
CacheBleed: A Timing Attack on OpenSSL

Constant Time RSA

Yuval Yarom1(B), Daniel Genkin2, and Nadia Heninger3

1 The University of Adelaide and NICTA, Adelaide, Australia
yval@cs.adelaide.edu.au

2 Technion and Tel Aviv University, Tel Aviv, Israel
danielg3@cs.technion.ac.il

3 University of Pennsylvania, Philadelphia, USA
nadiah@cis.upenn.edu

Abstract. The scatter-gather technique is a commonly implemented
approach to prevent cache-based timing attacks. In this paper we show
that scatter-gather is not constant time. We implement a cache timing
attack against the scatter-gather implementation used in the modular
exponentiation routine in OpenSSL version 1.0.2f. Our attack exploits
cache-bank conflicts on the Sandy Bridge microarchitecture. We have
tested the attack on an Intel Xeon E5-2430 processor. For 4096-bit RSA
our attack can fully recover the private key after observing 16,000 decryp-
tions.

Keywords: Side-channel attacks · Cache attacks · Cryptographic
implementations · Constant-time · RSA

1 Introduction

1.1 Overview

Side-channel attacks are a powerful method for breaking theoretically secure
cryptographic primitives. Since the first works by Kocher [33], these attacks
have been used extensively to break the security of numerous cryptographic
implementations. At a high level, it is possible to distinguish between two types
of side-channel attacks, based on the methods used by the attacker: hardware-
based attacks, which monitor the leakage through measurements (usually using
dedicated lab equipment) of physical phenomena such as electromagnetic radia-
tion [43], power consumption [31,32], or acoustic emanation [22], and software-
based attacks, which do not require additional equipment but rely instead on
the attacker software running on or interacting with the target machine. Exam-
ples of the latter include timing attacks which measure timing variations of
cryptographic operations [7,16,17] and cache attacks which observe cache access
patterns [40,41,49].

Percival [41] published in 2005 a cache attack, which targeted the OpenSSL [39]
0.9.7c implementation of RSA. In this attack, the attacker and the victim pro-
grams are colocated on the same machine and processor, and thus share the

c© International Association for Cryptologic Research 2016
B. Gierlichs and A.Y. Poschmann (Eds.): CHES 2016, LNCS 9813, pp. 346–367, 2016.
DOI: 10.1007/978-3-662-53140-2 17

CacheBleed: A Timing Attack on OpenSSL Constant Time RSA 347

same processor cache. The attack exploits the structure of the processor cache by
observing minute timing variations due to cache contention. The cache consists
of fixed-size cache lines. When a program accesses a memory address, the cache-
line-sized block of memory that contains this address is stored in the cache and
is available for future use. The attack traces the changes that the victim program
execution makes in the cache and, from this trace, the attacker is able to recover
the private key used for the decryption.

In order to implement the modular exponentiation routine required for per-
forming RSA public and secret key operations, OpenSSL 0.9.7c uses a sliding-
window exponentiation algorithm [11]. This algorithm precomputes some values,
called multipliers, which are used throughout the exponentiation. The access
pattern to these precomputed multipliers depends on the exponent, which, in
the case of decryption and digital signature operations, should be kept secret.
Because each multiplier occupies a different set of cache lines, Percival [41] was
able to identify the accessed multipliers and from that recover the private key.
To mitigate this attack, Intel implemented a countermeasure that changes the
memory layout of the precomputed multipliers. The countermeasure, often called
scatter-gather, interleaves the multipliers in memory to ensure that the same
cache lines are accessed irrespective of the multiplier used [14]. While this coun-
termeasure ensures that the same cache lines are always accessed, the offsets of
the accessed addresses within these cache lines depend on the multiplier used
and, ultimately, on the private key.

Both Bernstein [7] and Osvik et al. [40] have warned that accesses to different
offsets within cache lines may leak information through timing variations due to
cache-bank conflicts. To facilitate concurrent access to the cache, the cache is
often divided into multiple cache banks. Concurrent accesses to different cache
banks can always be handled, however each cache bank can only handle a limited
number of concurrent requests—often a single request at a time. A cache-bank
conflict occurs when too many requests are made concurrently to the same cache
bank. In the case of a conflict, some of the conflicting requests are delayed.
While timing variations due to cache-bank conflicts are documented in the Intel
Optimization Manual [28], no attack exploiting these has ever been published. In
the absence of a demonstrated risk, Intel continued to contribute code that uses
scatter-gather to OpenSSL [23,24] and to recommend the use of the technique
for side-channel mitigation [12,13]. Consequently, the technique is in widespread
use in the current versions of OpenSSL and its forks, such as LibreSSL [35]
and BoringSSL [10]. It is also used in other cryptographic libraries, such as the
Mozilla Network Security Services (NSS) [38].

1.2 Our Contribution

In this work we present CacheBleed, the first side-channel attack to systemati-
cally exploit cache-bank conflicts. In Sect. 3 we describe how CacheBleed creates
contention on a cache bank and measures the timing variations due to conflicts
and in Sect. 4 we use CacheBleed in order to attack the scatter-gather imple-
mentation of OpenSSL’s modular exponentiation routine. After observing 16,000

348 Y. Yarom et al.

RSA decryptions or signing operations, we are able to recover 60 % of the secret
exponent bits. To find the remaining bits we adapt the Heninger-Shacham algo-
rithm [25] for the information we collect with CacheBleed. In order to achieve full
key extraction, our attack requires about two CPU hours. Parallelizing across
multiple CPUs, we achieved key extraction in only a few minutes. See Sect. 5 for
a more complete discussion.

1.3 Targeted Software and Hardware

Software. In this paper we target the modular exponentiation operation as
implemented in OpenSSL version 1.0.2f which was the latest version of OpenSSL
prior to our disclosure to OpenSSL. As mentioned above, similar (and thus
potentially vulnerable) code can be found in several forks of OpenSSL such as
LibreSSL [35] and BoringSSL [10]. Other cryptographic libraries, such as the
Mozilla Network Security Services (NSS) [38] use similar techniques and may be
vulnerable as well.

Hardware. Our attacks exploit cache-bank conflicts present in Intel Sandy
Bridge Processor family. We ran our experiments on an Intel Xeon E5-2430
processor which is a six-core Sandy Bridge machine with a 2.20 GHZ clock. Our
target machine is running CentOS 6.7 installed with its default parameters and
with huge pages enabled.

Disclosure and Mitigation. We have reported our results to the developers of
OpenSSL, LibreSSL, NSS, and BoringSSL. We worked with the OpenSSL devel-
opers to evaluate and deploy countermeasures to prevent the attacks described
in this paper (CVE-2016-0702). These countermeasures were subsequently incor-
porated into OpenSSL 1.0.2g and BoringSSL. The LibreSSL development team
notified us that they are still working on a patch. The current version (2.4.0)
appears to remain vulnerable. For NSS, our attack was documented under
Mozilla bug 1252035. The bug documentation indicates that the fix is sched-
uled to be included in version 3.24.

