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Abstract  
Side channel attacks are based on side channel information, which is information that is leaked from encryption 

systems. Implementing side channel attacks is possible if and only if an attacker has access to a cryptosystem 

(victim) or can interact with cryptosystem remotely to compute time statistics of information that collected from 

targeted system. Cache timing attack is a special type of side channel attack. Here, timing information caused 

by cache effect is collected and analyzed by an attacker to guess sensitive information such as encryption key or 

plaintext. Cache timing attack against AES was known theoretically until Bernstein carry out a real 

implementation of the attack. Fortunately, this attack can be a success only by exploiting bad implementation in 

software or hardware, not for algorithm structure weaknesses, and that means attack could be prevented if 

proper implementation has been used. For that reason, modification in software and hardware has been 

proposed as countermeasures.  This paper reviews the technique applied in this attack, surveys the 

countermeasures against it, and evaluates the feasibility and usability of each countermeasure. We made 

comparison between these countermeasure based on certain aspect furthermore. 
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INTRODUCTION 

Nowadays, attacks rely on mathematical analysis to break math-based cryptographic algorithms. These attacks 

use several methods such as linear and differential cryptanalysis. In order to break cryptography algorithms, the 

attacker can either work on ciphertext alone or a plaintext-ciphertext pair. This is done using various types of 

attacks such as: cipher text only, known plaintext, chosen ciphertext or chosen plaintext. In addition, attacks can 

be performed by obtaining extra information from encryption devices, which simplifies discovering the key or 

plaintext. These devices can allow a new way of leaking important information about the cipher, which may 

increase the likelihood of recognizing the original text or the key used in the encryption processes. This leaked 

information gathered from the encryption device is called side channel information. It can be about plaintext or 

ciphertext as obtained during the encryption process. This caused the development of a new type of attack 

dubbed the side channel attack. It branches out into timing attacks, power consumption attack, fault analysis 

attack, and acoustic attack and other. (Osvik , Shamir  and Tromer, 2006).  

This paper focuses on a specific implementation of cache timing attack against AES algorithm which is a 

Bernstein cache timing attack (that is explained in section 3.2). It then identifies countermeasures that developed 

to avoid this attack by reviewing the literature and examining different works that propose countermeasures to 

such attack from several aspects. Finally several comparisons of these countermeasures were presented. This 

paper is organized as follows:  In section two, a brief description of AES is given. Section three explains the 

cache timing attack and Bernstein practical implementation of cache timing attack is described to show how the 

attack works and to prepare for countermeasures of the attack that is introduced in section four. In section five, 

these countermeasures are discussed and compared. Finally section eight conclude the paper. 

 

ADVANCE ENCRYPTION STANDARD 

In 1997, national institution for standard and technology (NIST) posed a competition for researchers around 

cryptography community to propose their algorithms in order to choose AES and to replace data encryption 

standard (DES). Rijndael cipher (Daemen, J., Rijmen, V., 2003). was chosen as AES algorithm, which was 
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developed by two researchers, Joan Daemen and Vincent Rijmen. Rijndael is a family of ciphers with different 

keys and block sizes. (Schwartz, 2000) 

AES consist of four operations which are byte substitution, shift rows, mix column and add round key. These 

operations are repeated in a number of rounds except the final round which does not contain mix column 

operation. Input block size in AES is 128 bit and key size is optional 128,192 or 256. Number of rounds depend 

on the key size, it uses 10, 12, 14 round with 128, 192, 256 key size respectively. 

Substitution operation in AES is based on lookup tables, which is termed as S-box. Also it may use several 

lookup tables that make it faster in execution due the ability to perform lookup mapping in parallel manner, S-

box lookups use input-dependent indices that loaded from addresses in memory. 

In spite of strength of AES against known attacks, cache timing  attack could success due to the increases in size 

of lookup table, it might be became vulnerable to leaking information from cache memory which can be 

exploited to perform an attack in different way , resulting in a security defect on AES algorithm. 

 

CACHE TIMING ATTACKS ON AES 

Historical Background 

Cache timing attack is used to extract encryption key or plaintext. This attack is based on the fact that each 

mathematical computation takes certain time. Gathering side channel information from the cache in order to 

break AES encryption has been discussed in several previous works. 

Hu (1992) noted this issue via covert channel in context of international transmission.  

After four years, Kelsey (1998) stated that large S-box has a probability to be attacked by exploiting cache hit 

rate to steal sensitive information. 

