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Abstract. In this paper we present an attack that recovers the whole
internal state of RC4 using a cache timing attack model first introduced
in the cache timing attack of Osvik, Shamir and Tromer against some
highly efficient AES implementations. In this model, the adversary can
obtain some information related to the elements of a secret state used
during the encryption process. Zenner formalized this model for LFSR-
based stream ciphers.

In this theoretical model inspired from practical attacks, we propose
a new state recovery analysis on RC4 using a belief propagation algo-
rithm. The algorithm works well and its soundness is proved for known or
unknown plaintext and only requires that the attacker queries the RC4
encryption process byte by byte for a practical attack. Depending on
the processor, our simulations show that we need between 300 to 1,300
keystream bytes and a computation time of less than a minute.
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1 Introduction

Some side channel attacks have been recently formalized in theoretic work by
modelling powerful adversaries that can learn a bounded amount of arbitrary
information on the internal state by Dziembowski and Pietrzak in [9]. Here we
consider information coming from cache attacks which is of the same kind but
more practical since they correspond to real attacks which have been exper-
imented on AES implementation [18,7,4,22,3]. Concretely, when the cipher is
looking for a value in a table, a whole line of cache is filled in, containing but not
limited to the value looked for in the table. This mechanism allows to achieve
better performance since in general when a program needs some data, it also
requests the successive ones soon after. Osvik, Shamir and Tromer proposed in
2006 an attack on some AES implementations that use look-up tables to imple-
ment the S-box and showed that the adversary can learn the high order bits of
the index looked for, but neither the whole index itself nor the corresponding
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value of the table. These attacks are rather practical since they have been imple-
mented [18,7] on classical implementations used in the OpenSSL library. Others
cache attacks target DSA [1] or ECDSA [8] operations in the OpenSSL library
due to branch prediction on instructions.

To gain more information from cache monitoring, Osvik et al. propose to run
a concurrent process at the same time as the encryption process. Attackers can
evict data from the cache using the second process which begins by reading a
large table to flush the cache. Then, the encryption process is run; the attacker
finally tries to read again the elements of his table. If the element is in the cache,
the access is fast (cache hit) and in the other case, the access is slow (cache miss)
since the information has been evicted from the cache. Consequently, the adver-
sary is not allowed to read the cache, but since the cache lines correspond to lines
in the memory, if the adversary knows how the encryption process organizes the
data in the memory (the address of the whole table for instance), the information
of which cache line has been removed from the cache allows to recover the index
(or a part of it) of the value looked for by the encryption process. Indeed, we do
not recover the whole index since the cache is filled in line by line, so we know
that the encryption process has read some element of the whole line but not
exactly which element. Moreover, if the encryption process performs many table
lookups, we do not have the order of the indexes since we perform timing on our
own process which is run after the encryption process. These practical analyses
allow us to consider such attacks on encryption schemes through a new secu-
rity model. For example, Zenner et al. propose to study security of LFSR-based
stream ciphers in [23,15].

RC4 is a stream cipher designed in 1987 by Ron Rivest and widely used in
many standards such as in SSL, WEP, WPA TKIP, etc. The internal state of RC4
is composed of two indexes and of a permutation over F256. The initialization of
the permutation table depends on the secret key (which size varies between 0 and
256 bits); the table is then updated during the generation of the keystream. Many
attacks have been proposed on RC4 since its design was published in 1994 but
none of them really breaks RC4. The bad initialization used in the WEP protocol
and the key schedule algorithm of RC4 have been attacked by Fluhrer, Mantin
and Shamir in [10]. Recent improvement has revealed new linear correlations in
RC4 in order to mount key retrieve attacks on WEP and WPA [21]. Since then,
from a cryptographic point of view, this scheme has not been broken despite
many statistical properties. Finally, more powerful attacks have been taken into
account, for instance fault attacks by Hoch and Shamir, Biham et al. in [12,6].
However, the number of faults is rather high, 216 for the most efficient attack.

Previous Work. Our analysis is related to the one published in 1998 by Knud-
sen et al. in [14], which try to recover the internal state from the keystream.
Once the internal state is recovered, it is possible to run the algorithm backward
and efficient algorithms allow to recover the key [5]. Though an improvement
was proposed in 2000 [11] and another in 2008 [16], such attacks remain im-
practical, having a time complexity of 2241 operations for the full RC4 version.
The basic idea of the ”deterministic” attacks (section 4 of [14] and [16]) is to
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guess some values of the table and then check if these guesses are valid with the
output keystream. These algorithms perform a clever search by guessing bytes
when they need them and then use a backtracking approach when a contradic-
tion appears. However, a huge number of values have to be guessed so that the
complexity is relatively high in the end. This is basically the algorithm of [14].
Maximov and Khovratovich in [16] improve this algorithm by looking at the
equations of RC4:

it = it−1 + 1
jt = jt−1 + St−1[it]

St[it] = St−1[jt], St[jt] = St−1[it]
Zt = St[k] where k = St[it] + St[jt]

In the algorithm of [14], the number of unknowns is 4 (j, S[i], S[j] and k =
S[i] + S[j]) even if they are related). Maximov and Khovratovich solve these
equations by noting that if j is known for different times t, then S[i] also, and
the number of unknowns is reduced to 2. Then, they show that it is possible
to have the value of j for consecutive times t, and also to detect such patterns
from the keystream. The attack begins by locating in the keystream a good
pattern which gives information about the internal state and j, and then since
the equations are simpler the complexity is lower. Solving such linear systems
with non-linear terms has also been recently extended by Khovratovich et al.
to more complex equations system in [13] in the context of differential trail for
hash functions.

