
Cached Sufficient Statistics for Efficient
Machine Learning with Large Datasets

Andrew W. Moore and Mary Soon Lee

CMU-RI-TR-97-27

The Robotics IIistit,utc

Carnrgie Mellon University

Pit t,s hurgh, Peiiiisyl\~ania 152 1 3

Jidy 1997

@I997 Andrew W. Moore. Mary Soon Lee

I

Cached Sufficient Statistics for Efficient
Machine Learning with Large Datasets

Andrew W. Moore and Mary Soon Lee
Rohot.ics Instit,ute and

School of Computer Science
Carncgi e M ell o 11 U iiivr r s i t y

Pit.tsburgh, PA 15213
(awn:mslce) Gcs.cmu. edu

July 1997

Abstract

This paper introduces new algorithms and data st.ruct,ures for quick rounting for ma-
chine learning dat.asets. We focus on t,he counting task of constructing contingent:.
t.ables, but our approach is also applicahlc t.o counting the number of records in a
dataset that match conjunctive queries. Subject to certain assumptionsl t h c rosts of
thesr operations ca,n he shown to be independent of the number of rpcords in the
data.set a n d loglinear i n llie number of noli-zero entries in the coutingeucy table.

We provide a very sparse dat.a st.ructurel the ADtrce. to minimize memory use.
We provide analytical worst-case bounds for this structure for sewral inodcls of data
distribution. We empirically deino~istrat.e t,hat t,ractably-sized data. st.ruct,tires cau br
produced for large real-world datascts by (a) using a sparse tree st.ruclure that n w e r
allocates memory for counts of zero! (b j nwer a,llocat.ing memory for rounts t,tia,t, can
be deduced from other counts. and (c) not. bothering to expand t.he t.rec ful ly near i1.s
leaves.

1% show 11ow the ADtree call be used to accelerate Bayes I I C ~ structure liidiiig

algorithms, ru le learning algorithms, and feature selection algorithms. and we provide
a number of empirical results comparing ADtree met.hods against traditional direct
count.ing approaches. We also discuss thc possible uses of AMrees in ot,lier machine
lesrniiig methods. and discuss the merits of ADtrees i n cornparisori with altcrnative
representations such as M-t.rees, R-trees and frequent sets.

1 Caching sufficient statistics
Coinputat.iona1 efficiency is an important concern fur machine leasiiing algorithms. especially
when applied t,o large datasets (Fayyatl et al.: 1997: Fa.&yya,d and Uthuriisamy, 1996) or in
real-time sceiiarios. In (Moore et al.. 1997) &trees with multiresolution cached regression

1

matrix statistics were used t,o permit very fast locally wciglit,ed arid instance based regression.
In this paper we at,tcmpt t,o accelerate predictions for symbolic attributes using a kind of
kd-t,ree t.hat sp1it.s on all dimelisions at all nodes.

Many machine learning algoritfims operating on datasek of symbolic attributes need t,o
do frequent cou.nfing. Let its begin by est.a.blishing somc nota,tion.

We are given a data set with n records and M atlribut,es. The at,trihutes are called
a l , u 2 : . . , u , y t . The value of att,ribute a.; in the kth record is a small integer lying i n the mnge
{ 1.2:. . . n i } whcre 71; is called the a d y of at,tribnte 7 . Figure 1 gives an cxaniplc.

Aniy --+ n , = 2 nz=4 f l y 2

Record? +
Record4 +
Record, +
Record6 --+

Figure 1 : A simple dataset used as an example. It has R = G records and M = 3
attrihutes.

Queries
A qu.cry is a. sei of (attrib7t.te = m f u r) pairs in which the left hand sides of t,he pairs are a
sulisct of {a., , . , ail,} arranged in increasing order of index. Four cxarnples of queries for our
da.taset arc

(a.1 = 1); (0 2 = 3, u3 = 1); i); ((11 = 2, u2 = 1. 0.3 = r j (1)

Sotice that. the total nuinher of possible queries is I L ~ ~ l (r ~ ; + l) . This is because each iit,lribut,c
can either appear in the query with one of t,hr n; valucs i t may take, or il may l x uiiiitt,cd
(whic.h is equivalent to giving it a a; = * “don’t c u e ” value).

