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Abstract
We present CacheAudit, a versatile framework for the

automatic, static analysis of cache side channels. Cache-

Audit takes as input a program binary and a cache con-

figuration, and it derives formal, quantitative security

guarantees for a comprehensive set of side-channel ad-

versaries, namely those based on observing cache states,

traces of hits and misses, and execution times.

Our technical contributions include novel abstractions

to efficiently compute precise overapproximations of the

possible side-channel observations for each of these ad-

versaries. These approximations then yield upper bounds

on the information that is revealed. In case studies we ap-

ply CacheAudit to binary executables of algorithms for

symmetric encryption and sorting, obtaining the first for-

mal proofs of security for implementations with counter-

measures such as preloading and data-independent mem-

ory access patterns.

1 Introduction

Side-channel attacks recover secret inputs to programs

from non-functional characteristics of computations,

such as time [31], power [32], or memory consump-

tion [27]. Typical goals of side-channel attacks are the

recovery of cryptographic keys and private information

about users.

Processor caches are a particularly rich source of side-

channels because their behavior can be monitored in var-

ious ways, which is demonstrated by three documented

classes of side-channel attacks: (1) In time-based at-

tacks [31, 10] the adversary monitors the overall execu-

tion time of a victim, which is correlated with the number

of cache hits and misses during execution. Time-based

attacks are especially daunting because they can be car-

ried out remotely over the network [6]. (2) In access-

based attacks [40, 39, 23] the adversary probes the cache

state by timing its own accesses to memory. Access-

based attacks require that attacker and victim share the

same hardware platform, which is common in the cloud

and has already been exploited [41, 49]. (3) In trace-

based attacks [5] the adversary monitors the sequence

of cache hits and misses. This can be achieved, e.g., by

monitoring the CPU’s power consumption and is partic-

ularly relevant for embedded systems.

A number of proposals have been made for countering

cache-based side-channel attacks. Some proposals fo-

cus entirely on modifications of the hardware platform;

they either solve the problem for specific algorithms such

as AES [2] or require modifications to the platform [46]

that are so significant that their rapid adoption seems un-

likely. The bulk of proposals rely on controlling the in-

teractions between the software and the hardware layers,

either through the operating system [23, 48], the client

application [10, 39, 15], or both [29]. Reasoning about

these interactions can be tricky and error-prone because

it relies on the specifics of the binary code and the mi-

croarchitecture.

In this paper we present CacheAudit, a tool for the

automatic, static exploration of the interactions of a pro-

gram with the cache. CacheAudit takes as input a pro-

gram binary and a cache configuration and delivers for-

mal security guarantees that cover all possible executions

of the corresponding system. The security guarantees

are quantitative upper bounds on the amount of infor-

mation that is contained in the side-channel observations

of timing-, access-, and trace-based adversaries, respec-

tively. CacheAudit can be used to formally analyze the

effect on the leakage of software countermeasures and

cache configurations, such as preloading of tables or in-

creasing the cache’s line size. The design of Cache-

Audit is modular and facilitates extension with any cache

model for which efficient abstractions are in place. The

current implementation of CacheAudit supports caches

with LRU, FIFO, and PLRU replacement strategies.

We demonstrate the scope of CacheAudit in case stud-

ies where we analyze the side-channel leakage of repre-

sentative algorithms for symmetric encryption and sort-
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ing. We highlight the following two results: (1) For the

reference implementation of the Salsa20 [11] stream ci-

pher (which was designed to be resilient to cache side-

channel attacks) CacheAudit can formally prove non-

leakage on the basis of the binary executable, for all

adversary models and replacement strategies. (2) For

a library implementation of AES 128 [3], CacheAudit

confirms that the preloading of tables significantly im-

proves the security of the executable: for most adversary

models and replacement strategies, we can in fact prove

non-leakage of the executable, whenever the tables fit

entirely in the cache. However, for access-based adver-

saries and LRU caches, CacheAudit reports small, non-

zero bounds. And indeed, with LRU (in contrast to, e.g.,

FIFO), the ordering of blocks within a cache set reveals

information about the victim’s final memory accesses.

On a technical level, we build on the fact that the

amount of leaked information corresponds to the num-

ber of possible side-channel observations, which can be

over-approximated by abstract interpretation1 and count-

ing techniques [35, 34]. To realize CacheAudit based on

this insight, we propose three novel abstract domains (i.e.

data structures that approximate properties of the pro-

gram semantics) that keep track of the observations of

access-based, time-based, and trace-based adversaries,

respectively. In particular:

1. We propose an abstract domain that tracks rela-

tional information about the memory blocks that may be

cached. In contrast to existing abstract domains used in

worst-case execution time analysis [21], our novel do-

main can retain analysis precision in the presence of ar-

ray accesses to unknown positions.

2. We propose an abstract domain that tracks the

traces of cache hits and misses that may occur during

execution. We use a technique based on prefix trees and

hash consing to compactly represent such sets of traces,

and to count their number.

3. We propose an abstract domain that tracks the pos-

sible execution times of a program. This domain captures

timing variations due to control flow and caches by asso-

ciating hits and misses with their respective latencies and

adding the execution time of the respective commands.

We formalize the connection of these domains in an ab-

stract interpretation framework that captures the relation-

ship between microarchitectural state and program code.

We use this framework to formally prove the correctness

of the derived upper bounds on the leakage to the corre-

sponding side-channel adversaries.

In summary, our main contributions are both theo-

retical and practical: On a theoretical level, we define

novel abstract domains that are suitable for the analy-

sis of cache side channels, for a comprehensive set of

1A theory of sound approximation of program semantics [16]

adversaries. On a practical level, we build CacheAudit,

the first tool for the automatic, quantitative information-

flow analysis of cache side-channels, and we show how

it can be used to derive formal security guarantees from

binary executables of sorting algorithms and state-of-the-

art cryptosystems.

Outline The remainder of the paper is structured as fol-

lows. In Section 2, we illustrate the power of CacheAudit

on a simple example program. In Section 3 we define the

semantics and side channels of programs. We describe

the analysis framework, the design of CacheAudit, and

the novel abstract domains in Sections 4, 5 and 6, re-

spectively. We present experimental results in Section 7,

before we discuss prior work and conclude in Sections 8

and 9. The source code and documentation of Cache-

Audit are available at

http://software.imdea.org/cacheaudit

2 Illustrative Example

In this section, we illustrate on a simple example pro-

gram the kind of guarantees CacheAudit can derive.

Namely, we consider an implementation of BubbleSort

that receives its input in an array a of length n. We as-

sume that the contents of a are secret and we aim to de-

duce how much information a cache side-channel adver-

sary can learn about the relative ordering of the elements

of a.