Finally, Knudsen et al. propose a ”probabilistic” algorithm in section 5 of [14],
which is different from the deterministic one since the idea is that the output
keystream gives conditions on the internal secret state which leads to condi-
tional probability distribution Pr(S[i] = v|Zt = z). Now, the internal state is
represented with a probabilistic distribution table: to each element S[i] in the
table is associated a probability distribution on the 256 possible values. At the
beginning, for all, i and v, Pr(S[i] = v) = 1/256. Then according to the output
keystream byte Zt, an a posteriori distribution is computed using Bayes rules
and the previous values in the distribution table, and finally the algorithm ac-
cordingly updates the distribution table. This probabilistic algorithm does not
work if no more information is used. Knudsen et al. partially fulfill the table at
the beginning with correct values. Their experiments show that they need 170
values so that the algorithm converges. They use the same idea (used later by
Maximov and Khovratovich): they fulfill the table such that consecutive values
of j can be found which makes the equations easier.

The algorithm we propose here is different from the one described in [14];
however they have in common the manner of using the structure of PRGA,
acronym of Pseudo Random Generation Algorithm, to propagate constraints on
the values of elements of the secret state used by RC4.

Our Results. RC4 is a good candidate to study cache timing analysis since
it uses a rather large table and indexes of the lookups give information about
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the table. In this paper, we present a probabilistic algorithm that recovers the
current state of the permutation table. Contrary to previous state recovery at-
tacks [14,16] whose complexity is about 2241 only based on cryptanalysis, our
algorithm is more efficient in practice and its soundness has been proved due to
information from cache timing analysis, although same cryptanalysis techniques
are used. The experiments are derived using our algorithm and by simulating
the information obtained in the model designed by Osvik et al. in [18]. The idea
is the following: to generate a cipher byte, the generation algorithm uses three
lookups in the permutation table and then updates the corresponding elements.
Thus, the knowledge of the elements used to generate this byte allows the at-
tacker to eliminate some candidate values for these elements, leading little by
little to the recovery of the entire permutation.

The key recovery algorithm we developed is probabilistic as the one of Knud-
sen et al. (section 5 of [14]). However, we use a belief propagation algorithm to
use the cache attack information. Belief propagation algorithms have been used
in information theory and coding theory and are related to Bayesian networks
and Hidden Markov Models, when a state is hidden and has to be recovered given
some information. Recently, such algorithms have been successfully used to prove
convergence and complexity results on the random assignment problem [20]. The
algorithm propagates the partial information on the indexes by modifying the
distribution table. According to the distribution table Pr(S[i] = v) and the par-
tial indexes, the algorithm computes for all possible guesses, the values of the
probability of such guesses. Since one guess is the correct one, we then normalize
all these probabilities, and we update the distribution table according guesses
modify or not the value of Pr(S[i] = v).

The algorithm gives good results but we improve the data complexity and
the success probability by using time to time an assignment algorithm, such as
the Hungarian algorithm, because we know that the table S is a permutation.
Without cache analysis information, the algorithm cannot be effective and the
complexity is too large as the probabilistic algorithm of Knudsen et al.. In this
paper, we show that in practice, we can recover the secret permutation using
only 300 bytes of the keystream in the best case. In the case of ciphertext only
attack, our analysis works in practice only when the cache lines are half of the
real size. Using partially known plaintext, we can recover the internal table using
3,000 bytes with probability 95%. This attack shows that RC4 must be used with
some care when attackers can monitor the cache and query the cipher stream
byte by byte.

Organization of the paper. The paper is organized as follows: after having
presented the information expected to get from cache monitoring in section 2, we
describe in section 3 a first algorithm, that only works on idealized cases. Then
our main algorithm is detailed in section 4, which is able to take information
from real cache monitoring to recover the permutation table through an example
based on OpenSSL implementation. Finally we conclude and point out some
practical thoughts on data collection in section 5.



114 T. Chardin, P.-A. Fouque, and D. Leresteux

2 The Context of the Attack

Our algorithm is designed to attack RC4 from a side-channel, the cache memory.
We will briefly describe RC4 and the structure and the mechanism of cache
memory. Then we explain how this cache memory can be considered as a side-
channel and how to exploit the resulting data leakage.