2 Background

2.1 OpenSSL’s RSA Implementation

RSA [44] is a public-key cryptosystem which supports both encryption and dig-
ital signatures. To generate an RSA key pair, the user generates two prime
numbers p, q and computes N = pq. Next, given a public exponent e (OpenSSL
uses e = 65537), the user computes the secret exponent d ≡ e−1 mod φ(N).
The public key is the integers e and N and the secret key is d and N . In text-
book RSA encryption, a message m is encrypted by computing me mod N and
a ciphertext c is decrypted by computing cd mod N .

CacheBleed: A Timing Attack on OpenSSL Constant Time RSA 349

Algorithm 1. Fixed-window exponentiation

input : window size w, base a, modulus k, n-bit exponent b =
∑⌈n/w⌉

i=0
2wi · bi

output: ab mod k

//Precomputation

a0 ← 1
for j = 1, . . . , 2w − 1 do

aj ← aj−1 · a mod k
end

//Exponentiation

r ← 1
for i = ⌈n/w⌉ − 1, . . . , 0 do

for j = 1, . . . , w do

r ← r2 mod k
end

r ← r · abi
mod k

end

return r

RSA-CRT. RSA decryption is often implemented using the Chinese remainder
theorem (CRT), which provides a speedup over exponentiation mod n. Instead
of computing cd mod n directly, RSA-CRT splits the secret key d into two parts
dp = d mod (p − 1) and dq = d mod (q − 1), and then computes two parts of the
message as mp = cdp mod p and mq = cdq mod q. The message m can then be
recovered from mp and mq using Garner’s formula [21]:

h = (mp − mq)(q
−1 mod p) mod p and m = mq + hq.

The main operation performed during RSA decryption is the modular expo-
nentiation, that is, calculating ab mod k for some secret exponent b. Several
algorithms for modular exponentiation have been suggested. In this work we are
interested in the two algorithms that OpenSSL has used.

Fixed-Window Exponentiation. In the fixed-window exponentiation algo-
rithm, also known as m-ary exponentiation, the n-bit exponent b is represented
as an ⌈n/w⌉ digit integer in base 2w for some chosen window size w. That is,

b is rewritten as b =
∑⌈n/w⌉−1

i=0 2wi · bi where 0 ≤ bi < 2w. The pseudocode
in Algorithm1 demonstrates the fixed-window exponentiation algorithm. In the
first step, the algorithm precomputes a set of multipliers aj = aj mod k for
0 ≤ j < 2w. It then scans the base 2w representation of b from the most signifi-
cant digit (b⌈n/w⌉−1) to the least significant (b0). For each digit bi it squares an
intermediate result w times and then multiplies the intermediate result by abi

.
Each of the square or multiply operations is followed by a modular reduction.

Sliding-Window Exponentiation. The sliding-window algorithm represents
the exponent b as a sequence of digits bi such that b =

∑n−1
i=0 2i · bi, with bi

350 Y. Yarom et al.

being either 0 or an odd number 0 < bi < 2w. The algorithm first precomputes
a1, a3, . . . a2w−1 as in the fixed-window case. It then scans the exponent from the
most significant to the least significant digit. For each digit, the algorithm squares
the intermediate result. For non-zero digit bi, it also multiplies the intermediate
result by abi

.
The main advantages of the sliding-window algorithm over the fixed-window

algorithm are that, for the same window size, sliding window needs to precom-
pute half the number of multipliers, and that fewer multiplications are required
during the exponentiation. The sliding-window algorithm, however, leaks the
position of the non-zero multipliers to adversaries who can distinguish between
squaring and multiplication operations. Furthermore, the number of squaring
operations between consecutive multipliers may leak the values of some zero
bits. Up to version 0.9.7c, OpenSSL used sliding-window exponentiation. As part
of the mitigation of the Percival [41] cache attack, which exploits these leaks,
OpenSSL changed their implementation to use the fixed-window exponentiation
algorithm.

Since both algorithms precompute a set of multipliers and access them
throughout the exponentiation, a side-channel attack that can discover which
multiplier is used in the multiplication operations can recover the digits bi and
from them obtain the secret exponent b.

2.2 The Intel Cache Hierarchy

We now turn our attention to the cache hierarchy in modern Intel processors.
The cache is a small, fast memory that exploits the temporal and spatial locality
of memory accesses to bridge the speed gap between the faster CPU and slower
memory. In the processors we are interested in, the cache hierarchy consists of
three levels of caching. The top level, known as the L1 cache, is the closest to the
execution core and is the smallest and the fastest cache. Each successive cache
level is larger and slower than the preceding one, with the last-level cache (LLC)
being the largest and slowest.

Cache Structure. The cache stores fixed-sized chunks of memory called cache
lines. Each cache line holds 64 bytes of data that come from a 64-byte aligned
block in memory. The cache is organized as multiple cache sets, each consisting
of a fixed number of ways. A block of memory can be stored in any of the ways of
a single cache set. For the higher cache levels, the mapping of memory blocks to
cache sets is done by selecting a range of address bits. For the LLC, Intel uses an
undisclosed hash function to map memory blocks to cache sets [30,37,50]. The
L1 cache is divided into two sub caches: the L1 data cache (L1-D) which caches
the data the program accesses, and the L1 instruction cache (L1-I) which caches
the code the program executes. In multi-core processors, each of the cores has a
dedicated L1 cache. However, multithreaded cores share the L1 cache between
the two threads.

CacheBleed: A Timing Attack on OpenSSL Constant Time RSA 351

Cache Sizes. In the Intel Sandy Bridge microarchitecture, each of the L1-D
and L1-I caches has 64 sets and 8 ways to a total capacity of 64 · 8 · 64 = 32, 768
bytes. The L2 cache has 512 sets and 8 ways, with a size of 256 KiB. The L2
cache is unified, storing both data and instructions. Like the L1 cache, each core
has a dedicated L2 cache. The L3 cache, or the LLC, is shared by all of the cores
of the processor. It has 2,048 sets per core, i.e. the LLC of a four core processor
has 8,192 cache sets. The number of ways varies between processor models and
ranges between 12 and 20. Hence the size of the LLC of a small dual core
processor is 3 MiB, whereas the LLC of an 8-cores processor can be in the order
of 20 MiB. The Intel Xeon E5-2430 processor we used for our experiments is a 6-
core processor with a 20-way LLC of size 15 MiB. More recent microarchitectures
support more cores and more ways, yielding significantly larger LLCs.