1 void BubbleSort(int a[], int n)

2 {

3 int i, j, temp;

4 for (i = 0; i < n - 1; ++i)

5 for (j = 0; j < n - 1 - i; ++j)

6 if (a[j] > a[j+1])

7 {

8 temp = a[j+1];

9 a[j+1] = a[j];

10 a[j] = temp;

11 }

12 }

To begin with, observe that the conditional swap in

lines 6–11 is executed exactly
n(n−1)

2
times. A trace-

based adversary that can observe, for each instruction,

whether it corresponds to a cache hit or a miss is likely to

be able to distinguish between the two alternative paths

in the conditional swap, hence we expect this adversary

to be able to distinguish between 2
n(n−1)

2 execution traces.

A timing-based adversary who can observe the overall

execution time is likely to be able to distinguish between
n(n−1)

2
+1 possible execution times, corresponding to the

number of times the swap has been carried out. For an
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access-based adversary who can probe the final cache

state upon termination, the situation is more subtle: eval-

uating the guard in line 6 requires accessing both a[j]

and a[j+1], which implies that both will be present in

the cache when the swap in lines 8–10 is carried out. As-

suming we begin with an empty cache, we expect that

there is only one possible final cache state.

CacheAudit enables us to perform such analyses (for a

particular n) formally and automatically, based on actual

x86 binary executables and different cache types. Cache-

Audit achieves this by tracking compact representations

of supersets of possible cache states and traces of hits and

misses, and by counting the corresponding number of el-

ements. For the above example, CacheAudit was able to

precisely confirm the intuitive bounds, for a selection of

several n in {2, . . . ,64}.

In terms of security, the number of possible observa-

tions corresponds to the factor by which the cache obser-

vation increases the probability of correctly guessing the

secret ordering of inputs. Hence, for n = 32 and a uni-

form distribution on this order (i.e. an initial probability

of 1
32!

= 3.8 ·10−36), the bounds derived by CacheAudit

imply that the probability of determining the correct in-

put order from the side-channel observation is 1 for a

trace-based adversary, 3.7 · 10−33 for a time-based ad-

versary, and remains 1
32!

for an access-based adversary.

3 Caches, Programs, and Side Channels

3.1 A Primer on Caches

Caches are fast but small memories that store a subset of

the main memory’s contents to bridge the latency gap be-

tween the CPU and main memory. To profit from spatial

locality and to reduce management overhead, main mem-

ory is logically partitioned into a set of memory blocks B.

Each block is cached as a whole in a cache line of the

same size.

When accessing a memory block, the cache logic has

to determine whether the block is stored in the cache

(“cache hit”) or not (“cache miss”). To enable an effi-

cient look-up, each block can only be stored in a small

number of cache lines. For this purpose, caches are parti-

tioned into equally-sized cache sets. The size of a cache

set is called the associativity k of the cache. There is

a function set that determines the cache set a memory

block maps to.

Since the cache is much smaller than main mem-

ory, a replacement policy must decide which mem-

ory block to replace upon a cache miss. Usually, re-

placement policies treat sets independently, so that ac-

cesses to one set do not influence replacement deci-

sions in other sets. Well-known replacement policies

in this class are least-recently used (LRU), used in vari-

ous Freescale processors such as the MPC603E and the

TriCore17xx; pseudo-LRU (PLRU), a cost-efficient vari-

ant of LRU, used in the Freescale MPC750 family and

multiple Intel microarchitectures; and first-in first-out

(FIFO), also known as ROUND ROBIN, used in several

ARM and Freescale processors such as the ARM922 and

the Freescale MPC7450 family. A more comprehensive

overview can be found in [22].

3.2 Programs and Computations

A program P = (Σ, I,F,E ,T ) consists of the following

components:

• Σ - a set of states

• I ⊆ Σ - a set of initial states

• F ⊆ Σ - a set of final states

• E - a set of events

• T ⊆ Σ×E ×Σ - a transition relation

A computation of P is an alternating sequence of states

and events σ0e0σ1e1 . . .σn such that σ0 ∈ I and that

for all i ∈ {0, . . . ,n− 1}, (σi,ei,σi+1) ∈ T . The set of

all computations of P is its trace collecting semantics

Col(P) ⊆ Traces, where Traces denotes the set of all al-

ternating sequences of states and events. When consider-

ing terminating programs, the trace collecting semantics

can be formally defined as the least fixpoint of the next

operator containing I:

Col(P) = I ∪next(I)∪next2(I)∪ . . . ,

where next describes the effect of one computation step:

next(S) = {t.σnenσn+1 | t.σn ∈ S∧ (σn,en,σn+1) ∈ T }

In the rest of the paper, we assume that P is fixed and

abbreviate its trace collecting semantics by Col.

3.3 Cache Updates and Cache Effects

For reasoning about cache side channels, we consider

a semantics in which the cache is part of the program

state. Namely, the state will consist of logical memories

in M (representing the values of main memory locations

and CPU registers, including the program counter) and a

cache state in C, i.e., Σ =M×C.

The memory update updM is a function updM : M→
M that is determined solely by the instruction set seman-

tics. The memory update has effects on the cache that

are described by a function effM : M→EM. The mem-

ory effect is an argument to the cache update function

updC : C ×EM →C.

In the setting of this paper, effM determines which

block of main memory is accessed, which is required

to compute the cache update updC , i.e., EM = B∪{⊥},

where ⊥ denotes that no memory block is accessed.
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We formally describe updC only for the LRU strategy.

For formalizations of other strategies, see [22]. Upon a

cache miss, LRU replaces the least-recently-used mem-

ory block. To this end, it tracks the ages of memory

blocks within each cache set, where the youngest block

has age 0 and the oldest cached block has age k − 1.

Thus, the state of the cache can be modeled as a func-

tion that assigns an age to each memory block, where

non-cached blocks are assigned age k:

C := {c ∈ B → A | ∀a,b ∈ B : a �= b ⇒
((set(a) = set(b))⇒ (c(a) �= c(b)∨ c(a) = c(b) = k))},

where A := {0, ...,k− 1,k} is the set of ages. The con-

straint encodes that no two blocks in the same cache set

can have the same age. For readability we omit the ad-

ditional constraint that blocks of non-zero age are pre-

ceded by other blocks, i.e. that cache sets do not contain

“holes”.

The cache update for LRU is then given by

updC(c,b) := λb′ ∈ B.


















0 : b′ = b

c(b′) : set(b′) �= set(b)

c(b′)+1 : set(b′) = set(b)∧ c(b′)< c(b)

c(b′) : set(b′) = set(b)∧ c(b′)≥ c(b)

In the setting of this paper, the events E consist of

cache hits and misses, which are described by the cache

effect eff C : C ×B → E :

eff C(c,m) :=

{

hit : c(m)< k

miss : else

Both updC and eff C are naturally extended to the case

where no memory access occurs. Then, the cache state

remains unchanged and the cache effect is ⊥, so E =
{hit,miss,⊥}.

With this, we can now connect the components and

obtain the global transition relation T ⊆ Σ×E ×Σ by

T = {((m1,c1), e ,(m2,c2)) | m2 = updM(m1)

∧ c2 = updC(c1,effM(m1))

∧ e = eff C(c1,effM(m1))} ,

which formally captures the asymmetric relationship be-

tween caches, logical memories, and events.