2.1 Description of RC4

The design of RC4 has been kept secret until it was leaked anonymously in 1994
on the Cypherpunks mailing list [2]. It consists of two algorithms. The first one,
named KSA (key-scheduling algorithm), is used to initialize the permutation ta-
ble according to the secret key. The other PRGA is used to generate a keystream
byte and update the permutation. While the details of KSA are not relevant to
our subject, PRGA is described in algorithm 1.

Algorithm 1. Pseudo-random generation algorithm
i← i + 1
j ← j + S[i]
swap(S[i], S[j])
k← S[i] + S[j]

return S[k]

2.2 Structure and Use of Cache Memory

To make up for the increasing gap between the latency of microprocessors and
memories, some little but low-latency memory modules have been included in
modern microprocessors. The aim of these cache memories is to preload frequently
accessed data, reducing the latency of load/store instructions (an average code
uses one such instruction out of three). There are often two caches, named L1 and
L2. The L1 cache is closer to the CPU but smaller than the L2 cache. These memo-
ries are organized in Z sets. Each set contains W cache lines of B bytes; a memory
block which address is a in memory is stored in cache at the cache set a/B mod Z,
starting at the byte a mod B of a random cache line. The main placement policy
is to evict the most ancient stored data to store a new one. The values of these
parameters for Pentium 4 processors can be found in table 1.

The use of cache is as follows:

– when the processor needs data from memory, it sends a request to L1 cache;
– If the L1 cache contains the required data (cache hit), they are sent to the

CPU; otherwise (cache miss), the request is transmitted to the L2 cache;

Table 1. Cache parameters for the Pentium 4

B Z W

L1 64 32 8
L2 64 4096 8



Cache Timing Analysis of RC4 115

– If the L2 cache contains the data, they are transmitted to L1 cache (for
further use) and CPU; if not, the request is transmitted to the main memory,
and the data are copied in both caches.

This behavior allows us to make out four different time scales (the figures are
given for a Pentium 4 CPU):

– the average execution time of an instruction: 1 CPU cycle (1 nanosecond on
a 1 GHz CPU);

– the latency of the L1 cache: 3 cycles;
– the latency of the L2 cache (and time to write the data in the L1 cache): 18

cycles;
– the latency of the RAM: approximately 50 nanoseconds.

Because of this mechanism, the execution time of a process may vary significantly
according to the relative number of cache hits and misses during its execution.
Such variations can be used as a side-channel, either for covert communication
or for cryptanalytic purposes.

2.3 Cache Timing Analysis

The first side-attack using cache memory was described by Page in 2002 [19]. It
uses the fact that, in DES, if two rounds use the same element in some S-box, then
the global encryption time will be reduced (the second lookup resulting in a cache
hit). In 2006, Bonneau and Mironov [7] adapted this attack to AES, allowing to
recover a secret key in an average of 10 minutes and needing approximately 220

encryptions.
An even more powerful attack was published in 2006 by Osvik, Shamir and

Tromer [18]. The use of a test table filling the cache memory allowed them to
know which cache lines were used by the encryption process (causing the eviction
from cache of the corresponding lines of the test table, hence a greater latency to
access again to these elements). The knowledge of the position of the encryption
tables in memory allowed them to know which elements of these tables were
used, helping them to recover a secret key with less than 16,000 encryptions
(depending on the processor on which the attack was implemented).

2.4 Prerequisites

The context of the analyses presents here is the same as the one of [18]. We
assume that the attacker is able to monitor the cache memory and learns partial
information on which element of the permutation table is used. Our algorithm
is particularly fitted for “synchronous attacks”, where the attacker can trigger
encryption himself. Osvik et al. [18] first present the concept of synchronous
cache attacks and Zenner et al. [23,15] establish a cache model based on this
concept. They define an adversary having access to two oracles. The first oracle
allows to obtain a list of output keystream bytes. At the same time, the second
oracle delivers a truthful list of all cache requests realized by the first oracle.
This cache attack in Zenner’s model has several properties like noise-free and
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there is no order on the cache accesses. However, if the attacker can produce the
same cipher operation with the same input and output many times, the noise
and wrong cache accesses could be removed using many samples. Finally, one
must note that monitoring the cache does not allow us to know exactly which
element of the table is used. In fact, when a request causes a cache miss, the
whole cache line corresponding to the requested data is loaded into the cache.
As the elements of the RC4 permutation table are stored as 32-bit integers (in
32-bit CPUs), a cache line contains (in the case of a Pentium 4) 16 elements.
Thus, using a test table to monitor the cache only allows us to know the index
modulo 16 of the element used.

2.5 Conventions and Experimental Set-Up

We study the current version of RC4 with bytes even though some authors have
tried to attack weaker versions with smaller permutation table. Consequently,
unless explicitly stated, all additions and subtractions will be done modulo 256.

We denote by δ the number of integers per cache line, and S the permutation
table used for encryption.