Counts
Thc coimt of a query, denot,ed by C (Qu.ciy) is simply thc number of records i n t,he dataset
matching all the (at tr ibute = t :a lu t) pairs i n Q u e q For our example da,tasct, we find:

Contingency Tables
Each subset of attributes. a , (l) . . has an associated contingerrcy table denoted by

2

This is a table with a row for each of the possihle sets of va l i l r s for
row corresponding to (ql) = .ul., .u i tK-) = L', rccords thc count { ' (i~ ; ,o =
Our e rxnp le dataset has :3 a.tirjbut,cs a.nd so = S contingcllc-? tahlw

. \ - ,
exist. depictcd in Figure 2. a

2 3

Figure 2: The eight possible contingency tables Cor t.he dataset of Figure 1

A coriditiorinl corifingeiacy ta.blr, writ.teii

ct(a;(l) . . . q,,) I o,(I) = u1:. , . = 7 1 p) (2 j

is t,he contingency table for the subset. of records in the datasel t,ha.t, l n a k h thc C ~ I I C ~ J . t.o t IIP
right. of the 1 symbol. For example,

Contingency tables are used in a. variety of machine Icarning applications, inclucling
l3uilcling the probahility tables for Bayes nets and evaluat.ing candidate conjunctive rules in
rule learning algorithms such as (Quinlan, 1990: Clark and Niblett, 1989). It, would i h ~ be
drsira.ble t,o be able to perform such counting efficicnt,ly.

If we arc preparcd to pay a one-t,ime cost for building a caching data structure. then it is
easy to suggest a mechanism for doing counting in const,ant lime. For each possible query.
we precompute the contingency t.able. Thc tot.al amount of numhcrs stored in memory for
such a d a m slruc,t,ure would be n;=,(! I ; + I) . which ewii for our humble dataset of Figrirr 1
is 45- as revealed by Figure 2. For a, real data,sct will1 inorc t,han t.en att.ributes of nicdiuiii
aril?: or fifteen binary attributes. this is fa.r too h rgc to fit in main rnemory.

IVe would like to retain the spced of precomputed cont.ingency tahlrs wit l iuut inciirriiig
an intractable memory demand. That, is t,he subject. of t,his paper.

v

3

2 Cache Reduction 1: The dense ADtree for caching
sufficient statistics

First we will descrilie t.he Alltree: the data. struct,urc we will use to represent the set of
all possible counts. Our initial simplified description is an obvious tree representation t h a l
does not yield any immediat.c memory savings, but will later provide scveral opportuiiitics
for cutting oft zcro count,s and reduiidant counts. This structure is shown in Figure 3. AII
i iMrce node (shown as a rectangle) hay child nodes called "Vary nodes" (sho\vir as ovals).
Eacli A h o d e represents a query and stores the number of records that riia,tch the query (i n
the C = # field). The Vary nj child of an ADnode has one child for each of the n j \:aluys
of at.tribute a i . The kth such child represents t.he same query a.s o j ' s parent, with die
additiorial coiislraint that nj = k.

Pigurc 3: The top ADnodps of an .4Dtree, descrilxd i n t,lie text

Not,es regarding this structure:

a Although drawn on the diagram, the descript,ion of the query (e.g. (I , = 1.a, =
*. ,.a,,{ = * on the leftmost .4Diorle of the sccond 1ex:el) is riot esplicit~lg rrr-ortlctl ill

the ALhiode. 'The contents of an .4Biode are sirriply a count and a set. of poirit.crs t u
t.he Vary n , children.

T h c contents of a, Vary a j node are a set of pointers to ADnodcs

Thc cost of looking up a count is proport.ional to 6he iiuniber of instanbiated \arial,lcs
in t,he query. For example, to look up C(a: = 2: a13 = 1, nT2 = 3) we wo11ld follow the
following path in the tree: Vary U T + = 2 + Vary nI3 + n13 = 1 --f Vary aZz +
a22 = 3. Then the count is obtained from the resulting node.

a Notice that if a node ADNhas Vary a; as its parent, then AD;Vs children are

Vary a i+l Vary ni+z ... \ary a ~ ,

4

It is not necessary to store \,'ary nodes with indices beluw i t 1 Lecanse blmt inforinat.iou
ca.n he obtained from anot.her path in the tree.