3.4 Side Channels

For a deterministic, terminating program P, the transition

relation is a function, and the program can be modeled as

a mapping P : I → Col.

We model an adversary’s view on the computations

of P as a function view : Col → O that maps computa-

tions to a finite set of observations O. The composition

C = (view◦P) : I → O

defines a function from initial states to observations,

which we call a channel of P. Whenever view is deter-

mined by the cache and event components of traces, we

call C a side channel of P.

We next define views corresponding to the obser-

vations of access-based, trace-based, and timing-based

side-channel adversaries.

The view of an access-based adversary that shares the

memory space with the victim is defined by

viewacc : (m0,c0)e0 . . .en−1(mn,cn) 
→ cn

and captures that the adversary can determine (by prob-

ing) which memory blocks are contained in the cache

upon termination of the victim. An adversary that does

not share the memory space with the victim can only ob-

serve how many blocks the victim has loaded in each

cache set (by probing how many of its own blocks have

been evicted), but not which. We denote this view by

viewaccd. The view of a trace-based adversary is defined

by

viewtr : σ0e0 . . .en−1σn 
→ e0 . . .en−1

and captures that the adversary can determine for each

instruction whether it results in a hit, miss, or does not

access memory. The view of a time-based adversary is

defined by

viewtime : σ0e0 . . .en−1σn 
→

thit · |{i | ei = hit}|+ tmiss · |{i | ei = miss}|+

t⊥ · |{i | ei =⊥}|

and captures that the adversary can determine the overall

execution time of the program. Here, thit, tmiss, and t⊥ are

the execution times (e.g. in clock cycles) of instructions

that imply cache hits, cache misses, or no memory ac-

cesses at all. While the view of the time-based adversary

as defined above is rather simplistic, e.g. disregarding ef-

fects of pipelining and out-of-order execution, notice that

our semantics and our tool can be extended to cater for

a more fine-grained, instruction- and context-dependent

modeling of execution times. We denote the side chan-

nels corresponding to the four views by Cacc, Caccd, Ctr,

and Ctime, respectively. Figure 1 gives an overview.

3.5 Quantification of Side Channels

We characterize the security of a channel C : I →O as the

difficulty of guessing the secret input from the channel

output.
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Cacc Access-based adversary whose memory

space is shared with the victim’s.

Caccd Access-based adversary whose memory

space is disjoint from the victim’s.

Ctr Adversary who observes the trace of cache

hits and misses.

Ctime Adversary who observes the overall execu-

tion time.

Figure 1: Channels corresponding to different adversary

models.

Formally, we model the choice of a secret input by

a random variable X with ran(X) ⊆ I and the corre-

sponding observation by a random variable C(X) with

ran(C(X)) ⊆ O. We model the attacker as another ran-

dom variable X̂ . The goal of the attacker is to esti-

mate the value of X , i.e. it is successful if X̂ = X . We

make the assumption that the attacker does not have in-

formation about the value of X beyond what is contained

in C(X), which we formalize as the requirement that

X →C(X)→ X̂ form a Markov chain. The following the-

orem expresses a security guarantee as an upper bound

on the attacker’s success probability in terms of the size

of the range of C.

Theorem 1. Let X → C(X) → X̂ be a Markov chain.

Then

P(X = X̂)≤ max
σ∈I

P(X = σ) · |ran(C)|

For the interpretation of the statement observe that if

the adversary has no information about the value of X

(i.e., if X̂ and X are statistically independent), its suc-

cess probability is bounded by the probability of the most

likely value of X , i.e. P(X = X̂) ≤ maxσ∈I P(X = σ),
where equality can be achieved. Theorem 1 hence states

that the size of the range of C is an upper bound on the

factor by which this probability is increased when the at-

tacker sees C(X) and is, in that sense, an upper bound

for the amount of information leaked by C. We will of-

ten give bounds on |ran(C)| on a log-scale, in which case

they represent upper bounds on the number of leaked

bits. Notice that the guarantees of Theorem 1 fundamen-

tally rely on assumptions about the initial distribution of

X : if X is easy to guess to begin with, Theorem 1 does

not imply meaningful security guarantees.

For more discussion on the interpretation of the secu-

rity guarantees, see Section 7.4. For a formal connection

to traditional (entropy-based) presentations of quantita-

tive information-flow analysis [43] and a proof of Theo-

rem 1, see the extended version [19].

3.6 Adversarially Chosen Cache States

We sometimes assume that initial states are pairs consist-

ing of high and low components, i.e. I = Ihi × Ilo, where

only the high component is meant to be kept secret and

the low component may be provided by the adversary,

a common setting in information-flow analysis [42]. In

this case, a program and a view define a family of chan-

nels Cσlo
: Ihi → O, one for each low component σlo ∈ Ilo.

A particularly interesting instance is the decomposi-

tion into secret memory Ihi =M and adversarially cho-

sen cache Ilo = C. While bounds for the corresponding

channel can be derived by considering all possible ini-

tial cache states, corresponding analyses suffer from poor

precision. The following lemma enables us to derive

bounds for the general case, based on the empty cache

state.

Lemma 1. For all initial cache states c ∈ C, adversaries

adv ∈ {acc,accd, time, tr}, and LRU, FIFO, or PLRU re-

placement: If no block in c is accessed during program

execution, then
∣

∣

∣
ran(Cadv

/0 )
∣

∣

∣
=

∣

∣

∣
ran(Cadv

c )
∣

∣

∣
, (1)

where /0 is a shorthand for the empty cache state. For

adv ∈ {acc,accd} and LRU,
∣

∣ran(Cadv
/0 )

∣

∣ ≥
∣

∣ran(Cadv
c )

∣

∣

holds without any constraints on the initial cache state c.

This lemma was proved in [34] for acc, accd and the

LRU case with the initial cache state not containing any

block of the victim. The proof is based on the fact that

memory blocks in the cache do not affect the position

of memory blocks that are accessed during computation

whenever the two sets of memory blocks are disjoint,

which allows us to construct a bijective function from

ran(Cadv
/0 ) to ran(Cadv

c ). The argument immediately ex-

tends to FIFO, PLRU, and all adv. For LRU and access-

based adversaries, the function remains surjective even

without the disjointness requirement.

4 Automatic Quantification of Cache Side

Channels

Theorem 1 enables the quantification of side channels

by determining their range. As channels are defined in

terms of views on computations, their range can be de-

termined by computing Col and applying view. However,

this entails computing a fixpoint of the next operator and

is practically infeasible in most cases. Abstract inter-

pretation [16] overcomes this fundamental problem by

computing a fixpoint with respect to an efficiently com-

putable over-approximation of next. This new fixpoint

represents a superset of all computations, which is suf-

ficient for deriving an upper bound on the range of the

channel and thus on the leaked information.
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In this section, we describe the interplay of the abstrac-

tions used for over-approximating next in CacheAudit

(namely, those for memory, cache, and events), and we

explain how the global soundness of CacheAudit can be

established from local soundness conditions. This mod-

ularity is key for the future extension of CacheAudit us-

ing more advanced abstractions. Our results hold for all

adversaries introduced in Section 3.4 and we omit the

superscript adv from channels and views for readability.