We assume that the attacker can trigger the generation of the stream cipher
byte by byte; the data are collected as in [18].

We have simulated cache accesses on OpenSSL library and we have experi-
mented several cache models, from idealized one to real one.

Finally, all the experimental results are presented as follows: “time” represents
the time needed by the attack to succeed, “requests” the number of needed cipher
byte requests, and “success” the number of times when the table given by the
attack is equal to the permutation of RC4. All results are given on average, over
50 random secret keys.

3 A First Algorithm for Idealized Cases

In this section we assume for the sake of simplicity that monitoring the cache
allows us to know exactly which element of the permutation has been used by
the encryption process. It allows us to introduce our attack on a simple case
which is presented in appendix A. We will see further how to adapt the attack
to a more complex cache model.

Data Structures Used by the Algorithm. For each table element i we
have to keep a trace of the remaining candidates for its value. To do so we
use a 256x256-boolean table Svalues, where Svalues[i][v] = 0 if and only if we
are sure that S[i] �= v. Another 256-boolean table is used for j, with the same
conventions. We do not need to keep an equivalent structure for i, as its value
is known through the whole encryption process.

Exploitation of the Data Collected During the Generation of One
Cipher Byte. The generation of one cipher byte gives us the following data:

– the first index i;
– the unknown internal index j;
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– three indexes a, b and c (possibly equal) of elements used during the byte
generation;

– the cipher byte, which we will call out.

We invite the reader to note that we do not know the order of use of the three
elements of the table, except for the first (because we know i). We will suppose
from now on that a = i. Two orders remain: (a, b, c) and (a, c, b). We then use the
structure of PRGA, which imposes the following constraints in the case (a, b, c):

j + S[a] = b

S[a] + S[b] = c

S[c] = out

Algorithm 2. Algorithm for one step with order (a, b, c) when a �= b �= c �= a

1. for v ← 0 to 2n − 1 do
2. for t← 0 to 2n − 1 do
3. if v �= a and v �= b and v �= c then
4. Svalues bis[v][t]← Svalues[v][t]
5. else
6. Svalues bis[v][t]← 0
7. end if
8. end for
9. jvalues bis[v]← 0

10. end for
{Exploit cache data, order (a, b, c)}

11. for j ← 0 to 2n − 1 do
12. if jvalues[j] = 1 and Svalues[a][b − j] = 1 and Svalues[b][c − b + j] = 1 and

Svalues[c][out] = 1 then
13. Svalues bis[a][c− b + j]← 1
14. Svalues bis[b][b − j]← 1
15. Svalues bis[c][out]← 1
16. jvalues bis[b]← 1
17. end if
18. end for
{Repeat steps 11. to 18. for order (a, c, b)}
{Write new tables}

19. for v ← 0 to 2n − 1 do
20. for t← 0 to 2n − 1 do
21. Svalues[v][t]← Svalues bis[v][t]
22. end for
23. jvalues[v]← jvalues bis[v]
24. end for

We deduce from these equations that the values of S[a], S[b] and S[c] are com-
pletely determined given the order of the lookups and the values of j and out. We
then do the following steps. For each order and each value v of j, we check if the
corresponding values of S[a], S[b] and S[c] remain possible. If not, we are sure that
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these order and values are not possible, which allows us to remove these candidates
for S[a], S[b] and S[c]. We reduce the number of candidates. Finally, we update the
Svalues and jvalues tables to take the swap of PRGA into account. Algorithm 2.
gives the details of one step of the attack; a special care has to be taken when a,
b or c are equal, because the swap operation is performed before reading the last
element S[c]. A special care has to be taken when a, b or c are equal, because the
swap operation is performed before reading the last element S[c].

We continue to use such data until every table element has only one possible
candidate value. Other candidates are eliminating due to contradiction. We have
then found the current permutation table and value of j.

4 Adaptation to Real Caches

There exist a main difference between the idealized framework used above and
the monitoring cache memory. Even if we did not know the order of use of the
elements, we knew exactly which elements of the table were used. In particular,
we were sure not to modify during an attack step the candidate values of an
unused table element. When we monitor real cache memory, we only know some
most significant bits of the index of used table elements. Therefore we cannot be
sure that the candidate values, on which we are trying to study, really correspond
to an effectively used table element.

To take this issue into account, we use the probabilistic frame presented in [14].
Instead of the boolean table Svalues, we now use a 256x256-floating point number
table Sprobas. We now noted P(S[i] = v) where Sprobas[i][v] is the estimated
probability S[i] = v. At the beginning of the attack, we suppose that every
value is equiprobable for any element of S and for j so these two tables are filled
with the value 1/256.

4.1 The Known-Plaintext Attack

We assume that the attacker knows, for each step:

– the first index i;
– three indexes a ∧ mask, b ∧ mask and c ∧ mask, where mask corresponds

to the known bits and is computed from the value of δ: if δ = 16, then mask
= 0xf0;

– the cipher byte out.