Cutting off nodes with c o u n t s of zero
As described. the trce is not. sparse and will contain exactly n;&(n.; + 1) nodes. Spa.rwness
is easily achieved by storing a iVliL,L instead of a nodr for any query tha,t matches zero
rccords. Al l of the specializations of such a query will also have a, c.ount of zero aiid t,liey wjll
not appear anywhere in the tree. For some datasets this can reduce the numhcr uf numbers
that need to be stored. For example, the datasct in Figure 1 which previously needed 45
numbers to represent, all contingency t,a.bles will now only nerd 23 numbers.

3 Cache Reduction 11: The sparse ADtree

It is easy t,o devise datasets for which there is no benefit in failing to store connt,s of zero.
Suppose we have RiI binary attributes and 2'' records in which the k t h record is lhe bits ol
the binary representation of I ; . Then no query has a count of zero and t.he t,ree contains 3"
nodes.

To reduce the tree size despite this. we will t,ake advantage of the observalion that. very
many of the counts stored in the above t i re arc redundant.

Zach Vary u j node i n the above AMree stores Y E , sulltrees--~ one s u h r e c for eacli \'aliic

of o j . Instcad, WP mill find the most comnion of t.he values of a.,i (cal l it M C \] ar id siorc a
jV1;rL.L in place of the MC\;'th subtree. The remaining 7ii - 1 subtrees will l ie represcnt,ecl
as before. An example for a simple dataset is given in Figure 4. Appendix 2 descril~es the
straightforward algorithm for building such an ADtree.

A s we will see in Section 4, it. is still possible to build full exact contingency ta,hles (or
give counts for specific queries) in time that is only slightly larger than for the full ADlree
of Section 2. But first, let us examine t,he memory c.onscquences of this represent,at,ion.

Appendix 1 shows that for hinary attribut,es, in the worst ca,se, given M at,tribut,es a,nd
R records, t.he nuniber of nodes needed to store the tree is bounded above by 2,'' in the
worst case (and much less if El < 2'"). In contrast, t.he amount of memory needed by t,he
dcnse tree of Section 2 is sM in the worst casc.

Notice in Figurc 4 that the MCb'vaIuc is context dcpendmit. Depending on coiist.raints
on parcnt nodes, uz's MCI!" is sometimes 1 and sometimes 2. This context dependency
can provide dramatic savings if (as is frequently t,he case) t,here arc correlations among the
attributes, This is discussed further in Appendix 1 .

4 Computing contingency tables from the sparse ADtree
Given an AUtree we wish to be a,hk to quickly const,ruct. contingency t,al,lcs for arly i 3 i l > i t rary
set of attributes {ql,. . . uicn , } .

5

Figure 4: A sparse ADtree biiilt for thc dataset shown in the bott,olll right,. ' lhc 1110~1.

coliinion valuc for al is 3, and so the a1 = 3 siibtree or t,lre Vary ol child oC the root
node is N U L L . At each of the Vary a2 nodes lhe mast conimo~i child is also sel. t,o

NULL (which child is iiiosl coiiiiiioii depends on the context).

Sotice that a. coIiditional contingency table ~ t (u ; (~) , ..ai(,) I Q u e ~ y) c.an be lmilt recur-
sively. We first build

c t (n ; p) . ..ai(,,) I = 1. Qu.rry)

ct (n i (2) . . I U , (l] = 2- &"cry)

C t (q 2) . , .a+.) I q 1) = ni(1)- Q a w)

For example, to build ct(ulru3) using the dataset, in Figure 1. we can hiiild c t (n 3 I u l = 1)
and ct(a3 I a1 = 2) and combine them as in Figurc 5 .

When building a coriclitional contingency tablc from 3.11 ADtree. wt- will uot. trrerl to
explicitly specify the query condition. Instcad we will supply an ALhiocle of the ,I IX,rce.
which implicitly is equivalent informat,ion. 'The algorithiii is:

ct(o, I a,= 1) pvzJ

2 0 fzy m.
ct(o, I a, = 2)

......................... a3

Figure 5: An cxample [using numbers Irom Figure 1) or how contingency taLlcs cnu
bc contbined recursively to form larger contingelicy tables

CTbrcv := ??? (explained below)

Return the concatenation of C!Tl . . , CTn,i,)

. > I he hase cam of this recursion occurs when Ihe first argument is en1pt.y. in rvliicli c a w wc
return a onc-element contingency table containing t,hc count, associat,cd \vi l l i t l ~ c r i l rrrnl

iiDn0lOde. AU.V.
,There is an omission in t.he algorithm. 111 t h e ileration over X: E {I,?. , . . 7 q l l } we ai-e

unable to compute the conditional cont,ingencg table for CT~~, ,CV becaL:se t,he ai(l , = iIIC,’V
subtree is deliherately missing as per Section 3. What can we do instead?