Cache Lookup Policy. When the processor attempts to access data in mem-
ory, it first looks for the data in the L1 cache. In a cache hit, the data is found
in the cache. Otherwise, in a cache miss, the processor searches for the data in
the next level of the cache hierarchy. By measuring the time to access data, a
process can distinguish cache hits from misses and identify whether the data was
cached prior to the access.

2.3 Microarchitectural Side-Channel Attacks

In this section we review related works on microarchitectural side-channel timing
attacks. These attacks exploit timing variations that are caused by contention
on microarchitectural hardware resources in order to leak information on the
usage of these resources, and indirectly on the internal operation of the victim.
Acıiçmez and Seifert [5] distinguish between two types of channels: those that
rely on a persistent state and those that exploit a transient state. Persistent-state
channels exploit the limited storage space within the targeted microarchitectural
resource. Transient-state channels, in contrast, exploit the limited bandwidth of
the targeted element.

Persistent-State Attacks. The Prime+Probe attack [40,41] is an example
of a persistent-state attack. The attack exploits the limited storage space in cache
sets to identify the sets used for the victim’s data. The attacker preloads data to
the cache and allows the victim to execute before measuring the time to access
the preloaded data. When the victim accesses its data it is loaded into the cache,
replacing some of the attacker’s preloaded data. Accessing data that has been
replaced will take longer than accessing data still in the cache. Thus the attacker
can identify the cache sets that the victim has accessed. Persistent-state channels
have targeted the L1 data cache [7,15,40,41], the L1 instruction cache [1,4,
51], the branch prediction buffer [2,3], the last-level cache [27,29,36,46,49], and
DRAM open rows [42]. The Prime+Probe attack was used to recover the
accessed multipliers in the sliding-window exponentiation of OpenSSL 0.9.7c [41]
and of GnuPG 1.4.18 [27,36].

352 Y. Yarom et al.

Transient-State Attacks. Transient-state channels have been investigated
mostly within the context of covert channels, where a Trojan process tries to
covertly exfiltrate information. The idea dates back to Lampson [34] who sug-
gests that processes can leak information by modifying their CPU usage. Covert
channels were also observed with shared bus contention [26,48], Acıiçmez and
Seifert [5] are the first to publish a side-channel attack based on a transient
state. The attack monitors the usage of the multiplication functional unit in a
hyperthreaded processor. Monitoring the unit allows an attacker to distinguish
between the square and the multiply phases of modular exponentiation. The
attack was tested on a victim running fixed-window exponentiation, so no secret
information was obtained.

Another transient-state channel uses bus contention to leak side-channel
information [47]. By monitoring the capacity of the memory bus allocated to the
attacker, the attacker is able to distinguish the square and the multiply steps.
Because the attack of [47] was only demonstrated in a simulator, the question
of whether actual hardware leaks such high-resolution information is still open.

2.4 Scatter-Gather Implementation

One of the countermeasures Intel recommends against side-channel attacks is to
avoid secret-dependent memory access at coarser than cache line granularity [12,
13]. This approach is manifested in the patch Intel contributed to the OpenSSL
project to mitigate the Percival [41] attack. The patch1 changes the layout of
the multipliers in memory. Instead of storing the data of each of the multipliers
in consecutive bytes in memory, the new layout scatters each multiplier across
multiple cache lines [14]. Before use, the fragments of the required multiplier are
gathered to a single buffer which is used for the multiplication. Figure 1 contrasts
the conventional memory layout of the multipliers with the layout used in the
scatter-gather approach. This scatter-gather design ensures that the order of
accessing cache lines when performing a multiplication is independent of the
multiplier used.

Because Intel cache lines are 64 bytes long, the maximum number of multi-
pliers that can be used with scatter-gather is 64. For large exponents, increasing
the number of multipliers reduces the number of multiply operations performed
during the exponentiations. Gopal et al. [23] suggest dividing the multipliers into
16-bit fragments rather than into bytes. This improves performance by allowing
loads of two bytes in a single memory access, at the cost of reducing the max-
imum number of multipliers to 32. Gueron [24] recommends 32-bit fragments,
thus reducing the number of multipliers to 16. He shows that the combined
savings from the reduced number of memory accesses and the smaller cache
footprint of the multipliers outweighs the performance loss due to the added
multiplications required with less multipliers.

1 https://github.com/openssl/openssl/commit/46a643763de6d8e39ecf6f76fa79b
4d04885aa59.

https://github.com/openssl/openssl/commit/46a643763de6d8e39ecf6f76fa79b4d04885aa59
https://github.com/openssl/openssl/commit/46a643763de6d8e39ecf6f76fa79b4d04885aa59

CacheBleed: A Timing Attack on OpenSSL Constant Time RSA 353

Fig. 1. Conventional (left) vs. scatter-gather (right) memory layout.

The OpenSSL Scatter-Gather Implementation. The implementation of
exponentiation in the current version of OpenSSL (1.0.2f) deviates slightly from
the layout described above. For 2048-bit and 4096-bit key sizes the implementa-
tion uses a fixed-window algorithm with a window size of 5, requiring 32 mul-
tipliers. Instead of scattering the multipliers in each cache line, the multipliers
are divided into 64-bit fragments, scattered across groups of four consecutive
cache lines. (See Fig. 2.) That is, the table that stores the multipliers is divided
into groups of four consecutive cache lines. Each group of four consecutive cache
lines stores one 64-bit fragment of each multiplier. To avoid leaking informa-
tion on the particular multiplier used in each multiplication, the gather process
accesses all of the cache lines and uses a bit mask pattern to select the ones
that contain fragments of the required multiplier. Furthermore, to avoid copy-
ing the multiplier data, the implementation combines the gather operation with
the multiplication. This spreads the access to the scattered multiplier across the
multiplication.

Key-Dependent Memory Accesses. Because the fragments of each multi-
plier are stored in a fixed offset within the cache lines, all of the scatter-gather
implementations described above have memory accesses that depend on the mul-
tiplier used and thus on the secret key. For a pure scatter-gather approach, the
multiplier is encoded in the low bits of the addresses accessed during the gather
operation. For the case of OpenSSL’s implementation, only the three least sig-
nificant bits of the multiplier number are encoded in the address while the other
two bits are used as the index of the cache line within the group of four cache
lines that contains the fragment.

We note that because these secret-dependent accesses are at a finer than
cache line granularity, the scatter-gather approach has been considered secure
against side-channel attacks [24].

354 Y. Yarom et al.

Fig. 2. The memory layout of the multipliers table in OpenSSL

2.5 Intel L1 Cache Banks

With the introduction of superscalar computing in Intel processors, cache band-
width became a bottleneck for processor performance. To alleviate the issue,
Intel introduced a cache design consisting of multiple banks [6]. Each of the
banks serves part of the cache line specified by the offset in the cache line. The
banks can operate independently and serve requests concurrently. However, each
bank can only serve one request at a time. When multiple accesses to the same
bank are made concurrently, only one access is served, while the rest are delayed
until the bank can handle them.