4.1 Sound Abstraction of Leakage

We frame a static analysis by defining a set of abstract

elements Traces♯ together with an abstract transfer func-

tion next♯ : Traces♯ → Traces♯. Here, the elements a ∈
Traces♯ represent subsets of Traces, which is formalized

by a concretization function

γ : Traces♯→P(Traces) .

The key requirements for next♯ are (1) that it be effi-

ciently computable, and (2) that it over-approximates the

effect of next on sets of computations, which is formal-

ized as the following local soundness condition:

∀a ∈ Traces♯ : next (γ(a))⊆ γ(next♯(a)) . (2)

Intuitively, if we maintain a superset of the set of compu-

tations during each step of the transfer function as in (2),

then this inclusion must also hold for the correspond-

ing fixpoints. More formally, any post-fixpoint of next♯

that is greater than an abstraction of the initial states I is

a sound over-approximation of the collecting semantics.

We use Col♯ to denote any such post-fixpoint.

Theorem 2 (Local soundness implies global soundness,

from [16]). If (2) holds then

Col ⊆ γ
(

Col♯
)

.

The following theorem is an immediate consequence

of Theorem 2 and the fact that view(Col) = ran(C). It

states that a sound abstract analysis can be used for de-

riving bounds on the size of the range of a channel.

Theorem 3 (Upper bounds on leakage).

|ran(C)| ≤
∣

∣

∣
view

(

γ
(

Col♯
))∣

∣

∣
.

With the help of Theorem 1, these bounds immediately

translate into security guarantees. The relationship of all

steps leading to these guarantees is depicted in Figure 2.

4.2 Abstraction Using a Control Flow

Graph

In order to come up with a tractable and modular analy-

sis, we design independent abstractions for cache states,

memory, and sequences of events.

• M♯ abstracts memory and γM : M♯→P(M) for-

malizes its meaning.

• C♯ abstracts cache configurations and γC : C♯→P(C)
formalizes its meaning.

• E ♯ abstracts sequences of events and γE : E ♯ →
P(E∗) formalizes its meaning.

But, since cache updates and events depend on memory

state, independent analyses would be too imprecise. In

order to maintain some of the relations, we link the three

abstract domains for memory state, caches, and events

through a finite set of labels L so that our abstract domain

is

Traces♯ = L→M♯×C♯×E ♯ ,

where we write aM(l), aC(l) and aE(l) for the first, sec-

ond, and third components of an abstract element a(l).
Labels roughly correspond to nodes in a control flow

graph in classical data-flow analyses. One could sim-

ply use program locations as labels. But in our setting,

we use more general labels, allowing for a more fine-

grained analysis in which we can distinguish values of

flags or results of previous tests [36]. To capture that,

we associate a meaning with each label via a function

γL : L→P(Traces). If the labels are program locations,

then γL(l) is the set of traces ending in a state in lo-

cation l. The analogy with control flow graphs can be

extended to edges of that graph: using the next opera-

tor, we define the successors and predecessors of a lo-

cation l as: succ(l) = {k |next(γL(l))∩ γL(k) �= /0}, and

pred(l) = {k |next(γL(k))∩ γL(l) �= /0}.

Then we can describe the meaning of an element a ∈
Traces♯ with:

γ(a) = {σ0e0σ1 . . .σn ∈ Traces | ∀i ≤ n, ∀l ∈ L :

σ0e0σ1 . . .σi ∈ γL(l)⇒

σM

i ∈ γM(aM(l))∧σC

i ∈ γC(a
C(l))

∧e0 . . .ei−1 ∈ γE(a
E(l))

} (3)

That is, the meaning of an a ∈ Traces♯ is the set of

traces, such that for every prefix of a trace, if it “ends” at

program location l, then the memory state, cache state,

and the event sequence satisfy the respective abstract el-

ements for that location.

The abstract transfer function next♯ will be decom-

posed into:

next♯(a) = λ l.(next
M♯(a, l),next

C♯(a, l),next
E♯(a, l)) ,

(4)
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Figure 2: Relationship of collecting semantics Col, abstract fixpoint Col♯, side channels C, and leakage bounds.

where each next function over-approximates the corre-

sponding concrete update function defined in the previ-

ous section. The effects used for defining the concrete

updates are reflected as information flow between other-

wise independent abstract domains, which is formalized

as a partial reduction in the abstract interpretation litera-

ture [18].

4.3 Local Soundness

The products and powers of sound abstract domains with

partial reductions are again sound abstract domains [17].

The soundness of Traces♯ hence immediately follows

from the local soundness of the memory, cache and event

domains. Below we describe those soundness conditions

for each domain.

The abstract next♯ operation is implemented using lo-

cal update functions for the memory, cache, and event

components. For the memory domain we have, for each

label k ∈ L and each l ∈ succ(k):

• an abstract memory update updM♯,(k,l):M
♯→M♯,

and

• an abstract memory effect effM♯,(k,l) : M♯ →

P(EM).

For the cache domain, there is no need for separate func-

tions for each pair (k, l), because the cache update only

depends on the accessed block which is delivered by the

abstract memory effect. Likewise, the update of the event

domain only depends on the abstract cache effect. Thus,

we further have:

• an abstract cache update updC♯ : C♯×P(EM)→C♯,
• an abstract cache effect eff C♯ : C♯ × P(EM) →

P(EC), and

• an abstract event updE♯ : E ♯×P(EC)→E ♯.

With these functions, we can approximate the effect

of next on each label l, using the abstract values associ-

ated with the labels that can lead to l, pred(l). For the

example of the cache domain, this yields

nextC♯(a, l)=
C♯
⊔

k∈pred(l)

updC♯

(

aC(k),effM♯,(k,l)(a
M(k))

)

,

where
⊔C♯

refers to the join function and can be thought

of as set union. That is, nextC♯(a, l) collects all cache

states that can reach l within one transition when updated

with an over-approximation of the corresponding mem-

ory blocks. See the full version [19] for a description

of the corresponding update functions for memory and

effects.

Now from Equations 2, 3, and 4, we can derive con-

ditions for each domain that are sufficient to guarantee

local soundness for the whole analysis:

Definition 1 (Local soundness of abstract domains). The

abstract domains are locally sound if the abstract joins

are over-approximations of unions, and if for any func-

tion f ♯ ∈ {updM♯,(k,l),effM♯,(k,l),updC♯ ,eff C♯ ,updE♯}
approximating concrete function f ∈
{updM,effM,updC ,eff C ,next} and corresponding

meaning function γ f , we have for any abstract value x:

γ f

(

f ♯(x)
)

⊇ f
(

γ f (x)
)

.

For example, for the cache abstract domain, we have

the following local soundness conditions:

∀c♯ ∈ C♯,M ∈ P(EM) :

γC(updC♯(c♯,M))⊇ updC(γC(c
♯),M),

eff C♯(c♯,M)⊇ eff C(γC(c
♯),M),

∀G♯ ⊆ C♯ : γC





C♯
⊔

G♯



 ⊇
⋃

G♯∈G♯

γC

(

G♯
)

.