We can t akc advantage of the following property of contingency t.ables:

‘hi,)

ct(a;p). . . a i (-) I Q u e r y) = ct(aijz). . . I ai(,) = k . Q u c r y j (3)
li= 1

The value ct(ai(2). ..a;(,,) I & w r y) can be computcd from wit.hin our algorithm by calling

MakeContab({a;(2). . .ADiV] (41

and so the missing conditional contingency table in the algorit,hni ca,n he computed by the
following row-mise subtraction:

.A similar algorithm that takcs Frequen! Sets (see Section S) as input and corllput~es (- O ~ l l t , 5

is described a,nd evaluated in (Mannila a.nd Toivonen, 1996).

Complexity of building a contingency table
What is the cost of computing a contingency table? Lct us consider coniputinga contir~gmcy

table for 7 1 binary attributes. The entire conhgency table has 2" entries. Write C . ' (~ L) = tlw
cost. of computing such a contingency ta,blc. In the top-level c.all of M a k e c o n t a b t.here arr
two calls to build contingency t,ahles from n. - 1 att,ributes: we will build C ' T (Q ; (~) . . ,(ti(,&) 1
u . i (l) = LrastC'oinmorl~:alue? Query) and also C T (q z) . . . I @my). Then there will be
onc subtraction of contingency tables, which rvill require 2"-' numeric subtraclioiis. So we
have

'The soliition to t,liis recurrence relat.ion is C(.n) = (1 + 71./2)2. operations to Iiuild t h e table.
By coinparison. if we used 110 cached data structure. but simply counted through t,hc da.ta,set
in order to build a cont,ingency table rve would need 0(71.R + 2 ") opera.tions where I7 is thc
number of records in the dat,aset. We are thus cheaper than the standard couiiting mct,hotl
i i 2"-' << E. We are interested in large datasets in which R may be illore tha,n 100.000.
In such a case our niet.liod will present a several ordcr of rnagnit,iide speedup for. ~ a y . a
contingency table of eight, att,ributes. Not,icc that, this rost is i n d e p e n d e n t of M. 1 1 1 ~ .
tot,al number of attributes in the dataset. and only depends upoii the (a lmost alivi iy .~ iniich

smaller) number of attributes 71. requested for the contingency table.
If the attributes all have arity k instead of being binary then the cost will lie (1 + n (k : -

l) / k) k " ' . As rvith the binary case, this cost is also loglinear in the size of the contingency
table.

Sparse r e p r e s e n t a t i o n of contingency tables
In practice we do not represent contingency tables as multidimensjonal arrays, but a,s tree
st,ructures. 'This gives both the slow counting approach and the ADtree approach a sub-
st,antial coinputational advant,agc in cases where the cont.ingency table is sparse, i.e. has
inany zero ent,ries. Figure 6 shows such a sparse contingency table representation. This can
mean avera.ge-ca,se behavior is much fast,er t,han worst case for contingency t,ahles with largr
numbers of attributes or higli-arity attribut,es.

Indeed: our experiments in Section 7 show costs rising much more slowly t,han 0(71.k"-') as
II increases. Note too that when using a sparse representation, the worst.-case for M a k e c o n t a b
is now O(iiiin(nR, nk"-')) because R is the niaximiim possible numhrr of nori-zero rontin-
gency t.a.ble entries.

5 Cache Reduction 111: Leaf-lists
14,'e now introduce a scheme for fnrt,her reducing memory use. I t is not, worth Ixiilding the
ADtrcc dat,a structure for a small nurnber of records. For example, suppose we liavr 15
records a,~it l 40 binary attributes. Then the analysis in Appendix 1 shows us that in the
worst ca.sr the ADtree mighl require 10701 nodes. But, compnt,ing conhgency tablcs using
the rrsult~ing ADtrer. would. with so few records. be no f a s w than the conxTeritiona1 coi~nting
approach, which would merely require us to retain the dat.aset in memory.