Fog [18] notes that cache-bank conflicts prevent instructions from executing
simmultaneously on Pentium processors. Delays due to cache-bank conflicts are
also documented for other processor versions [19,20,28].

Both Bernstein [7] and Osvik et al. [40] mention that cache-bank conflicts
cause timing variations and warn that these may result in a timing channel
which may leak information about low address bits. Tromer et al. [45] note
that while scatter-gather has no secret-dependent accesses to cache lines, it does
have secret-dependent access to cache banks. Bernstein and Schwabe [8] demon-
strate timing variations due to conflicts between read and write instructions
on addresses within the same cache bank and suggest these may affect crypto-
graphic software. However, although the risk of side-channel attacks based on
cache-bank conflicts has been identified long ago, no attacks exploiting them
have ever been published.

3 The CacheBleed Attack

We now proceed to describe CacheBleed, the first side-channel attack to system-
atically exploit cache-bank conflicts. The attack identifies the times at which a

CacheBleed: A Timing Attack on OpenSSL Constant Time RSA 355

victim accesses data in a monitored cache bank by measuring the delays caused
by contention on the cache bank.

In our attack scenario, we assume that the victim and the attacker run con-
currently on two hyperthreads of the same processor core. Thus, the victim and
the attacker share the L1 data cache. Recall that the Sandy Bridge L1 data cache
is divided into multiple banks and that the banks cannot handle concurrent load
accesses. The attacker issues a large number of load accesses to a cache bank
and measures the time to fulfill these accesses. If during the attack the victim
also accesses the same cache bank, the victim accesses will contend with the
attacker for cache bank access, causing delays in the attack. Hence, when the
victim accesses the monitored cache bank the attack will take longer than when
the victim accesses other cache banks.

To implement CacheBleed we use the code in Listing 1. The bulk of the code
(Lines 4–259) consists of 256 addl instructions that read data from addresses
that are all in the same cache bank. (The cache bank is selected by the low bits
of the memory address in register r9.) We use four different destination registers
to avoid contention on the registers themselves. Before starting the accesses, the
code takes the value of the current cycle counter (Line 1) and stores it in register
r10 (Line 2). After performing 256 accesses, the previously stored value of the
cycle counter is subtracted from the current value, resulting in the number of
cycles that passed during the attack.

1 rdtscp
2 movq %rax , %r10
3
4 addl 0x000(%r9) , %eax
5 addl 0x040(%r9) , %ecx
6 addl 0x080(%r9) , %edx
7 addl 0x0c0(%r9) , %ed i
8 addl 0x100(%r9) , %eax
9 addl 0x140(%r9) , %ecx

10 addl 0x180(%r9) , %edx
11 addl 0x1c0(%r9) , %ed i

.

.

.
256 addl 0 xf00(%r9) , %eax
257 addl 0 xf40(%r9) , %ecx
258 addl 0 xf80(%r9) , %edx
259 addl 0 x fc0(%r9) , %ed i
260
261 rdtscp
262 subq %r10 , %rax

Listing 1. Cache-Bank Collision Attack Code

356 Y. Yarom et al.

We run the attack code on an Intel Xeon E5-2430 processor—a six-core Sandy
Bridge processor, with a clock rate of 2.20 GHz. Figure 3 shows the histogram of
the running times of the attack code under several scenarios.2

Scenario 1: Idle. In the first scenario, idle hyperthread, the attacker is the only
program executing on the core. That is, one of the two hyperthreads executes
the attack code while the other hyperthread is idle. As we can see, the attack
takes around 230 cycles, clearly showing that the Intel processor is superscalar
and that the cache can handle more than one access in a CPU cycle.

Scenario 2: Pure Compute. The second scenario has a victim running a
computation on the registers, without any memory access. As we can see, access
in this scenario is slower than when there is no victim. Because the victim does
not perform memory accesses, cache-bank conflicts cannot explain this slowdown.
Hyperthreads, however, share most of the resources of the core, including the
execution units, read and write buffers and the register allocation and renaming
resources [20]. Contention on any of these resources can explain the slowdown
we see when running a pure-compute victim.

Scenario 3: Pure Memory. At the other extreme is the pure memory victim,
which continuously accesses the cache bank that the attacker monitors. As we
can see, the attack code takes almost twice as long to run in this scenario. The
distribution of attack times is completely distinct from any of the other scenarios.
Hence identifying the victim in this scenario is trivial. This scenario is, however,
not realistic—programs usually perform some calculation.

Scenarios 4 and 5: Mixed Load. The last two scenarios aim to measure a
slightly more realistic scenario. In this case, one in four victim operations is a
memory access, where all of these memory accesses are to the same cache bank.
In this scenario we measure both the case that the victim accesses the monitored
cache line (mixed-load) and when there is no cache-bank contention between
the victim and the attacker (mixed-load–NC). We see that the two scenarios
are distinguishable, but there is some overlap between the two distributions.
Consequently, a single measurement may be insufficient to distinguish between
the two scenarios.

In practice, even this mixed-load scenario is not particularly realistic. Typical
programs will access memory in multiple cache banks. Hence the differences
between measurement distributions may be much smaller than those presented
in Fig. 3. In the next section we show how we overcome this limitation and
correctly identify a small bias in the cache-bank access patterns of the victim.

2 For clarity, the presented histograms show the envelope of the measured data.

CacheBleed: A Timing Attack on OpenSSL Constant Time RSA 357

0%

5%

10%

15%

20%

25%

30%

35%

40%

 200 250 300 350 400 450 500

N
u

m
b

e
r

o
f

C
a

s
e

s

Time (cycles)

Idle hyperthread
Pure compute

Mixed load---NC
Mixed load

Pure memory

Fig. 3. Distribution of time to read 256 entries from a cache bank.

4 Attacking the OpenSSL Modular Exponentiation

Implementation

To demonstrate the technique in a real scenario, we use CacheBleed to attack
the implementation of the RSA decryption in the current version of OpenSSL
(version 1.0.2f). This implementation uses a fixed-window exponentiation with
w = 5. As discussed in Sect. 2.4 OpenSSL uses a combination of the scatter-
gather technique with masking for side-channel attack protection. Recall that
the multipliers are divided into 64-bit fragments. These fragments are scattered
into 8 bins along the cache lines such that the three least significant bits of
the multiplier select the bin. The fragments of a multiplier are stored in groups
of four consecutive cache lines. The two most significant bits of the multiplier
select the cache line out of the four in which the fragments of the multiplier are
stored. See Fig. 2. The multiplication code selects the bin to read using the least
significant bits of the multiplier. It then reads a fragment from the selected bin
in each of the four cache lines and uses masking to select the fragment of the
required multiplier. Because the multiplication code needs to access the multi-
plier throughout the multiplication, the cache banks of the bin containing the
multiplier are accessed more often than other cache banks. We use CacheBleed
to identify the bin and, consequently, to find the three least significant bits of
the multiplier.