Lemma 2 (Local Soundness Conditions). If local sound-

ness holds on the abstract memory, cache, and events

domains, then the corresponding next♯ function satisfies

local soundness.

Due to the above lemma, abstract domains for the

memory, cache, and events can be separately developed

and proven correct. We exploit this fact in this paper, and

we plan to develop further abstractions in the future, tar-

geting different classes of adversaries or improving pre-

cision.
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4.4 Soundness of Delivered Bounds

We implemented the framework described above in a

tool named CacheAudit. Thanks to the previous results,

CacheAudit provides the following guarantees.

Theorem 4. The bounds derived by CacheAudit

soundly over-approximate
∣

∣ran(Cadv)
∣

∣, for adv ∈
{acc,accd, tr, time}, and hence correspond to upper

bounds on the maximal amount of leaked information.

The statement is an immediate consequence of com-

bining Lemma 2 with Theorems 2 and 3, under the as-

sumption that all involved abstract domains satisfy local

soundness conditions, and that the corresponding count-

ing procedures are correct. We formally prove the valid-

ity of these assumptions only for our novel relational and

trace domains (see Section 6). For the other domains,

corresponding proofs are either standard (e.g. the value

domain) or out of scope of this submission.

5 Tool Design and Implementation

In this section we describe the architecture and imple-

mentation of CacheAudit.

We take advantage of the compositionality of the

framework described in Section 4 and use a generic it-

erator module to compute fixpoints, where we rely on

independent modules for the abstract domains that corre-

spond to the components of the next♯ operation. Figure 3

depicts the overall architecture of CacheAudit, with the

individual modules described below.

5.1 Control Flow Reconstruction

The first stage of the analysis is similar to a compiler

front end. The main challenge is that we directly ana-

lyze x86 executables with no explicit control flow graph,

which we need for guiding the fixpoint computation.

For the parsing phase, we rely on Chlipala’s parser for

x86 executables [13], which we extend to a set of in-

structions that is sufficient for our case studies (but not

yet complete). For the control-flow reconstruction, we

consider only programs without dynamically computed

jump and call targets, which is why it suffices to iden-

tify the basic blocks and link them according to the cor-

responding branching conditions and (static) branch tar-

gets. We plan to integrate more sophisticated techniques

for control-flow reconstruction [30] in the future.

5.2 Iterator

The iterator module is responsible for the computation

of the next♯ operator and of the approximation of its fix-

point using adequate iteration strategies [17]. Our analy-

sis uses an iterative strategy, i.e., it stabilizes components

CacheAudit
x86 parser

Cache AD

Memory AD

Stack ADabstract
domains

Flag AD

Value ADOctagon AD

RelSet AD

Interval AD
FiniteSet AD

Iterator

Trace AD
Timing AD

Figure 3: The architecture of CacheAudit. The solid

boxes represent modules. Black-headed arrows mean

that the module at the head is an argument of the module

at the tail. White-headed arrows represent is-a relation-

ships.

of the abstract control flow graph according to a weak

topological ordering, which we compute using Bourdon-

cle’s algorithm [12].

The iterator also implements parts of the reduced car-

dinal power, based on the labels computed according to

the control-flow graph: Each label is associated with an

initial abstract state. The analysis computes the effect of

the commands executed from that label to its successors

on the initial abstract state, and propagates the resulting

final states using the abstract domains described below.

In order to increase precision, we expand locations us-

ing loop unfolding, so that we have a number of differ-

ent initial and final abstract states for each label inside

loops, depending on a parameter describing the number

of loop unfoldings we want to perform. Most of our

examples (such as the cryptographic algorithms) require

only a small, constant number of loop iterations, so that

we can choose unfolding parameters that avoid joining

states stemming from different iterations.

5.3 Abstract Domains

As described in Section 4, we decompose the abstract

domain used by the iterator into mostly independent ab-

stract domains describing different aspects of the con-

crete semantics.

Value Abstract Domains A value abstract domain

represents sets of mappings from variables to (integer)
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values. Value abstract domains are used by the cache

abstract domain to represent ages of blocks in the cache,

and by the flag abstract domain to represent values stored

at the addresses used in the program. We have imple-

mented different value abstract domains, such as the in-

terval domain, an exact finite sets domain (where the sets

become intervals when they are growing too large) and a

relational set domain (as described in Section 6.1).

Flag Abstract Domain In x86 binaries, there are no

high level guards: instead, most operations modify flags

which are then queried in conditional branches. In or-

der to deal precisely with such branches, we need to

record relational information between the values of vari-

ables and the values of these flags. To that end, for each

operation that modifies the flags, we compute an over-

approximation of the values of the arguments that may

lead to a particular flag combination. The flag abstract

domain represents an abstract state as a mapping from

values of flags to elements of the value abstract domain.

When the analysis reaches a conditional branch, it can

identify which combination of flag values corresponds to

the branch and propagate the appropriate abstract values.

Memory Abstract Domain The memory abstract do-

main associates memory addresses and registers with

variables and translates machine instructions into the cor-

responding operations on those variables, which are rep-

resented using flag abstract domains as described above.

One important aspect for efficiency is that variables cor-

responding to addresses are created dynamically during

the analysis whenever they are needed. The memory ab-

stract domain further records all accesses to main mem-

ory using a cache abstract domain, as described below.

Stack Abstract Domain Operations on the stack are

handled by a dedicated stack abstract domain. In this

way the memory abstract domain does not have to deal

with stack operations such as procedure calls, for which

special techniques can be implemented to achieve precise

interprocedural analysis.

Cache Abstract Domain The cache abstract domain

only tracks information about the cache state. We rep-

resent this state by sets of mappings from blocks to

ages in the cache, which we implement using an in-

stance of value abstract domains. Effects from the mem-

ory domain are passed to the cache domain through

the trace domain. The cache abstract domain tracks

which addresses are touched during computation and re-

turns information about the presence or absence of cache

hits and misses to the trace abstract domain, which we

present in Section 6.2. The timings are then obtained as

an abstraction from the traces.

6 Abstract Domains for Cache Adversaries

6.1 Cache State Domains

Abstractions of cache states are at the heart of analyses

for all three cache adversaries considered in this paper.

Thus, precise abstraction of cache states is crucial to de-

termine tight leakage bounds.

The current state-of-the-art abstraction for LRU re-

placement by Ferdinand et al. [21] maintains an upper

and a lower bound on the age of every memory block.

This abstraction was developed with the sole goal of clas-

sifying memory accesses as cache hits or cache misses.

In contrast, our goal is to develop abstractions that yield

tight bounds on the maximal leakage of a channel. For

access-based adversaries the leakage is bounded by the

size of the concretization of an abstract cache state, i.e.

the size of the set of concrete cache states represented by

the abstract state.