Asidc from concluding that, AiXrecs are not useful for very small datasets, this also leads
to a final method for saving memory in large .4Dtrees. Any ADtree node with fewer than

S

YULL

NULL

NULL

r=3

NULL

Figure 6 : The riglit hand figure is t,he spars? representation of t,he contirigency t,able

on Lhe left.

R,,;,, rec.ords does not expand its subt.ree. IIist,ead it ina,intaiiis a, list of poirit,ers into the
original datasct,. explicitly listing those records that match the current. ADnocle. Such a. list
of pointers is called a lenJ-/-list. Figure i gives an example.

The use of lea,f-lists has one minor and two major consequences. The minor conscquenc.e
is the need t o include a straightforward change in the contingency table generating algorit,hrii
to handle 1ea.f-list nodes. This minor alteration is not. described here.

The first major consequence is t,hat nom the dataset itself must. be reta,incd io iiiain
memory so that algorithms tlmt inspect leaf-lists can a.ccess the rows of data point.cd to in
those leaf-lists.

The second major consrqucnce is that. t,lie Antree may require much less nieniory. '1'1iis
is docurrientetl in Sec.tion 7 and worst-case bounds are provided iIi Appendix 1.

6 Using ADtrees for Machine Learning
As we will see in Section 7; t,he ADtree struct,ure can substa.ntiadly spccd up t,he computation
of contingency tables for large real dala,sets. How can machine learning and slatistical
algorithms take advantage of this? Here we provide three cxaniples: Feature Selectionl
Bayes net scoring and rule Icarning. But it seems likely that many other algorithms call also
benefit,: for esample decision trees (Quinlan, 1983; Rreimau et. al.. 1984) and GMI)H (h~1.1adala
and Ivakhnenko. 1994): Text classificat,ion. In fut,uIe w r l i we will also r ~ a m i n e itrays lo peed
u p nearest. neighbor a n d other memory-based queries using .A Iltrces.

9

Figure 7: An .Alltree built using leaf-lists with R,,,;,, = 4 . Any node matchi~lg i3 ill'

fe\\:er records is not expanded, but simply records a sct of pointers into t,hc datasPt

(shown 011 the right)

Records Attributes I

6.1 DataSets
The experiments used the following datasets.

Uame I R = Num. I .Zf = h u m . I I

ADCJ,l1 1,5060 15 The small "Adult Income" dataset. placed i l l the CCI
renositorv bv Ron I<ohavi. Contains census data re- , "
lat.ed to job, wealth, and nationality. Attribuse arities
range from 2 to 41. In the UCI repository this is called l l

~~ ~

,IUI!LT3
HIHTII

I the Test Set. Rows with missing values were removed.
1 The Same kinds of records as above but with difrerent .AnllLT2 I 30162 I 15

data. The Training Set.
45222 1.5 ADULT1 and AUIJLT2 concatenated.

9672 97 R,ecords concerning a very wide number of readings
and factors recorded at various dages during preg-
nancy. Most att.ribules are binary. and 70 of rlir a.r-
t.ribut.es are very sparse:. with over 95%! of t l i P vxlurs

SYNTH Synthetic dat,asets of entirely biliary attrihut,rs
being F.4LSF;.

ated using the Rayes net in Fignre 8.
3 0 ~ - 5 0 n 1 i 24

6.2 Using ADtrees for feature selection

Given :If attribut,rs. of which one is an output, that w e wish t u predict, it is oftcn interesting
t,o ask "which subsel of n. attributes. (n < M) , i s thc besl predictor of tlir output on the

10

Figure 8: A Bayes net that generated our SYNTH dat.asets. There are three kinds of
nodes. The nodes marked with triangles are generated with P(u; = I) = 0.8. P (a; =
21 = 0.2. The square nodes are deterministic. A square node rakes value 2 if the
sum of its four parents is even. else i t takes value 1. The circle nodes arc prohahilistic
functions of their single parent. defiiied by P(uI = 2 I Parent = 1) = 0 and !'(ai = 2 I
Port.nt = 2) = 0.4. This provides a dataset wit,h rairly sparse values a id wi th iiiaiiy

interdependencies.