Identifying Exponentiations. We begin by demonstrating that it is possible
to identify the exponentiation operations using cache-bank conflicts. Indeed,
using the code in Listing 1, we create a sequence of measurements of cache-bank
conflicts. As mentioned in Sect. 3, the difference between the distributions of
measurements in similar scenarios may be very small. Consequently, a single
measurement is unlikely to be sufficient for identifying the bin used in each
multiplication. To distinguish the distributions, we create multiple sequences
and average the measurements at each trace point to get a trace of the average
measurement time. Figure 4 shows the traces of measurements of two bins, each
averaged over 1,000 decryptions using a 4096-bit key.

358 Y. Yarom et al.

 260

 270

 280

 290

 300

 310

 320

 0 20000 40000 60000 80000 100000

T
im

e
 (

C
y
c
le

s
)

Measurement number

Bin 0
Bin 1

Fig. 4. Measurement trace of OpenSSL RSA decryption

 290

 292

 294

 296

 298

 300

 302

 304

 1000 1100 1200 1300 1400 1500

Multiplications

T
im

e
 (

C
y
c
le

s
)

Measurement number

Bin 1 Bin 3 Bin 5 Bin 7

Fig. 5. Measurement trace of OpenSSL RSA decryption—detailed view (Color figure
online)

The figure clearly shows the two exponentiations executed as part of the
RSA-CRT calculation. Another interesting feature is that the measurements for
the two bins differ by about 4 cycles. The difference is the result of the OpenSSL
modular reduction algorithm, which accesses even bins more often than odd bins.
Consequently, there is more contention on even bins, and measurements on even
bins take slightly longer than those on odd bins.

Identifying Multiplication Operations. Next, we show that is also possible
to identify the individual multiplication operations performed during the mod-
ular exponentiation operation. Indeed, Fig. 5 shows a small section of the traces
of the odd bins. In these traces, we can clearly see the multiplication operations
(marked with arrows) as well as the spikes for each of the squaring and mod-
ular reduction operations. Recall that the OpenSSL exponentiation repeatedly
calculate sequences of five modular squaring and reduction operations followed
by a modular multiplication.

CacheBleed: A Timing Attack on OpenSSL Constant Time RSA 359

 295

 295.5

 296

 296.5

 297

 297.5

 298

 41100 41200 41300 41400 41500 41600

T
im

e
 (

C
y
c
le

s
)

Measurement number

Bin 1 Bin 3 Bin 5 Bin 7

Fig. 6. CacheBleed average trace towards the end of the exponentiation

Identifying Multiplier Values. Note that in the second and fourth multipli-
cations, the measurements in the trace of bin 3 (yellow) take slightly longer than
the measurements of the other bins. This indicates that the three least signifi-
cant digits of the multiplier used in these multiplications are 011. Similarly, the
spike in the green trace observed during the third multiplication indicates that
the three least significant bits of the multiplier used are 001. This corresponds
to the ground truth where the multipliers used in the traced sections are 2, 11,
1, 11.

As we can see, we can extract the multipliers from the trace. However, there
are some practical challenges that complicate both the generation of the traces
and their analysis. We now discuss these issues.

Aligning CacheBleed Measurement Sequences for Averaging. Recall
that the traces shown in Fig. 5 are generated by averaging the sequences of
CacheBleed measurements over 1,000 decryptions. When averaging, we need to
ensure that the sequences align with each other. That is, we must ensure that
each measurement is taken in the same relative time in each multiplication.

To ensure that the sequences are aligned, we use the Flush+Reload

attack [49] to find the start of the exponentiation. Once found, we start
collecting enough CacheBleed measurements to cover the whole exponentia-
tion. Flush+Reload has a resolution of about 500 cycles, ensuring that the
sequences start within 500 cycles, or up to two measurements, of each other.

Relative Clock Drift. Aligning the CacheBleed sequences at the start of the
exponentiation does not result in a clean signal. This is because both the victim
and the attacker are user processes, and they may be interrupted by the oper-
ating system. The most common interruption is due to timer interrupts, which

360 Y. Yarom et al.

 295

 295.5

 296

 296.5

 297

 297.5

 298

 41100 41200 41300 41400 41500 41600

T
im

e
 (

C
y
c
le

s
)

Measurement number

Bin 1 Bin 3 Bin 5 Bin 7

Fig. 7. Measurement trace after a lowpass filter

on Linux-based operating systems happen every millisecond. Since each modu-
lar exponentiation in the calculation of a 4096-bit RSA-CRT decryption takes
5 ms, we experience 5 to 6 timer interrupts during the exponentiation. Timer
interrupts can be easily identified because serving them takes over 5,000 cycles,
whereas non-interrupted measurements take around 300 cycles. Consequently, if
a measurement takes more than 1,000 cycles, we assume that it was interrupted
and therefore discard it.

The attacker, however, does not have exact information on the interrupts that
affect the victim, resulting in clock drift between the attacker and the victim.
As we progress through the exponentiation, the signal we capture becomes more
noisy. Figure 6 shows the signal towards the end of the exponentiation. As we
can see, the multiplications are barely visible.

To reduce noise, we pass the signal through a low-pass filter, which removes
high frequencies from the signal and highlights the behavior at the resolution of
one multiplication. Figure 7 shows the result of passing the above trace through
the filter. It is possible to clearly identify three multiplications, using bins 7, 5
and 1.

Aligning Traces of Multiple Bins. As discussed above, measurements in
even bins are slower on average than measurements in odd bins. This creates
two problems. The first is that we need to normalize the traces before compar-
ing them to find the multiplier. The second problem is that we use the measure-
ments as a virtual clock. Consequently, when we measure over a fixed period
of time, traces of even bins will be shorter, i.e., have fewer measurements, than
traces of odd bins. This create a clock shift between traces belonging to even
bins and traces belonging to odd bins, which increases as the exponentiation
progresses. In order to normalize the trace length, we remove element 0 of the

CacheBleed: A Timing Attack on OpenSSL Constant Time RSA 361

 0
 500

 1000
 1500
 2000
 2500
 3000

 100 200 300 400 500 600

A
m

p
lit

u
d

e

Frequency

Bin 1 Bin 2

Fig. 8. The frequency spectrum of a trace

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 40000 40500 41000 41500 42000

N
o

rm
a

lis
e

d
 T

im
e

 (
C

y
c
le

s
)

Resampled measurement number

Bin 0
Bin 1

Bin 2
Bin 3

Bin 4
Bin 5

Bin 6
Bin 7

7 7 7 4 0 1 2 4 6 7 5 1 7 3 3

Fig. 9. Normalized resampled traces

frequency domain. This effectively subtracts the trace’s average from each trace
measurement, thereby making all the traces be at the same length.