Intuition behind Relational Sets To derive tighter

leakage bounds, we propose a new domain called rela-

tional sets that improves previous work along two dimen-

sions:

1. Instead of intervals of ages of memory blocks, we

maintain sets of ages of memory blocks.

2. Instead of maintaining independent information

about the age of each memory blocks, we record the

relation between ages of different memory blocks.

In addition to increasing precision, moving from in-

tervals to sets allows us to analyze caches with FIFO and

PLRU replacement. Interval-based analysis of FIFO and

PLRU has been shown to be rather imprecise in the con-

text of worst-case execution time analysis [24].

Motivating Example Consider the following method,

which performs a table lookup based on a secret input, as

it may occur in e.g. an AES implementation:

unsigned int A[size];

int getElement(int secret) {

if (secret < size)

return A[secret];

}

Assume we want to determine the possible cache

states after one invocation of getElement. As the value

of secret is unknown to the analysis, every memory lo-

cation of the array might be accessed.
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size 8 16 32 64 128 256

LRU/IV 1 2 4 8 16 32

LRU/Set 1 2 4 8 16 32

LRU/Rel 1 1.58 2.32 3.17 4.01 5.04

Figure 4: Bounds on the number of leaked bits about

the parameter secret for varying array sizes. The cache

parameters are fixed, with a block size of 32 bytes, asso-

ciativity 4 and cache size 4 KB.

Assuming the array was not cached before the invoca-

tion of getElement, the interval-based domain by Fer-

dinand et al. [21] determines a lower bound of 0 and an

upper bound of k on the age of each array element.

By tracking sets instead of intervals of ages for each

memory block, we would get 0 and k as possible ages of

each array element.

Both non-relational domains, however, are not power-

ful enough to infer or even express the fact, that only one

of the array’s memory blocks has been accessed, and can

thus be cached. Therefore, the number of possible cache

states represented by non-relational abstractions grows

exponentially in the size of the array, while the actual

number of possible cache states only grows linearly.

A relational domain, tracking the possible ages of,

e.g., pairs of memory blocks, would indeed yield a lin-

ear growth in the number of possible cache states. For

each pair of array elements, it would be able to infer that

only one of the two blocks may be cached. From this, it

follows that only one of all of the array elements may be

cached.

Figure 4 shows experimental results for the example

program with three domains: the interval domain (IV),

and two instances of the relational sets domain, tracking

sets of ages of individual blocks (Set) and sets of ages of

pairs of blocks (Rel), respectively.

We do not see an improvement of sets over intervals

in this particular example, as the information that a block

has either age 0 or age k can be inferred from the intervals

in the counting procedure. This is because the considered

arrays are small and thus no two array elements map to

the same cache set. We have, however, observed in case

studies that sets alone often improve over intervals.

A detailed formalization of relational sets and their im-

plementation, including efficient counting, is provided in

the extended version of this paper [19]. There, we also

show that the domain is locally sound according to Defi-

nition 1:

Lemma 3. The relational sets domain is locally sound.

6.2 A Trace Domain

We devise an abstract domain for keeping track of the

sets of event traces that may occur during the execution

of a program. Following the way events are computed

in the concrete, namely as a function from cache states

and memory effects (see Section 3.3), the abstract cache

domain provides abstract cache effects.

In our current implementation of CacheAudit, we use

an exact representation for sets of event traces: we can

represent any finite set of event traces, and assuming an

incoming set of traces S and a set of cache effects E, we

compute the resulting event set precisely as follows:

upd
E♯(S,E) = {σ .e |σ ∈ S ∧ e ∈ E }

Then soundness is obvious, since the abstract opera-

tion is the same as its concrete counterpart. Due to loop

unfolding, we do not require widenings, even though

the domain contains infinite ascending chains (see Sec-

tion 5.2).

Lemma 4. The trace domain is locally sound.

Representation for Sets of Event Traces We repre-

sent sets of finite event traces corresponding to a partic-

ular program location by a directed acyclic graph (DAG)

with vertices V , a dedicated root r ∈V , and a node label-

ing ℓ : V →P(E)∪{⊔}. In this graph, every node v ∈V

represents a set of traces γ(v) ∈ P(E∗) in the following

way:

1. For the root r, γ(r) = {ε}

2. For v with L(v) = ⊔ and predecessors u1, . . . ,un,

γ(v) =
⋃n

i=1 γ(ui).

3. For v with L(v) �= ⊔ and predecessors u1, . . . ,un,

γ(v) = {t.u | u ∈ L(v)∧ t ∈
⋃n

i=1 γ(ui)}

Intuitively, every v ∈ V represents a set of event traces,

namely the sequences of labels of paths from r to v.

In the context of CacheAudit, we need to implement

two operations on this data structure, namely (1) the join

⊔E
♯

of two sets of traces and the (2) addition upd
E♯(S,E)

of a cache event to a particular set of traces.

For the join of two sets of traces represented by v and

w, we add a new vertex u with label ⊔ and add edges

from v and w to u.

For the extension of a set of traces represented by

a vertex v by a set of cache events E, we first check

whether v already has a child w labeled with E. If so, we

use w as a representation of the extended set of traces. If

not, we add a new vertex u with label E and add an edge

(u,v). In this way we make maximal use of sharing and

obtain a prefix DAG. The correctness of the representa-

tion follows by construction. In CacheAudit, we use hash

consing for efficiently building the prefix DAG.
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Counting Sets of Traces The following algorithm

counttr overapproximates the number of traces that are

represented by a given graph.

1. For the root r, counttr(r) = 1

2. For v with L(v) = ⊔ and predecessors u1, . . . ,un,

counttr(v) = ∑
n
i=1 countτ(ui)

3. For v with L(v) �= ⊔ and predecessors u1, . . . ,un,

counttr(v) = |L(v)| ·∑n
i=1 counttr(ui)

The soundness of this counting, i.e. the fact that |γ(v)| ≤
counttr(v), follows by construction. Notice that the pre-

cision dramatically decreases with larger sets of labels.

In our case, labels contain at most three events and the

counting is sufficiently precise.

Counting Timing Variations We currently model ex-

ecution time as a simple abstraction of traces, see Sec-

tion 3. In particular, timing is computed from a trace over

E = {hit,miss,⊥} by multiplying the number of occur-

rences of each event by the time they consume: thit, tmiss,

and t⊥, respectively. The following algorithm counttime

over-approximates the set of timing behaviors that are

represented by a given graph.

1. For the root r, counttime(r) = {0}

2. For v with L(v) = ⊔ and predecessors u1, . . . ,un,

counttime(v) =
⋃n

i=1 counttime(ui)

3. For v with L(v) �= ⊔ and predecessors u1 . . . ,un,

counttime(v) =
{

tx + t

∣

∣

∣

∣

∣

x ∈ L(v)∧ t ∈
n

⋃

i=1

counttime(ui)

}

The soundness of counttime, i.e. the fact that it delivers

a superset of the number of possible timing behaviors,

follows by construction.