(Francois and Quisquaterm 1999) described timing attack that exploits bad implementation of AES software that 

performs algebraic equation in bad manner (such as performing Mix Column using conditional branch). 

 After that Page (2002) theoretically mentioned that cache misses can be exploited by an attacker, but it only 

work if there exist high temporal period of cache miss, but he did not show this attack in practical 

implementation. 

As mentioned in (Tsunoo et al., 2002) and (Tsunoo et al., 2003) that lookups process inside cipher can be used 

to launch timing attack due to the delay in accessing the memory. 

This attack was known theoretically until Bernstein (2005) demonstrates a real implementation of the attack on 

AES cryptosystem. He described several weaknesses that attackers can use to crack AES encryption. His attack 

uses time variances that caused by cache effect, and relies on statistical timing pattern that has been collected 

from memory access. 

 

Bernstein Cache Timing attack 

What Bernstein proposed was a technique to reduce the AES key space by performing brute-force for locating 

the final key the Bernstein attack assumes that the computer executing the encryption uses cache memory, 

which can be described in a simple model of the cache. In this model, values are looked up in the main memory, 

and then transferred to the cache, evicting existing values to the memory. This noted assumption, however, has 

provided the attacker with ways to obtain the encrypted data from cache easily. (Bernstein, 2005) 

Bernstein utilized the leaked time variances, resulting from different inputs using a known initial key. Based on 

these measurements, comparisons were made to time variances caused by encryption using an unknown key. 

This timing information can be used to extract the full encryption key in a specified key space. (Bernstein, 2005) 

This attack is based on measuring the time variances in encryption of various inputs under a known key, and 

comparing these to time variances under a secret unknown key. With enough timing information the full key can 

be recovered. The first stage of the attack is to create a replica server with the same CPU and running the same 

implementation of AES as the victim server, but with a known key. From another machine, many random 

packets of 800-byte, 600-byte and 400-byte lengths are encrypted and sent to the server. The time taken to 

encrypt each packet is recorded and used to build a time pattern for each input bit. The next stage is to launch 

the attack against the victim server. First, an encrypted zero from the server is obtained and recorded for later 

use. Again packets of varying length are sent from the attacking machine and encrypted by the server. The time 

taken for encryption of each packet is recorded. Finally the timings from the victim server are compared with 

those of the replica server to produce a set of possible key bits. The set of possibilities is searched until a 

combination has been found that produces the encrypted zero obtained earlier. This combination is the victim 

machine’s AES key (O’Hanlon & Tonge, 2005). Figure 1 shows these steps. 
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                                                 (b)                                                    (c) 

Figure 1: (a) prepare for the attack by collecting a large body of reference timing data for each xi0 (b) collect a 

large body of timing data from a target machine for the plaintext byte pi (c) The target machine’s timing data 

should be shifted from the reference data by exactly ki. 

 

CACHE TIMING COUNTERMEASURES 

Cache No Fill mode  

Dev (2013) countermeasure for this attack is to activate a no-fill mode in cache memory, in this mode the 

memory accesses are serviced from the cache when they hit it, but miss accesses is  serviced directly from 

memory (without causing evictions and filling). The encryption routine would then proceed as follows: 

(i) Prefetching lookup table of AES into the cache. 

(ii) Then, set cache mode to no-fill mode. 

(iii) Execute encryption process. 

(iv) Finally no-fill mode is disabled. 

In step (i) and (ii) it is necessary to ensure that no another process is running. However, once this step is done, 

step (iii) can be carried out safely. Performance of encryption would not be affected because its inputs are pre-

fetched into cache before no-fill mode is activated. On the other hand, its output will not be cached, and this 

cause subsequent cache misses. Simultaneous processes executed during (iii), through multitasking, thus will 

degrade performance as a result. Separating encryption process into smaller pieces then performing previous 

procedure to each piece thus could reduce effect somewhat, by allowing the cache to be occasionally updated to 

reflect the changing memory work set. (Dev, 2013) 

   

Cache Partitioning 

One of effective countermeasures is the cache partitioning. The basic idea is to allocate locations in cache to 

load values of t-table, thus t-table will usually be located in specific locations that is never overwritten by data 

of another process until encryption is performed. As a result, access pattern of cache will be changed in 

encryption process by this manner; figure 2 shows the code of cache partitioning. 