same distribution of datapoints that arc reflected in t,his dat.aseb?" There are m a n y ways of
scoring a set. of featurcs, but a part.icularlqz simple one is i i l forrrrntion goiii (Qiiinlaii. l ! lS :3) .

he t,he attribute we wish to prcdict and let. n;(l! . . . c t q , , ! I je t,he set oi ati.ril,uies
used as iiipiit,s. Let X he the set of possible assignments of values to (i s (,) . . . q?,) a.nd write
Assign, E A' as the k t h such assignment. Then

Let

wherc R is the nurnbcr of records in the entire dataset and

f(.) = -x log, z (9)

The counts needed in the above compula,tion can be read directly from ct(cl,,,,, u ; (~) . . . at(,,)).
Searching for thc best subset of attrihut,es is simply a question of search arnong a11

attribute-sets of size i i (n specified by the user). This is a simple example drsigiicd 1 . 0 lest.
our cuuihng mcthods: any practical feature seleclor would need to penalizc t.hc number of
rows in the contingcncy table (else high arity attributes would lend to win).

education-num s e x 1 <=50K >50K
__-
belou6 Female I 617 10
belou6 male I 1562 127
6 t o i 2 Female I 6434 522
6 t o 1 2 Male I 10183 3119
above12 Female I 1619 580
above12 Kale I 2239 3150

Entropy(c1ass) = 0,809566
IC(c l a s s I education-num sex) = 0.114711

1
Figure 9: Output. from the feature selector

I
Figure 9 gives am example of the out,put of t,his feature selector when applied t.o t.lic l,a.;l<

of finding the two best features wit,li arity less than G in the ADITLT2 damset, lor prcclicliiig
the class att,ribute (J<oha.vi: 1996).

6.3 Using ADtrees for Bayes net structure discovery
Thcrc are many possible Ba,ycs net. learning tasks, all or which entail counthg. arid lirnre
might be speeded up by ADtrees. In this p p e r we present espcrimental results for t,he
particular example of scoring the structurc of a Bayes net to decide how well it ma.tchcs rhe
da,ta.

We will use maxiinurn likelihood scoring with a pei1alt.y for the number of parameters.
We first compute the probability table associated with eac.h node. Write Parenbs(j) for the
parent att,ributes of node j and write -Y,) as the set, of possible assignInent,s of values lo
Pnrmts(j) . The maximum likelihood estimate for

P(a, = 1’ I -Y,)

is estimated as

and all such estiniat,cs -.r node j ’ s probability tables can .e read from ct(cr,. Powro./.~(.jj).
The next step i n scoriug a structure is to decide the likelihood of t.hc < h a . givc.11 die

probabilit,y ta.blcs we computed and to penalize the iiuniber of paranictcrs i n our nct\\-ork
(without thr penalty t.he likelihood would increase every time a. l ink was a,dded to the
netrvork). Following (Friedman and I’akhini, 1996) the penalized log-likelihood score is

M n,

j=1 i l s y n ~ . ~ ~ ~ ,=1
i~p,,,,, log(R) / 2 + n 1 P(r/.,j = 22 A A s p) log P (n j = ‘11 1 Asp) (12)

where Xpararrlr is the total number of probabiky table entries in t.he network

12

attribute score np _ _ _ _ _ _ _ _ __ - _--_-
age 0,908279 2
workclass 1.39105 18
fnlwgt 0.0410872 2
education 2.87019 105
education-nun 0 .0 32
marital-status 1,68602 54
occupation 2.9862 273
relationship 1.06944 105
race 0,756854 28

pars = <no parents>
pars = age
pars = <no parents>
pars = workclass
pars = education
pars = age education-nun
pars = workclass education-num
pars = education-num marital-status
Dars = marital-status

sex 0.430973 84 pars = occupation relationship
capital-gain 0.041708 6 pars = education-num
capital-loss 0.233887 12 pars = relationship
hours-per-week 0,855615 84 pars = workclass education-num sex
native-country 0.69222 200 pars = race
class 0.559691 54 pars = education-num relationship
hours-per-week

Score is 445929
The search took 252 seconds.

Figure 10: Ontput from the Bases structure finder running on the ADULT2 datasrt.
Scorc is the co~itribiit,ion to the SUIII in Equat.ion 12 due l o lhe fipccified attribute. np

is the number of entries in the probability table for t,he specified attribiitx.

