the rest of
the presentation.

Note that we could improve the runtime guarantee,
by uploading n memory cells at the same time each
time we flush the cache. Again, this leads to a small
improvement in the runtime, but the dependency in
n, τ is still exponential, and thus we presented the
simpler analysis.

6 Conclusions and Open Questions
Both of the negative results of this work match

what is already known to the experimentalists. The-
orem 3.1 could have been anticipated by the experi-
ments which show that LRU is not optimal in prac-
tice. Theorem 4.1 could have been anticipated by
considering the heuristics which perform well - first a
division of the cache, and then applying LRU on the
part which is given core [5, 8, 15, 18]. There seems to
be a difference between LRU and FITF in this con-
text, but since they are very similar from the practi-
cal standpoint (or from the theoretical one when in-
troducing resource augmentation), the experimental
heuristic and the theorem match.

Two algorithmic questions are obvious: finding ap-
proximation algorithms for the offline problem for a
wider range of parameters, and finding an online al-
gorithm with a good competitive ratio. Interesting
candidates for such an algorithm can come from the
heuristics used to partition the cache today (where
each core uses LRU on its part).

Even if an algorithm has a nice worst case guaran-
tees, to be actually used it has to be efficient. More-
over, some coherency issues exist even when the cores
are running different processes (for example because
the operating system is shared). Thus, it is impor-
tant to perform an analysis of a more realistic system
where some conflicts can occur.

Finally, there are other resources besides the cache
which are used by different cores: memory, bus, com-
munication devices etc. When the cores run indepen-
dent processes, one needs to partition these resources
between the cores, in an efficient way. Coming up with
the correct model for each such resource, and design-
ing an allocation algorithm for it, can help in design-
ing a better architecture for multicore machines.
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A. HASSIDIM

1. Input. Lists of requests, T , ε.
2. Initialization. Set L1 = L2 =, . . . , Ln = ∅, set r = εk

n3 , and m = Tn3

εk = T/r
3. Main Loop. For every core c

(a) For every possible sequence (�c1, . . . �cm) ∈ {0, . . . , k}m do:
(b) If core c can finish in time T , when hc(t) = �ct/r, add the sequence to Lc

Lc = Lc ∪ {(�c1, . . . �cm)}
4. Dynamic Programming. Generate B according to the following rule:

if exist (�11, . . . , �1m) ∈ L1, . . . , (�j1, . . . , �jm) ∈ Lj such that ∀1 ≤ d ≤ m, we have
∑j
i=1 �

i
d <

k
Set B[

∑j
i=1 �

i
1, . . . ,

∑j
i=1 �

i
m, j] = 1

5. Output. If B[i1, . . . , im, n] = 1 for any tuple (i1, . . . , im):
Return the solution (i1, . . . , im)

Figure 1: SHORT: algorithm for short sequences. Input - lists of requests, T , ε.
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