We then find the frequency of multiplications in the trace by looking at the
frequency domain of the trace. Figure 8 shows the frequency spectrum of two of
the traces. For a 4096-bit key, OpenSSL performs two exponentiations with 2048-
bit exponents. With a window size of 5, there are 2048/5 ≈ 410 multiplications.
As we can see, there is a spike around the frequency 410 matching the number
of multiplications. Using the frequency extracted from the trace, rather than the
expected number of multiplications, allows us to better adjust to the effects of
noise at the start and end of the exponentiation which might otherwise result in
a loss of some multiplications.

Partial Key Extraction. We use CacheBleed to collect 16 traces, one for
each of the 8 bins in each of the two exponentiations. Each trace is the aver-
age of 1,000 sequences of measurements, totalling 16,000 decryption operations.
Figure 9 shows a sample of the analyzed traces, i.e. after averaging, passing
through a low-pass filter, normalizing the signal and resampling. As we can see,
the used bins are clearly visible in the figure.

362 Y. Yarom et al.

We manage to recover the three least significant bits of almost all of the
multipliers. Due to noise at the start and the end of the exponentiations, we
miss one or two of the leading and trailing multiplications of each exponentiation.
Next, in Sect. 5, we show that the information we obtain about the three least
significant bits of almost all of the multipliers is enough for key extraction.

5 Recovering the RSA Private Key

Successfully carrying out the attack in the previous sections for a 4096-bit
modulus allowed us to learn the three least significant bits of every window
of five bits for the Chinese remainder theorem coefficients dp = d mod p − 1
and dq = d mod q − 1. In this section, we describe how to use this knowledge
to recover the full private RSA key. We use the techniques of Heninger and
Shacham [25] and İnci et al. [27].

Solving for the Modular Multipliers. We have partial knowledge of the
bits of dp and dq, where each satisfies the relation edp = 1 + kp(p − 1) and
edq = 1 + kq(q − 1) for positive integers kp, kq < e. In the common case of
e = 65537, this leaves us with at most 232 possibilities for pairs of kp, kq to
test. Following [27], the kp and kq are related, so we only need to search 65,537
possible values of kp.

We start by rearranging the relations on dp and dq to obtain edp−1−kp = kpp
and edq − 1 − kq = kqq. Multiplying these together, we obtain the relation

(edp − 1 + kp)(edq − 1 + kq) = kpkqN. (1)

Reducing modulo e yields (kp − 1)(kq − 1) ≡ kpkqN mod e.
Thus, given a value for kp we can solve for the unique value of kq mod e. We

do not have enough information about dp and dq to deduce further information,
so we must test all e values of kp.

Branch and Prune Algorithm. For each candidate kp and kq, we will use
Eq. 1 to iteratively solve for dp and dq starting from the least or most significant
bits, branching to generate multiple potential solutions when bits are unknown
and pruning potential solutions when known bits contradict a given solution. In
contrast to [25], the bits we know are not randomly distributed. Instead, they
are synchronized to the three least significant bits of every five, with one or
two full windows of five missing at the least and most significant positions of
each exponent. This makes our analysis much simpler: when a bit of dp and dq is
unknown at a location i, we branch to generate two new solutions. When a bit of
dp and dq is known at a particular location, using the same heuristic assumption
as in [25], an incorrect solution will fail to match the known bit of dp and dq

with probability 0.5. When kp and kq are correct, we expect our algorithm to
generate four new solutions for every pair of unknown bits, and prune these to a
single correct solution at every string of three known bits. When kp and kq are
incorrect, we expect no solutions to remain after a few steps.

CacheBleed: A Timing Attack on OpenSSL Constant Time RSA 363

Empirical Results. We tested key recovery on the output of our attack run
on a 4096-bit key, which correctly recovered the three least significant bits of
every window of five, but missed the two least significant windows and one most
significant window for both dp and dq. We implemented this algorithm in Sage
and ran it on a Cisco UCS Server with two 2.30 GHz Intel E5-2699 processors
and 128 GiB of RAM. For the correct values of kp and kq, our branch-and-
prune implementation recovered the full key in 1 second on a single core after
examining 6,093 candidate partial solutions, and took about 160 ms to eliminate
an incorrect candidate pair of kp and kq after examining an average of 1,500
candidate partial solutions. A full search of all 65,537 candidate pairs of kp

and kq parallelized across 36 hyperthreaded cores took 3.5 min. We assumed
the positions of the missing windows at the most and least significant bits were
known. If the relative positions are unknown, searching over more possible offsets
would increase the total search time by a factor of 9.

6 Mitigation

Countermeasures for the CacheBleed attack can operate at the hardware, the
system or the software level. Hardware-based mitigations include increasing the
bandwidth of the cache banks. Our attack does not work on Haswell processors,
which do not seem to suffer from cache-bank conflicts [20,28]. But, as Haswell
does show timing variations that depend on low address bits [20], it may be
vulnerable to similar attacks. Furthermore, this solution does not apply to the
Sandy Bridge processors currently in the market.

Disabling Hyperthreading. The simplest countermeasure at the system level
is to disable hyperthreading. Disabling hyperthreading, or only allowing hyper-
threading between processes within the same protection domain, prevents any
concurrent access to the cache banks and eliminates any conflicts. Unlike attacks
on persistent state, which may be applicable when a core is time-shared, the tran-
sient state that CacheBleed exploits is not preserved during a context switch.
Hence the core can be time-shared between non-trusting processes. The lim-
ited security of hyperthreading has already been identified [5]. We recommend
that hyperthreading be disabled even on processors that are not vulnerable to
CacheBleed for security-critical scenarios where untrusted users share processors.

Constant-Time Implementations. At the software level, the best counter-
measure is to use a constant-time implementation, i.e. one that does not have
secret-dependent branches or memory accesses. A common technique for imple-
menting constant-time table lookup is to use a combination of arithmetic and
bitwise operations to generate a mask that depends on the secret value. The
whole table is then accessed and the mask is used to select the required table
entry. Mozilla’s fix for CacheBleed uses this approach.

364 Y. Yarom et al.

Modifying Memory Accesses. Rather than using to a constant-time imple-
mentation, OpenSSL mitigates CacheBleed through a combination of two
changes. The first change is to use 128-bit memory accesses, effectively halv-
ing the number of bins used. The second change is to modify the memory access
pattern during the gathering process so that the software accesses a different
offset in each of the four cache lines.