7 Case Studies

In this section we demonstrate the capabilities of Cache-

Audit in case studies where we use it to analyze the cache

side channels of algorithms for sorting and symmetric

encryption. All results are based on the automatic anal-

ysis of corresponding 32-bit x86 Linux executables that

we compiled using gcc.
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Figure 5: Effect of the attacker model and preloading

(PL) on the security guarantee, for varying cache sizes.

The results are given for a 4-way set associative cache

with a line size of 64B and the LRU replacement strategy.
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Figure 6: Effect of the cache line size on the security

guarantee, for Cacc and Caccd, for varying cache sizes.

The results are given for a 4-way set associative cache

with the LRU replacement strategy.

7.1 AES 128

We analyze the AES implementation from the PolarSSL

library [3] with keys of 128 bits, where we consider the

implementation with and without preloading of tables,

for all attacker models, different replacement strategies,

associativities, and line sizes. All results are presented as

upper bounds of the leakage in bits; for their interpreta-

tion see Theorem 1. In some cases, CacheAudit reports

upper bounds that exceed the key size (128 bits), which

corresponds to an imprecision of the static analysis. We

opted against truncating to 128 bits to illustrate the de-

gree of imprecision. The full data of our analysis are

given in the extended version of this paper [19]. Here,

we highlight some of our findings.

• Preloading almost consistently leads to better secu-

rity guarantees in all scenarios (see e.g. Figure 5). How-

ever, the effect becomes clearly more apparent for cache

sizes beyond 8KB, which is explained by the PolarSSL

AES tables exceeding the size of the 4KB cache by 256B.

For cache sizes that are larger than the preloaded ta-

bles, we can prove noninterference for Cacc and FIFO,

Caccd and LRU, and for Ctr and Ctime on LRU, FIFO, and

PLRU. For Cacc with shared memory spaces and LRU,
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Figure 7: Effect of the replacement strategy on the se-

curity guarantee for Cacc, with and without preloading

(PL), for varying cache sizes. The results are given for a

4-way set associative cache with a line size of 64B.
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Figure 8: Effect of the associativity on the security guar-

antee, for Cacc and Caccd, without preloading, for varying

cache sizes. The results are given for a cache with a line

size of 64B and the LRU replacement strategy.

this result does not hold because the adversary can ob-

tain information about the order of memory blocks in the

cache.

• A larger line size consistently leads to better se-

curity guarantees for access-based adversaries (see e.g.

Figure 6). This follows because more array indices map

to a line which decreases the resolution of the attacker’s

observations.

• In terms of replacement strategies, we consistently

derive the lowest bounds for LRU, followed by PLRU

and FIFO (see the extended version [19]), where the only

exception is the case of Cacc and preloading (see Fig-

ure 7). In this case FIFO is more secure because with

LRU the adversary can obtain information about the or-

dering of memory blocks in the cache.

• In terms of cache size, we consistently derive bet-

ter bounds for larger caches, with the exception of Caccd.

For this adversary model the bounds increase because

larger caches correspond to distributing the table to more

sets, which increases its possibilities to observe varia-

tions. The guarantees we obtain for Caccd and Cacc con-

verge for caches of 4 ways and sizes beyond 16KB (see

e.g. Figure 6). This is due to the fact that each cache

set can contain at most one unique block of the 4KB ta-

ble. In that way, the ability to observe ordering of blocks

within a set does not give Cacc any advantage.

• When increasing associativity, we observe oppos-

ing effects on the leakage of Cacc and Caccd (see Fig-

ure 8). This is explained by the fact that, for a fixed

cache size, increasing associativity means decreasing the

number of sets. For Caccd which can only observe the

number of blocks that have been loaded into each set,

this corresponds to a decrease in observational capabil-

ity; for Cacc which can observe the ordering of blocks,

this corresponds to an increase. This difference vanishes

for larger cache sizes because then each set contains at

most one unique block of the AES tables.

Comparison to [34]: In a recent study [34] we ana-

lyzed the PolarSSL AES implementation with respect

to access-based adversaries and LRU replacement, using

the cache component of a closed-source tool for worst-

case execution time analysis [1]. The results we obtain

using CacheAudit go beyond that analysis in that we de-

rive bounds w.r.t. access-based, trace-based, and time-

based adversaries, for LRU, FIFO, and PLRU strategies.

For access-based adversaries and LRU, the bounds we

derive are lower than those in [34]; in particular, for

Caccd we derive bounds of zero for implementations with

preloading for all caches sizes that are larger than the

AES tables—which is obtained in [34] only for caches

of 128KB. While these results are obtained for differ-

ent platforms (x86 vs. ARM) and are hence not directly

comparable, they do suggest a significant increase in pre-

cision. In contrast to [34], this is achieved without any

code instrumentation.

7.2 Salsa20

Salsa20 is a stream cipher by Bernstein [11]. Internally,

the cipher uses XOR, addition mod 232, and constant-

distance rotation operations on an internal state of 16 32-

bit words. The lack of key-dependent memory lookups

intends to avoid cache side channels in software imple-

mentations of the cipher. With CacheAudit we could for-

mally confirm this intuition by automated analysis of the

reference implementation of Salsa20 encryption, which

includes a function call to a hash function. Specifically,

we analyze the leakage of the encryption operation on

an arbitrary 512-byte message for Cacc, Ctr, and Ctime,

FIFO and LRU strategies, on 4KB caches with line size

of 32B, where we consistently obtain upper bounds of 0

for the leakage. The time required for analyzing each of

the cases was below 11s.
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7.3 Sorting Algorithms

In this section we use CacheAudit to establish bounds on

the cache side channels of different sorting algorithms.

This case study is inspired by an early investigation of se-

cure sorting algorithms [8]. While the authors of [8] con-

sider only time-based adversaries and noninterference as

a security property, CacheAudit allows us to give quanti-

tative answers for a comprehensive set of side-channel

adversaries, based on the binary executables and con-

crete cache models.

As examples, we use the implementations of Bubble-

Sort, InsertionSort, and SelectionSort from [4], which

are given in Section 2 and Appendix A, respectively,

where we use integer arrays of lengths from 8 to 64.

The results of our analysis are summarized in Figure 9.

In the following we highlight some of our findings.

• We obtain the same bounds for BubbleSort and Se-

lectionSort, which is explained by the similar structure

of their control flow. A detailed explanation of those

bounds is given in Section 2. InsertionSort has a differ-

ent control flow structure, which is reflected by our data.

In particular InsertionSort has only n! possible execution

traces due to the possibility of leaving the inner loop,

which leads to better bounds w.r.t. trace-based adver-

saries. However, InsertionSort leaks more information

to timing-based adversaries, because the number of iter-

ations in the inner loop varies and thus fewer executions

have the same timing.

• For access-based adversaries we obtain zero bounds

for all algorithms. For trace-based adversaries, the de-

rived bounds do not imply meaningful security guaran-

tees: the bounds reported for InsertionSort are in the or-

der of log2(n!), which corresponds to the maximum in-

formation contained in the ordering of the elements; the

bounds reported for the other sorting algorithms exceed

this maximum, which is caused by the imprecision of the

static analysis.