We sea,rch among structures to find the best score. In these experimcnts we use random-
restart stochastic hillclimbing in which the operations are randoin xldition or reriioval of a.
network link. Only the probability table of the affecled node is recomput,ed on each step.
Thc search is restricted to look only for nelwurks in which t.he indices of node j ' s l)a,rcnt.s
must all be less t,han j .

Figure 10 shows the Ba.ycs net structure retwncd by our Bayes net. striictur.c liiitler after
100,000 iterations of hillclimbing. When running on the synthetic datasets a nea.rly perfect
structure was typically found aft.er a few hundred thousand iterations.

6.4 Using ADtrees for rule finding
Given an output, at,tribute aoUi and a distinguished value vOut9 rulc finders search a~iiorig
conjunct,ive queries of the form

Assign = (a ; (l) = 211 . . .ai(:\,) = t!n) (131

to find the query that maximizes the estirnakd value

c(u,,l = vo"L. Assign)
c (il ssig97)

P(n,,f = L'o,t I .Assign) =

13

~~

= 0.965 (218/226) , workclass = Private, education-num = abouel2,
marital-status = Married-civ-spouse. capital-loss = above1600
Rule 1: score = 0.961 (199/207), workclass = Private, education-"urn = abovel?,
relationship = Husband, capital-loss i above1600
Rule 2 : score - 0.955 (193/2021, age = belo-45. education-num = abovel?,
relationship = Husband, capital-loss = abovei600
Rule 3: score 10.950 (302/3181. education-num = abovel2, relationship = Husband.
capital-lobs = above1600, native-country = United-States
Rule 4: score = 0.948 (201/2121, education-num = abovel2. relationship = Husband,
capital-loss = abovs1600, hours-per-leek = above40 I
Figure 11: Output from the rule finder

'lo avoid rules wit,hout significant support? we also insist thal C[ilwign) (the nurnl~er of
records matching the query) must be above some t,hrcshold &,in.

In these experiments we implemented a brute force search t.hat looks through all possible
queries that involve a user-specified number of attributes, 71.. We build each ct(a,,,. ql). . . ai(,,))

in turn (t,here are ('y) such tables): and then look through the rows of each table for all
queries using the a ; (]) . . .ai(,,) that have greater than minimnm support &in, We return a
priority queue of the highest. scoring rules.

Figiirc 11 gives the five highest-scoring rules found for the ADLILT2 dat,asrt using ~-ules
of size 4.

7 Experimental Results
Let, ns first examine the memory required by an ADtree on our clat,aset,s. 'Inhlc I s l ~ o ~ ~ s us.
for example. t,liat the ADULT2 dataset produced an Antree with 95,000 nodes. 'rhc tree
required almost 1 I Mbytes of memory. Among the thmc ADULT datasets, the sizc of bhe
tree varied approxiniat,ely linearly with the number of records.

T!nless othcrwise specified, in all tlie experiinent,s in this section, the ADl.~l,'i' dat,asets
uscd no leaf-list,s. The BIRTH and SYNTHETIC datascts used leaf-lists of size Emir, = 16
by default. The BIRTH dataset with its large number of sparse attribut,es required a modest
8 Mbytes to st,ore the tree-niany magnitudes below the worst-case bounds. Among the
synthetic datasets. the trce size increased sublinearly with the dataset size. This indica.les
t,ha.t as tlie dataset gets larger. novel records (which may cause new nodes to a.ppear in the
tree) become less frequent.

Table 2 shows the costs of performing 100,000 iterations of Bayes net structure sexching.
A l l cxperiinenls were performed on a 200Mhz Pentium Pro machine with 192 1,Ibytes of iliain
rrieniory. Recall tha t each Bayes net, it,crat,ion involves one random change t,o thc nctwork
and so requires recomputation of one contingency table. (The exception is t,Iie first, it,rrat,ion.
in which all nodes must be computed). This mmns that t,he t ime to run 100,000 it,eratiurls
is essentially the time to compute 100.000 contingency tables. Among the ADI~:I,T da,taset.s.
the advant.age of the ADtree over conventional counting ranges between a factor of 16 to :js.
Vnsurprisingly, the computational co for ADULT increasc siihlincarly w i t h t l a i ascq sir.(,