A Probabilistic Version of the Algorithm. The belief propagation algo-
rithm we design is exactly the same as the one for the idealized case, with the
exception that we do not know b and c for sure. As in the previous section, we
will assume that a = i and that aδ = a && mask, bδ = b && mask and cδ = c &&
mask are different (the case with some equalities is treated in a similar way but
taking care of the possible collisions in the permutation table).

We know that the indexes b and c used for the PRGA step are of the form
b = bδ + o1 and c = cδ + o2 where 0 ≤ o1, o2 < δ, so the equations giving S[a],
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S[b] and S[c] are the same as in the previous section, except that we have two
more unknowns, o1 and o2.

Our algorithm is hence modified as following:

1. we make two guesses for the values of o1 and o2 as well as the guess for the
value v of j and for the order of use of a, b and c;

2. we compute the corresponding values of S[a], S[b] and S[c] similarly to what
was done in the idealized case;

3. we evaluate the probability of this guess to be exact, assuming for the sake
of simplicity that all probabilities are independent:

P(guess) = P(j = v) · P(S[a] = bδ + o1 − v)
· P(S[bδ + o1] = cδ + o2 − bδ − o1 + v)
· P(S[cδ + o2] = out)

4. having done these computations for all possible guesses, we normalize the
corresponding probabilities (these guesses were the only ones having a chance
to describe what really happened during the keystream byte generation);

5. finally each guess contributes to modify the tables Sprobas and jprobas, since
for each guess we know exactly the action of the PRGA step on the three
elements looked up, the others remaining unmodified. Adding all these con-
tributions we obtain the global transformation of the table Sprobas:

∀i, ∀v,P(S[i] = v)after attack step =

⎛
⎝ ∑

guesses imposing S[i]=v

P(guess)

⎞
⎠ · 1

+

⎛
⎝1 −

∑
guesses imposing S[i]

P(guess)

⎞
⎠ · P(S[i] = v)before attack step

(the first term of the sum gives the action of all transformations where the
equation S[i] = v is guaranteed by the action of the swap; the second step
gives the action of all transformations where S[i] is not affected, i.e. S[i] �= v).
The update of jprobas is much simpler since for each guess the new value of j
is imposed by the collected data; the formula is similar to the one for Sprobas

without the second term on the right.

How to Know if the Attack Succeeds? Two parameters remain to be set:
the time when we decide that the attack has succeeded (or failed), and the
processing of the solution. We first use a simple criterion to stop the attack: we
consider that it succeeds when for each table element a candidate value has a
greater probability than 1/2. The solution is thus “built” by local optimization,
retaining for each element the value with greatest probability. We consider that
the attack failed if this event does not occur after a certain number of steps.

Once the solution is found, we must first reverse it back to the initial permu-
tation, then test it. The reversion is easy, given that a step of PRGA is invertible
if the values of i and out are known. To test it, several options can be chosen:



120 T. Chardin, P.-A. Fouque, and D. Leresteux

– a first and very simple test is to make sure that the solution given by local
search on each element is a permutation. If this is the case, we have a good
hint that this solution will be the good one: using the Stirling formula, we can
evaluate the probability of a random application on F256 to be a permutation
to approximately 2 · 10−110;

– we can then verify that the solution is the good permutation trying to predict
some following cipher bytes.

First Experimental Results. We use to implement our attack a simulation
of the cache monitoring to collect the data necessary to the attack. The experi-
mental results obtained are reproduced in Table 2 - the case where δ = 1 being
given only for comparison purposes, as the concerned results are similar to those
obtained in idealized cases.

Table 2. Known-plaintext cache attack of RC4, first version

δ 1 2 4 8 16

Time 0.393 s 0.542 s 0.962 s 2.836 s 25.48 s

Requests (maximum) 417 498 498 594 898
Requests (average) 326 384 400 456 666

Requests (minimum) 268 310 344 387 556

Success 100% 78% 66% 44% 56%

We can bring out from these results that our intuition on the convergence
of the probabilities is correct. However, the results for δ = 16 make this attack
nearly impractical for real CPUs.

4.2 An Improvement: Searching Permutations

The main issue concerning the previous test of success is that we never use the
fact that what we search is not any application on F256 but a permutation. We
take this crucial constraint into account reducing the search of a solution to a
constraint-solving problem: once we have the densities of probability for each
table element, searching the best permutation (which probability is given by the
product of the probabilities of the values of all its elements) is equivalent to solve
an assignment problem.