• We performed an analysis of the sorting algorithms

for smaller (256B) and larger (64KB) cache sizes and

obtained the exact same bounds as in Figure 9, with the

exception of the case of arrays of 64 entries and 256B

caches: there the leakage increases because the arrays do

not fit entirely into the cache due to their misalignment

with the memory blocks.

7.4 Discussion and Outlook

A number of comments are in order when interpreting

the bounds delivered by CacheAudit. First, we obtained

all of the bounds for an empty initial cache. As described

in Section 3.6, they immediately extend to bounds for ar-

bitrary initial cache states, as long as the victim does not

access any block that is contained in it. This is relevant,

e.g. for an adversary who can fill the initial cache state

only with lines from its own disjoint memory space. For

LRU and access-based adversaries, our bounds extend to

arbitrary initial cache states without further restriction.

Second, while CacheAudit relies on more accurate

models of cache and timing than any information-flow

analysis we are aware of, there are several timing-

relevant features of hardware it does not capture (and

make assertions about) yet, including out-of-order exe-

cution, which may reorder memory accesses, TLBs, and

multiple levels of caches.

Third, for the case of AES and Salsa20, the derived

bounds hold for the leakage about the key in one execu-

tion, with respect to any payload. For the case of zero

leakage (i.e., noninterference), the bounds trivially ex-

tend to bounds for multiple executions and imply strong

security guarantees. For the case of non-zero leakage, the

bounds can add up when repeatedly running the victim

process with a fixed key and varying payload, leading to

a decrease in security guarantees. One of our prime tar-

gets for future work is to derive security guarantees that

hold for multiple executions of the victim process. One

possibility to achieve this is to employ leakage-resilient

cryptosystems [20, 47], where our work can be used to

bound the range of the leakage functions.

Finally, note that the bounds delivered by CacheAudit

can only be used for certifying that a system is se-

cure; they cannot be used for proving that it is not.

There are two reasons why the bounds may be overly

pessimistic: First, CacheAudit may over-estimate the

amount of leaked information due to imprecision of the

static analysis. Second, the secret input may not be ef-

fectively recoverable from the leaked information by an

adversary that is computationally bounded.

8 Related Work

The work most closely related to ours is [34]. There,

the authors quantify cache side channels by connecting a

commercial, closed-source tool for the static analysis of

worst-case execution times [1] to an algorithm for count-

ing concretizations of abstract cache states. The appli-

cation of the tool to side-channel analysis is limited to

access-based adversaries and requires heavy code instru-

mentation. In contrast, CacheAudit provides tailored ab-

stract domains for all kinds of cache side-channel ad-

versaries, different replacement strategies, and is mod-

ular and open for further extensions. Furthermore, the

bounds delivered by CacheAudit are significantly tighter

than those reported in [34]; see Section 7.

Zhang et al. [48] propose an approach for mitigating

timing side channels that is based on contracts betweens

software and hardware. The contract is enforced on the

software side using a type system, and on the hardware
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array length 8 16 32 64

Ctr Ctime Cacc Ctr Ctime Cacc Ctr Ctime Cacc Ctr Ctime Cacc

BubbleSort 28 4.86 0 120 6.92 0 496 8.96 0 2016 11 0

InsertionSort 15.23 6.91 0 44.3 10.15 0 117.7 13.3 0 296 15.8 0

SelectionSort 28 4.86 0 120 6.92 0 496 8.96 0 2016 11 0

Figure 9: The table illustrates the security guarantees derived by CacheAudit for the implementations of BubbleSort, SelectionSort,

and InsertionSort, for trace-based, timing-based, and access-based adversaries, for LRU caches of 4KB and line sizes of 32B.

side, e.g., by using dedicated hardware such as parti-

tioned caches. The analysis ensures that an adversary

cannot obtain any information by observing public parts

of the memory; any confidential information the adver-

sary obtains must be via timing, which is controlled using

dedicated mitigate commands. Tiwari et al. [45] sketch a

novel microarchitecture that faciliates information-flow

tracking by design, where they use noninterference as

a baseline confidentiality property. Other mitigation

techniques include coding guidelines [15] for thwarting

cache attacks on x86 CPUs, or novel cache architectures

that are resistant to cache side-channel attacks [46]. The

goal of our approach is orthogonal to those approaches

in that we focus on the analysis of microarchitectural

side channels rather than on their mitigation. Our ap-

proach does not rely on a specific platform; rather it can

be applied to any language and hardware architecture, for

which abstractions are in place.

Kim et al. put forward StealthMem [29], a system-

level defense against cache-timing attacks in virtualized

environments. The core of StealthMem is a software-

based mechanism that locks pages of a virtual machine

into the cache and prevents their eviction by other VMs.

StealthMem can be seen as a lightweight variant of flush-

ing/preloading countermeasures. As future work, we

plan to use our tool to derive formal, quantitative guar-

antees for programs using StealthMem.

For the case of AES, there are efficient software im-

plementations that avoid the use of data caches by bit-

slicing [28]. Furthermore, a model for statistical estima-

tion of the effectiveness of AES cache attacks based on

sizes of cache lines and lookup tables has been presented

in [44]. In contrast, our analysis technique applies to ar-

bitrary programs.

Technically, our work builds on methods from quan-

titative information-flow analysis (QIF) [14], where the

automation by reduction to counting problems appears

in [9, 38, 26, 37], the connection to abstract interpreta-

tion in [35], and the application to side channel analysis

in [33]. Finally, our work goes beyond language-based

approaches that consider caching [7, 25] in that we rely

on more realistic models of caches and aim for more per-

missive, quantitative guarantees.

9 Conclusions

We presented CacheAudit, the first automatic tool for the

static derivation of formal, quantitative security guaran-

tees against cache side-channel attacks. We demonstrate

the usefulness of CacheAudit by establishing the first

formal proofs of security of software-based countermea-

sures for a comprehensive set of adversaries and based

on executable code.

The open architecture of CacheAudit makes it an ideal

platform for future research on microarchitectural side

channels. In particular, we are currently investigating

the derivation of security guarantees for concurrent ad-

versaries. Progress along those lines will provide a han-

dle for extending our security guarantees to the operating

system level. We will further investigate abstractions for

hardware features such as pipelines, out-of-order execu-

tion, and leakage-resilient cache designs, with the goal

of providing broad tool support for reasoning about side-

channels arising at the hardware/software interface.
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A Example Code

Selection Sort

void SelectionSort(int a[], int array_size){

int i;

for (i = 0; i < array_size - 1; ++i){

int j, min, temp;

min = i;

for (j = i+1; j < array_size; ++j){

if (a[j] < a[min])

min = j;

}

temp = a[i];

a[i] = a[min];

a[min] = temp;

}

}

Insertion Sort

void InsertionSort(int a[], int array_size){

int i, j, index;

for (i = 1; i < array_size; ++i){

index = a[i];

for (j = i; j > 0 && a[j-1] > index; j--)

a[j] = a[j-1];

a[j] = index;

}

}