 

Figure 2: Piece of code of cache partitioning 

 

Fixed Number Of Clock Cycles 

(Jayasinghe, Ragel and Elkaduwa, 2014) stated that the AES software implementation is rescheduled such that it 

will take constant time for execution. Figure 3 shows the part of the code executed for the first round inside AES 
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encrypt function implementation. Initially a fixed number is defined (line 1). By using a time stamp, number of 

clock cycles for each round is obtained (lines 2-7). Then the difference between the two is obtained (line 8), i.e 

the fixed number and the number of clock cycles for each round. Then, a loop is included where it runs from 

zero to the number that is obtained (line 9). This is done for every round. 

 
Figure 3:  AES fixed cycle round algorithm. 

Fixed number method takes additional clock cycles than the usual. The researchers observed that it is 

approximately 2.1 times higher than the number of clock cycles in the unprotected AES implementation. In 

addition, it was detected that some of the key bytes are missing after the usage of this modified AES 

implementation. The attacker will be unable to recognize the authentic timing pattern properly because of the 

incorrect timing information. Also it was observed that the total number of possible keys is considered a large 

value when compared with the original AES implementation. (Jayasinghe, Ragel & Elkaduwa, 2014) 

 

Average number of clock cycles 

reference (Jayasinghe, Ragel and Elkaduwa, 2014) also proposed that instead of defining a fixed number of 

clock cycles by an outsider (such as a programmer), numbers of clock cycles for rounds themselves are used to 

calculate an average and to perform constant encryption time by equaling clock cycles up to the averaged 

value. Figure 4 shows the code fragment implemented for the fifth round inside AES encryption function in 

AES implementation. 
Initially by defining a time stamp, number of clock cycles for each round is obtained (lines 1-7). Then the 

average is calculated incrementally for each round (lines 8, 9 and 10). In between each round a FOR loop is 

included where it executes from zero to the number that is obtained as the difference of average value and the 

clock cycle value of the particular round (line 11). 

After implementing real experiments in this algorithm the (Jayasinghe, Ragel and Elkaduwa, 2014) observed 

that it is approximately 1.19 times greater than the number of clock cycles in the unprotected method. 
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Figure 4: AES average cycle round encryption algorithm. 

 

After implementing their AES algorithm in real server (Jayasinghe, Ragel and Elkaduwa, 2014) noticed that 

some of the key bytes have been missing. So, the attack has been unable to recognize the authentic timing 

pattern properly because of the wrong timing information. Depending on their implementation results, the total 

number of possible keys was very large. That is a considerably large value when compared with the original 

AES implementation. Therefore, it will be impossible to find the correct key even with the attack tested. 
 

CPU Architecture Enhancements   

Instead of prevent cache timing attack by software implementation enhancements, CPU architecture can be built 

in a way that can protect from this attack. In the following two sections AES Instruction set and Multicore CPU 

is described then following a real implementation of this technique shows its immunity against cache timing 

attack. 

 

AES Instruction set (AES-IN) 

Intel and AMD develop an extension of X86 instruction set for multiprocessor to increase speed and security of 

AES encryption. (Mowery, Keelveedhi and Shacham, 2008) 

 AES-IN provides hardware Implementations of key generation, encryption rounds, and decryption rounds. The 

cryptographic operations are moved out of RAM and into custom hardware, improving performance and 

eliminating cache side channels. (Mowery, Keelveedhi and Shacham, 2008). 

1.1.1  Experiments on modern CPU Architecture 

 (Mowery, Keelveedhi and Shacham, 2008) make a demonstration of Bernstein cache timing attack on Intel 

Core i5, Intel Xeon E5410 and Intel Atom N2800 and show how these new processors enhanced protection 

cache timing attack. Bernstein attack demonstration consists of three parts: preparing the attack, executing the 

attack, and analyzing the outcome. In the preparation, known AES key, that is, all zeros with number of packets 

were sent to the server having n[14] = 250. 

The  attack  was  carried out in  a  similar  fashion  as  the preparation, the different is that it sending  a 16-byte  

secret key  taken  from  the pseudorandom number generator of the server’s OS (assume to be a victim machine) 

instead of a known AES key (assume to be in attacker machine). After sending random packet analyzing of the 

attack take place by correlating the lines obtained from the preparation  and  from the attack to produce 16 

correlations, one per byte, which show if the secret key  could  be  easily  guessed. If the produced number of 

possibilities is lower than 256 for a given key byte, then the range of possibilities to guess that secret byte is 

narrowed (Mowery, Keelveedhi and Shacham, 2008).  