Combining the four different offsets with the 128-bit accesses means that
when gathering a multiplier fragment, OpenSSL accesses all 16 of the cache
banks. The order of accessing the cache banks depends on the value of the
multiplier, so the design leaks secret key information to adversaries that can
recover the order of the accesses. We note, however, that our attack does not
have the resolution required to determine the order of successive memory accesses
and that we are not currently aware of any technique for exploiting this leak.

Furthermore, using 128-bit memory accesses means that the potential leak-
age created by the order of accessing the cache banks is only two bits for each
multiplier, or 40 % of the bits of the exponents for the 5-bit windows used by
OpenSSL for both 2048 and 4096-bit exponents. Our key recovery technique will
produce exponentially many solutions in this case: heuristically, we expect it to
branch to produce two solutions for each multiplier. In this case, the attacker
could use the branch-and-prune method to produce exponentially many candi-
dates up to half the length of each Chinese remainder theorem exponent dp or
dq, and then use the method of Blömer and May [9] to recover the remaining half
in polynomial time. Thus even if an adversary is able to exploit the leak, full key
recovery may only be feasible for very small keys without further algorithmic
improvements.

While we are not aware of a practical exploit of the leak in the OpenSSL
code, we believe that leaving a known timing channel is an undue risk. We
have conveyed information about the leak and our concerns to the OpenSSL
development team.

7 Conclusions

In this work, we presented CacheBleed, the first timing attack to recover low
address bits from secret-dependent memory accesses. We demonstrate that the
attack is effective against state-of-the-art cryptographic software, widely thought
to be immune to timing attacks.

The timing variations that underlie this attack and the risk associated with
them have been known for over a decade. Osvik et al. [40] warn that “Cache bank
collisions (e.g., in Athlon 64 processors) likewise cause timing to be affected by
low address bits.” Bernstein [7] mentions that “ For example, the Pentium 1 has
similar cache-bank conflicts.” A specific warning about the cache-bank conflicts
and the scatter-gather technique appears in Footnote 38 of Tromer et al. [45].

Our research illustrates the risk to users when cryptographic software devel-
opers dismiss a widely hypothesized potential attack merely because no proof-of-
concept has yet been demonstrated. This is the prevailing approach for security

CacheBleed: A Timing Attack on OpenSSL Constant Time RSA 365

vulnerabilities, but we believe that for cryptographic vulnerabilities, this app-
roach is risky, and developers should be proactive in closing potential vulnerabil-
ities even in the absence of a fully practical attack. To that end we observe that
OpenSSL’s decision to use an ad-hoc mitigation techniques, instead of deploying
a constant-time implementation, continues to follow such a risky approach.

Acknowledgements. We would like to thank Daniel J. Bernstein for suggesting the
name CacheBleed and for helpful comments.

NICTA is funded by the Australian Government through the Department of Com-
munications and the Australian Research Council through the ICT Centre of Excellence
Program. This material is based upon work supported by the U.S. National Science
Foundation under Grants No. CNS-1408734, CNS-1505799, and CNS-1513671, a gift
from Cisco, the Blavatnik Interdisciplinary Cyber Research Center, the Check Point
Institute for Information Security, a Google Faculty Research Award, the Israeli Cen-
ters of Research Excellence I-CORE program (center 4/11), the Leona M. & Harry B.
Helmsley Charitable Trust, and by NATO’s Public Diplomacy Division in the Frame-
work of “Science for Peace”.

References

1. Acıiçmez, O.: Yet another microarchitectural attack: exploiting I-cache. In: CSAW,
Fairfax, VA, US (2007)

2. Acıiçmez, O., Gueron, S., Seifert, J.-P.: New branch prediction vulnerabilities in
openSSL and necessary software countermeasures. In: Galbraith, S.D. (ed.) Cryp-
tography and Coding 2007. LNCS, vol. 4887, pp. 185–203. Springer, Heidelberg
(2007)

3. Acıiçmez, O., Koç, Ç.K., Seifert, J.-P.: Predicting secret keys via branch predic-
tion. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 225–242. Springer,
Heidelberg (2006)

4. Acıiçmez, O., Brumley, B.B., Grabher, P.: New results on instruction cache attacks.
In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 110–124.
Springer, Heidelberg (2010)

5. Acıiçmez, O., Seifert, J.-P.: Cheap hardware parallelism implies cheap security. In:
4th International Workshop on Fault Diagnosis and Tolerance in Cryptography,
Vienna, AT, pp. 80–91 (2007)

6. Alpert, D.B., Choudhury, M.R., Mills, J.D.: Interleaved cache for multiple accesses
per clock cycle in a microprocessor. US Patent 5559986, September 1996

7. Bernstein, D.J.: Cache-timing attacks on AES (2005). Preprint http://cr.yp.to/
papers.html#cachetiming

8. Bernstein, D.J., Schwabe, P.: A word of warning. In: CHES 2013 Rump Session,
August 2013

9. Blömer, J., May, A.: New partial key exposure attacks on RSA. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 27–43. Springer, Heidelberg (2003)

10. BoringSSL. https://boringssl.googlesource.com/boringssl/
11. Bos, J.N.E., Coster, M.J.: Addition chain heuristics. In: Brassard, G. (ed.)

CRYPTO 1989. LNCS, vol. 435, pp. 400–407. Springer, Heidelberg (1990)
12. Brickell, E.: Technologies to improve platform security. In: CHES 2011 Invited Talk,

September 2011. http://www.iacr.org/workshops/ches/ches2011/presentations/
Invited%201/CHES2011 Invited 1.pdf

http://cr.yp.to/papers.html#cachetiming
http://cr.yp.to/papers.html#cachetiming
https://boringssl.googlesource.com/boringssl/
http://www.iacr.org/workshops/ches/ches2011/presentations/Invited%201/CHES2011_Invited_1.pdf
http://www.iacr.org/workshops/ches/ches2011/presentations/Invited%201/CHES2011_Invited_1.pdf

366 Y. Yarom et al.

13. Brickell, E.: The impact of cryptography on platform security. In: CT-
RSA 2012 Invited Talk, February 2012. http://www.rsaconference.com/writable/
presentations/file upload/cryp-106.pdf

14. Brickell, E., Graunke, G., Seifert, J.-P.: Mitigating cache/timing based side-
channels in AES and RSA software implementations. In: RSA Conference 2006
Session DEV-203, February 2006

15. Brumley, B.B., Hakala, R.M.: Cache-timing template attacks. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 667–684. Springer, Heidelberg (2009)

16. Brumley, B.B., Tuveri, N.: Remote timing attacks are still practical. In: Atluri, V.,
Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 355–371. Springer, Heidelberg
(2011)

17. Brumley, D., Boneh, D.: Remote timing attacks are practical. In: 12th USENIX
Security, Washington, DC, US, pp. 1–14 (2003)