An assignment problem takes the following canonical formulation: given an
integer n, a set V of size n (historically representing n workers), another set D of
size n (representing n tasks) and an application c : V×D → R (representing the
cost of assigning a worker to a task), find a bijection f : V → D that minimizes
the global cost given by: ∑

v∈V
c(a, f(a))

Our problem is easily reducible to an assignment problem, using for 0 ≤ i, v <
256 the cost function c(i, j) = − log(P(S[i] = j)).
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Table 3. Known-plaintext cache attack of RC4 with global search of the solution

δ 1 2 4 8 16

Time 0.704 s 1.320 s 2.587 s 5.750 s 33.53 s

Requests (maximum) 300 400 400 500 700
Requests (average) 297 318 377 413 597

Requests (minimum) 268 300 300 368 533

Success 100% 98% 100% 100% 98%

The assignment problem can easily be written as a linear programming prob-
lem, but we prefer to solve it using the Hungarian algorithm, designed by Kuhn
and Munkres in 1955–1957 [17] and which time complexity is cubic. We decide
to stop the attack when the probability of the best found permutation is greater
than 2−16, value experimentally optimized according to a compromise between
the economy of encryption requests and the improvement of the success rate.
As the cost for the resolution of this problem is far greater than the cost of the
previous local search, this criterion is used for one step amongst 100. Further-
more, it is not used at the beginning of the attack (for the 300 first steps). The
previous criterion is used again in the latter cases.

The attack is carried out in the same conditions as before. The results are
shown in Table 3.

As guessed, the global search allows to reduce significantly the number of
needed encryption requests and greatly improves the success rate. We have no
decisive argument so far to prove the termination or estimate the convergence
of this algorithm, except for hints from information theory; however, its proofs
of soundness can be found in appendix B.

4.3 The Unknown-Plaintext Attack

In this paragraph the considered hypothesis does not use the properties of prob-
ability distribution for each language characters and their probability to appear.
We suppose that the attacker does not know the language or the byte code em-
ployed. The known-plaintext attack is easily adapted into an unknown plaintext
one, simply by considering that all values are uniformly possible for the cipher
byte (this is not exactly true, as most of the existing attacks against RC4 lie
on the non-uniformity of the distribution of the first cipher bytes; however, this
remains a good approximation). As a matter of consequence:

– the probability for each order, j value and offsets is computed as above,
simply summing on all possible values for the output;

P(guess) =
255∑

out=0

P(j = v) · P(S[a] = bδ + o1 − v)

· P(S[bδ + o1] = cδ + o2 − bδ − o1 + v)
· P(S[cδ + o2] = out)
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255∑
out=0

P(S[cδ + o2] = out) = 1

P(guess) = P(j = v) · P(S[a] = bδ + o1 − v)
· P(S[bδ + o1] = cδ + o2 − bδ − o1 + v)

– the probabilities of the table element corresponding to the output (that is
to say, the third one in the chosen order) are not updated anymore, since we
know nothing on its value and the PRGA does not modify it.

Results. We test the resulting attack in the same conditions as before, except
the number of steps without global search of the solution, which we adapt using
the minimal number of needed requests; the results are shown in Table 4.

Table 4. Unknown plaintext cache attack of RC4 (with global search of the solution)

δ 1 2 4 8

Time 1.512 s 6.395 s 3.409 s 12.06 s

Requests (maximum) 350 600 900 1,287
Requests (average) 318 490 765 1,099

Requests (minimum) 300 429 700 950

Success 100% 96% 92% 96%

For δ = 16, we do not succeed to make the probabilities converge.

4.4 A Partially-Known-Plaintext Attack

We finally develop another kind of the attack adapted to the main use of RC4:
communications. In this case, the attacker partially knows the stream cipher,
which corresponds for example to the case of TCP packets of which one attacker
can guess some header bytes. If the output is known, we obtain the P(guess) of
the known-plaintext attacks. On the contrary, if the output is unknown, the
P(guess) formula of the unknown-plaintext attacks is used. The results are
shown in Figure 1, for δ = 16; the average time does not vary much, and the
success rate is better than 47 over 50 trials.

5 Remarks on Collecting Data

In order to mount a practical attack on existing implementations from the above
analysis, we make some comments on the data collection:

– in some implementations of RC4, as in OpenSSL, the internal state is stored
as fields of the secret key; in particular, the two integers containing the value
of i and j are stored just before the permutation table, which may have two
effects:
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Fig. 1. Partially-known-plaintext cache attack on RC4: number of requests (logarith-
mic scale) as a function of the rate of unknown plaintext

• first, there is high probability that the beginning of the permutation
table does not correspond to the beginning of a cache line. On the one
hand, the attacker is not supposed to know where the table begins, so
he must use the attack algorithm for each possible offset between the
first element of the table and the beginning of the nearest cache line. On
the other hand, this offset causes the first and last cache lines covered
by the table to contain less than δ elements, which gives the attacker a
little more information,

• besides, the PRGA reads the value of both index registers to generate
each cipher byte, so the attacker cannot distinguish if the elements stored
in the first covered cache line have been really used, which leads to a loss
of information;

– last but not least, the attacker must be able to use the PRGA byte by byte;
if he cannot, all the given information he will get will be a set of used cache
line numbers through a large amount, say k, of cipher byte generation. He
will then have to test all ordered sets of 3k cache line numbers using all
the elements of the read set (but knowing with certainty the element out
of three corresponding to the current value of i), which number is at least
(2k)!, instead of k times the two orders used above.