In test one and two,  the  range  of  possibilities  was  256  for  all  the correlations,  which  indicates  that  the  

correlation  was  not extracting  any  useful information  about  the  secret  key, showing that the attack to the 
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Intel Core i5 and Intel  Xeon  E5410 was not successful. But in test three, the range of possibilities that was 

produced by correlating  the  preparation  and  the  attack  was  narrower  than the  previous  test  (around  113),  

which  indicates  that  the correlation was extracting some information, although limited, about the secret key, 

showing that the attack to the Intel Atom N2800 was somewhat successful (Mowery, Keelveedhi and Shacham , 

2008). 
 

CONSTANT TIME ENCRYPTION VIA SCHEDULING THE INSTRUCTION 

 (Jayasinghe et al., 2012) achieved constant time encryption via rescheduling the instructions while maintaining 

the same cache structure of the system. They did not make any hardware changes, their approach depended on 

the encryption cycles to thwart delays due to cache misses.  

Their proposed countermeasure has three major steps:- 

i. Decomposition of OpenSSL AES encryption code into smaller bitwise operations 

The decomposition process was made so that it will operate like the instruction scheduling process of a 

compiler. They performed manual scheduling without the compiler optimization which resulted in increasing 

the size of the code and execution penalty. However they recommended integrating these schedules into the 

compiler so it would be able to carry out “side-channel aware” scheduling. 

ii. Add each and every bitwise instruction sets to queues. 

This was done by queuing the decomposed instructions to automate schedule implementation.  

iii. Processing each queue. 

Each queue can be carried out independently since they are data and control independent from each other. 

However, this step modified the normal execution by adding the instruction asm(“nop”) to stall the processor to 

hide data loading time in arithmetic operations for each queue. 

  

COUNTERMEASURE COMPARISION 

After surveying different countermeasures to understand their mechanisms, they are now to be discussed in 

terms of their advantages and disadvantages.  

Cache no fill mode as a countermeasure prevent cache timing attack by activating cache no fill mode. In this 

approach lookup table is first pre-fetched into cache then activate no fill mode and execute encryption, So all 

processes will cause cache hit, therefore leading to great advantage of increasing encryption time than the 

normal execution and all input encryption will have equal time so no information will be leaked, and this due to 

eliminating the cache miss effect. On the other hand, activation of no-fill mode occurs concurrently with other 

processes, thus it will preventing the use of the cache memory by the other processes. As a result, this leads to 

degradation in other processes performance until the encryption is completed and no fill mode is deactivated. 

Fixed cycle time of round countermeasure enforce each round to take fixed constant time, if the round time is 

less than constant time loop of asm(nop) instruction will append until fixed time has been achieved, this 

technique success in prevent attack without any information leaked because the attacker will observe that any 

encryption will take a fixed time. The drawback of this countermeasure is it need to determine the constant time 

by an outsider (e.g programmer) and it’s difficult to determine the appropriate fixed time, if the time is too long 

this may result in degradation of performance and if time is short some rounds will exceed the fixed time and 

some information will be leaked and reducing security. 

Average cycle time of rounds as countermeasure seems to be better than fixed time approach in determining 

time efficiently, but it also has degradation in performance comparing with original approach. 

CPU architecture enhancement is very effective countermeasure because hardware implementation protect from 

the attack and not provide any information that can be used in this attack. The major advantage is that there is 

not any effect on encryption performance. However, AES-IN need to make modification in all software to be 

secure against cache timing and can't protect against the attack if software is not altered to call AES-IN. 
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Countermeasures Comparison 

Countermeasure 
Effect in performance of 

Key Space 
Countermeasure Type 

Encryption Other Process Hardware Software 

Cache NO Fill Mode ــــ High High ــــ  

Cache Partitioning Low Medium High ــــ  

Fixed Cycle Round Time High ــــ High ــــ  

Average Cycle Round 

Time 
Medium ــــ Medium ــــ  

AES-IN ــــ ــــ High     

Multicore ــــ ــــ High   ــــ 

Scheduling the Instructions Medium ــــ High ــــ   

  Table 1: countermeasure comparisons in performance and key space and type. 

 

CONCLUSION 

First a general background about AES algorithm is given together with a brief introduction and review about 

cache timing attack. The Bernstein implementation for cache timing attack is described. In this work, several 

countermeasures are explored, and the techniques they followed are presented and how they prevent the attack. 

Cache timing can be avoided using software or hardware countermeasures. Each countermeasure has its 

advantages and disadvantages, a table showing this comparison is presented.  As any other tool, each is 

appropriate in a certain environment for a particular purpose. Finally a comparison between these 

countermeasures in terms of type, performance and key space size that attacker can gain was shown.  
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