18. Fog, A.: How to optimize for the Pentium processor, August 1996. https://
notendur.hi.is/hh/kennsla/sti/h96/pentopt.txt

19. Fog, A.: How to optimize for the Pentium family of microprocessors, April 2004.
https://cr.yp.to/2005-590/fog.pdf

20. Fog, A.: The microarchitecture of Intel, AMD and VIA CPUs: an optimization
guide for assembly programmers and compiler makers, January 2016. http://www.
agner.org/optimize/microarchitecture.pdf

21. Garner, H.L.: The residue number system. IRE Trans. Electron. Comput. EC–

8(2), 140–147 (1959)
22. Genkin, D., Shamir, A., Tromer, E.: RSA key extraction via low-bandwidth

acoustic cryptanalysis. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 444–461. Springer, Heidelberg (2014)

23. Gopal, V., Guilford, J., Ozturk, E., Feghali, W., Wolrich, G., Dixon, M.: Fast and
constant-time implementation of modular exponentiation. In: Embedded Systems
and Communications Security, Niagara Falls, NY, US (2009)

24. Gueron, S.: Efficient software implementations of modular exponentiation. J.
Crypt. Eng. 2(1), 31–43 (2012)

25. Heninger, N., Shacham, H.: Reconstructing RSA private keys from random key
bits. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 1–17. Springer,
Heidelberg (2009)

26. Wei-Ming, H.: Reducing timing channels with fuzzy time. In: 1991 Computer Soci-
ety Symposium on Research Security and Privacy, Oakland, CA, US, pp. 8–20
(1991)

27. İnci, M.S., Gülmezoğlu, B., Irazoqui, G., Eisenbarth, T., Sunar, B.: Seriously, get
off my cloud! Cross-VM RSA key recovery in a public cloud. IACR Cryptology
ePrint Archive, Report 2015/898, September 2015

28. Intel 64 & IA-32 AORM: Intel 64 and IA-32 Architectures Optimization Reference
Manual. Intel Corporation, April 2012

29. Irazoqui, G., Eisenbarth, T., Sunar, B.: S$A: a shared cache attack that works
across cores and defies VM sandboxing - and its application to AES. In: S&P, San
Jose, CA, US (2015)

30. Irazoqui, G., Eisenbarth, T., Sunar, B.: Systematic reverse engineering of cache
slice selection in Intel processors. IACR Cryptology ePrint Archive, Report
2015/690, July 2015

31. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

32. Kocher, P., Jaffe, J., Jun, B., Rohatgi, P.: Introduction to differential power analy-
sis. J. Cryptogr. Eng. 1, 5–27 (2011)

http://www.rsaconference.com/writable/presentations/file_upload/cryp-106.pdf
http://www.rsaconference.com/writable/presentations/file_upload/cryp-106.pdf
https://notendur.hi.is/hh/kennsla/sti/h96/pentopt.txt
https://notendur.hi.is/hh/kennsla/sti/h96/pentopt.txt
https://cr.yp.to/2005-590/fog.pdf
http://www.agner.org/optimize/microarchitecture.pdf
http://www.agner.org/optimize/microarchitecture.pdf

CacheBleed: A Timing Attack on OpenSSL Constant Time RSA 367

33. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

34. Lampson, B.W.: A note on the confinement problem. Commun. ACM 16, 613–615
(1973)

35. LibreSSL Project. https://www.libressl.org
36. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel

attacks are practical. In: S&P, San Jose, CA, US, pp. 605–622, May 2015
37. Maurice, C., Le Scouarnec, N., Neumann, C., Heen, O., Francillon, A.: Reverse

engineering intel last-level cache complex addressing using performance counters.
In: Bos, H., et al. (eds.) RAID 2015. LNCS, vol. 9404, pp. 48–65. Springer, Hei-
delberg (2015). doi:10.1007/978-3-319-26362-5 3

38. Mozilla: Network security services. https://developer.mozilla.org/en-US/docs/
Mozilla/Projects/NSS

39. OpenSSL Project. https://openssl.org
40. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the case

of AES. In: 2006 CT-RSA (2006)
41. Percival, C.: Cache missing for fun and profit. In: BSDCan 2005, Ottawa, CA

(2005)
42. Pessl, P., Gruss, D., Maurice, C., Schwarz, M., Mangard, S.: Reverse engineering

Intel DRAM addressing and exploitation (2015). arXiv Preprint arXiv:1511.08756
43. Quisquater, J.-J., Samyde, D.: Electromagnetic analysis (EMA): measures and

counter-measures for smart cards. In: E-Smart 2001, Cannes, FR, pp. 200–210,
September 2001

44. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. CACM 21, 120–126 (1978)

45. Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on AES, and counter-
measures. J. Cryptol. 23(1), 37–71 (2010)

46. van de Pol, J., Smart, N.P., Yarom, Y.: Just a little bit more. In: Nyberg, K. (ed.)
CT-RSA 2015. LNCS, vol. 9048, pp. 3–21. Springer, Heidelberg (2015)

47. Wang, Y., Suh, G.E.: Efficient timing channel protection for on-chip networks. In:
6th NoCS, Lyngby, Denmark, pp. 142–151 (2012)

48. Zhenyu, W., Zhang, X., Wang, H.: Whispers in the hyper-space: high-speed covert
channel attacks in the cloud. In: 21st USENIX Security, Bellevue, WA, US (2012)

49. Yarom, Y., Falkner, K.: Flush+Reload: a high resolution, low noise, L3 cache side-
channel attack. In: 23rd USENIX Security, San Diego, CA, US, pp. 719–732 (2014)

50. Yarom, Y., Ge, Q., Liu, F., Lee, R.B., Heiser, G.: Mapping the Intel last-level
cache, September 2015. http://eprint.iacr.org/

51. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-VM side channels and
their use to extract private keys. In: 19th CCS, Raleigh, NC, US, pp. 305–316,
October 2012

https://www.libressl.org
http://dx.doi.org/10.1007/978-3-319-26362-5_3
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://openssl.org
http://arxiv.org/abs/1511.08756
http://eprint.iacr.org/

	CacheBleed: A Timing Attack on OpenSSL Constant Time RSA
	1 Introduction
	1.1 Overview
	1.2 Our Contribution
	1.3 Targeted Software and Hardware

	2 Background
	2.1 OpenSSL's RSA Implementation
	2.2 The Intel Cache Hierarchy
	2.3 Microarchitectural Side-Channel Attacks
	2.4 Scatter-Gather Implementation
	2.5 Intel L1 Cache Banks

	3 The CacheBleed Attack
	4 Attacking the OpenSSL Modular Exponentiation Implementation
	5 Recovering the RSA Private Key
	6 Mitigation
	7 Conclusions
	References