6 Conclusion

We have detailed an efficient way of recovering the internal state of a RC4 process
from cache monitoring. The presented algorithm is efficient in both known- and
unknown-plaintext contexts. It allows to recover the internal permutation using
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the generation of on average about 550 keystream bytes and less than a minute
of computation time in an OpenSSL implementation. The only prerequisite is
the possibility for the attacker to run a process on the attacked machine and to
trigger the keystream generation by itself.

To avoid cache attacks, many countermeasures have been proposed in [18].
The main thing consists of removing or masking data links to memory access.
Cache could be replaced by registers or several copies of the lookup table could be
used. These countermeasures cost more in time and resources required. Shuffling
memory and adding random allow to avoid cache timing analysis and execution
branch analysis too.

The recovering algorithm is based on a belief propagation mechanism to in-
fer information on a hidden state which evolves in a deterministic manner and
output some values of this state. Our algorithm is rather simply but very effi-
cient, and its soundness has been proved. However, we are not able to prove its
termination and complexity, which we leave as an open problem.

This article draws attention to RC4 implementation has to be carefully used
to avoid cache attacks. Indeed, it would prevent from monitoring the cache and
querying ciphertexts, from accessing cache from remote computer.
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A A Numerical Example of the Algorithm With Idealized
Cache

Let us imagine that the generation of a cipher byte gives the following
information:

a = 0xf3, b = 0xd9, c = 0x43, out = 0x1c

The candidates values for j, S[a], S[b] and S[c], given by the preceding attack
steps, are:

j ∈ {0x2f, 0xc6}
S[a] ∈ {0x7d, 0xaa}
S[b] ∈ {0x14, 0x1c, 0x5d, 0x99}
S[c] ∈ {0x1c, 0x5c, 0xd4}

Let us suppose first that the table elements are used in the order (a, b, c):

– if the value of j is 0x2f, the constraints given above are:

0x2f+ S[a] = 0xd9, S[a] + S[b] = 0x43, S[c] = 0x1c

The imposed values are therefore S[a] = 0xaa, S[b] = 0x99 and S[c] = 0x1c.
At this step of the attack, these three values are considered possible: this
may correspond to what really happened when generating the keystream
byte;

– using analogous computations for j = 0xc6, we deduce that the value of S[a]
must be 0x13, which is not possible.

We make similar computations for the order (a, c, b) and finally obtain two
candidates for what happened during the step of PRGA:

– if the elements are used in the order (a, b, c), the corresponding values must
have been j = 0x2f, S[a] = 0xaa, S[b] = 0x99 and S[c] = 0x1c;

– otherwise, they must be j = 0xc6, S[a] = 0x7d, S[b] = 0x1c and S[c] = 0x5c.

We can now update the candidate values for j and the three table elements:
after this pseudo-random generation step, the value of j can be 0xd9 or 0x43
(as we were not able to determine the order of use of the table elements with
certainty); we also take the swap operation into account, which leads us to:

j ∈ {0x43, 0xd9}
S[a] ∈ {0x5c, 0x99}
S[b] ∈ {0x1c, 0xaa}
S[c] ∈ {0x1c, 0x7d}

We proceed like above to determine which values are possible or not and so on.



Cache Timing Analysis of RC4 127

B Proofs of Soundness

B.1 Algorithm for the Idealized Case

The proof of soundness of the algorithm for the idealized case is very straight-
forward:

– at the beginning of the attack, all the elements of the tables Svalues[i] have
the value 1. In particular, for each i, the value v corresponding to the secret
permutation table used by PRGA is associated to the value 1. Moreover, the
value of j is well-known;

– we now suppose that before an attack step the tables Svalues[i] and jvalues

contain the value 1 for the value v corresponding to the corresponding value
of the secret state of the encryption process. Consequently, when trying the
good order for a, b and c and the good value for j, the imposed values S[a],
S[b] and S[c], which correspond to the values of the secret state, all will
have the value 1 in Svalues: this try will be considered as successful. Finally,
the attack algorithm will update Svalues and jvalues to take this attack step
into account. Since the guess corresponding to the real secret state has been
considered as successful, the values for j, S[a], S[b] and S[c] will be marked
with the boolean 1, all other values of Svalues remaining untouched as in
PRGA: after the attack step, the tables Svalues and jvalues also associate
the boolean 1 to the values of S[i] and j corresponding to the secret state
used by PRGA.

Using the axiom of induction, we obtain that during each step of the attack,
the tables Svalues and jvalues associate the boolean 1 to the values corresponding
to the secret state used by PRGA, so that the Svalues[i] and jvalues always have
at least one boolean with value 1, and that when all of these tables contain only
one boolean with value 1, this boolean is the one corresponding to the value of
the secret stage used by PRGA.

B.2 Probabilistic Algorithm for Realistic Caches

An Impractical Straightforward Algorithm. The proof of soundness of the
probabilistic algorithm is a little more complicated. To do so, we will introduce
the following algorithm:

– we consider the space of couples (S, j), where S is a permutation over F256

and j an element of F256;
– we use a 256.256!-boolean table Cvalues, using for each couple (S, j) the

same meaning as in the algorithm for the idealized case: if the value is 1,
the couple is considered as probable as it explains the successive observed
cipher bytes and cache lookups; if it is 0, the couple has failed to explain the
observations and we know it to be impossible;

– during an attack step, we begin a new table C∗
values, filled with the value 0.

For each couple (S, j) that has the value 1 in the table Cvalues and that ex-
plains the observed cipher byte and cache lookups, we compute the updated
couple (S∗, j∗) with PRGA and give it the value 1 in C∗

values;
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– at the end of the attack step, we replace the table Cvalues by the table
C∗

values.

As for the algorithm of the idealized case, the proof of soundness of this
algorithm is very simple to do using induction, so we will not discuss it further.
However, this algorithm is very inefficient, as the number of possible couples in
the first steps if far too high to allow a computer to enumerate them.

The Probabilistic Algorithm, an Improvement of the Straightforward
Algorithm. We introduce a 256x256-floating point table Sp and a 256-floating
point table jp, which values are computed as follows:

∀i, ∀v, Sp[i][v] =
#{(S, j)|Cvalues[(S, j)] = 1, S[i] = v}

#{(S, j)|Cvalues[(S, j)] = 1}
∀v, jp[v] =

#{(S, j)|Cvalues[(S, j)] = 1, j = v}
#{(S, j)|Cvalues[(S, j)] = 1}

We will now prove that the evolution of Sp and jp is the same as the one of
Sprobas and jprobas. First, it is clear that, at the beginning of the attack:

∀i, ∀v, Sp[i][v] =
256 · 255!
256 · 256!

= 1/256

∀v, jp[v] =
1 · 256!

256 · 256!
= 1/256

Now, choosing an order (a, b, c), a value for j and for o1, o2 and being given the
values of i, bδ, cδ and out, we can compute the number Pg of probable couples
(S, j) concerned by this guess. We obtain, assuming that the different elements
of the permutation are independent (the same assumption as what was done in
the probabilistic algorithm) and using the constraints on S[a], S[b] and S[c] given
by the structure of PRGA, an equation analogous to the one giving P(guess):

Pg = jp[v] · Sp[a][b − v] · Sp[b][c − b + v] · Sp[c][out] · N
where N is the number of probable couples.

For given values of i and v, the couples (S′, j′) of C∗
values can have two origins:

– either probable couples where PRGA does not affect S[i]. Assuming again
the independence of all concerned random variables, their number is:

⎛
⎝N −

∑
guesses imposing S[i]

Pg

⎞
⎠ · Sp[i][v]

– or couples where PRGA imposes S[i] = v. Their number is given by:
∑

guesses imposing S[i]=v

Pg
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Adding these two contributions, we obtain that the evolution of Sp is the
same as that of Sprobas, except for a coefficient

∑
any guesses Pg/N , which is the

proportion of couples (S, j) that are compatible with the observed cipher byte
and cache lookups, and that corresponds to the renormalization of P(guess).
Using the axiom of induction, this achieves proving that the behavior of Sp is
the same as the one of Sprobas in the probabilistic algorithm.

For the behavior of jp the proof is the same, as previously. In conclusion,
the behavior of the tables Sprobas and jprobas in the probabilistic algorithm is
a consequence of the behavior of the table Cvalues in the algorithm introduced
here. Furthermore, we know that if this algorithm only has one probable couple
(S, j), then this couple is the right one (we also know that the right couple is
always considered as probable). Consequently, we can deduce that if the tables
Sprobas[i] and jprobas contain only one value 1.0 and the other elements have the
value 0.0, then the value with probability 1 is the one of the secret state used
by PRGA, which concludes this proof.

Further Thoughts on the Practical Results. First, it is important to stress
that despite the previous proofs of soundness of the algorithms presented in this
paper, it was neither possible to estimate the speed of convergence to the solu-
tion, nor to prove the termination of these algorithms. The only hints according
to this problem are given considering arguments from information theory, since
the entropy of the secret state is easy to evaluate to the first order, as is the en-
tropy of every cipher byte and cache lookup. Furthermore, the number of cases
when the probabilistic algorithm fails to give the right secret state do not go
against the soundness of the algorithm, but rather show that the choice of stop-
ping the attack before only one probable state remains is done with the risk of
giving a wrong answer. Finally, as the number of possible couples is less than
256x256!, the number of bits needed to store the floating-point values of the
tables Sprobas and jprobas is log2(256 · 256!) ≈ 2056. To improve the speed of the
attack, we used basic floating-point numbers, which is also a probable cause for
the failure of the attack in some cases.
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