Datasct >I R Nodes
Al>L!LTl 16 1.5060 58200
ADULT" 15 30162 9,1900
ADULT3 15 45222 162900
BIRTH
SYNSOIi
SYKGOli
SYK125K
SYN2.50K
SYN5OOli

Megabyres Build 'Tirue
7.0 G

10.9 10
15.5 15

97
24
2 1
24
24
24 -

15 I 15060

4.9

12.4

228 38'14 16.9

Table 1: The size of AUtrees lor various datasets. .zI is the numher of al.tributcs. R
is the numhcr of records. ~Vodcr is the number of uodes in the ADlree. M q a b y t r is
the amount, of memor? needed to store the tree, Build Time is the nuriiber of sccorida
needed to huild the tree (to the nearest second)

15
1.5
97
24
24
24
24
24

Dataset
ADUUrl
ADULT2
..IDLLT3
BIRTH
SYN30K
SYN60K
SYNl2SK
SYN25OIi
SYN,?OOI<

30162
45222

9 6 i 2
30000
60000

125000
250000
500000

316
318

C 1 . i
24
24
24
24
24

i860
11968

34811
10088
19880
41552
84496

168544

2.1.9
34.4
i 9 . I

-m:<
828.3

l i31.3
3520.7
i022.7

Table 2: The time (in seconds) to perform 100,000 hill-climbing iterations searching
for tlrc best Bayes n e t structure. ADlrte Tim< is the time when using th r ADtree and
Reqtdar Tzrnr is the time taken whcii using the conventiooal probability table xoring
method of counting through the dathset. .Speedup Factor. is the iiumber of times by
which the A Dtree mekhod is faster than the conventional met,bod.

for the ADtree but linearly for the conventional counting. 'The cornputatiorial advantages
and the sublinear behavior are much more pronounced for the synthetic data.

Next. 'Table 3 examincs the effect of Ieaf-list,s on the ADULT2 and BIRTH datasets. For
the ADI.!I,T da.taset, thc byte size of the trcc decreases by a factor of 5 whein lcaf-lisbs are
increased from 1 to 64. But t,he computational cost of runiiing the Bayes seuch irirrrases
by only 25%> indicating a worth-while tradeoff if memory is scarce.

The Rayes net. scoring results involved the average cost of coinput.ing contingency t.a.hles
of many different sizes. The following results in Tables 4 and 5 malie the savings for f o v fivcd
size attr ibute sets are easier to discern. These tables give results for thc fraturc selecliori
and rule finding algorithms respcctively. The biggest, sa.vings comc from small attribute sets.
Computational sa\:ings for sels of size one or two are. however. not particularly intcrrsting
siiicc all such counts could be cached by straightforward methods without necding any tricks.
In all cases: however, we do see large savings. espccially for the BIRTH da,ta. Datasets with

15

-
-
G i n

-
1
2
4
8

16
32
ii 1

128
256
512

1024
2048
4096 -

h DC' UP2
Number Number ADtree Regular Speedup
Attributes Attributr Time Tinic Facror

1 14 ,000071 .048 675.0
2 91 ,00054 .06i 124.0
3 3F4 ,0025 .U88 34.9

Sets

4 1,001 ,0083 -11 1:x.i
J 2,002 ,023 -14 6.0

hDlJLTZ
#>Ib #nodes Build Scarch

BIRTH
Number iiDttree Regular Speedup

Attribute Tiitre Timc Fartor

96 .000018 .015 841
4.560 .on0042 .ozi 509

142.880 .000093 -028 208

Scts

3.321.960 . o m 9
6 1 , 1 2 4 , o ~ .(ion:n

Sees Sccx
10.8i 94.87'2 13 316
8.46 86.680 10 3 1 2

8 308
1 312

6.30 75.011
4.6" 62.095
3.37 -39,000 i 320
2.55 37.790 5 344
1.98 27.726 4 :188
1.59 18,903 4 172
1.38 12,539 4 600
1.21 i ,336 2 861
1.05 3,938 2 1344
0.95 1,890 2 1856
0.86 780 2 2808

-

BIRTH
#bib #nodes Build Search

SPCS Sccs I

2 i . l i O
14.80
i.95
4.30
2.42
1.48
0.95
0.65
0.45
0.28
0.28

24.5 n 2
I.iZ.109
87.415
, I G . i i i
23.4i1
11.554

5.150
2.237

887
246
201

:i 1
22
15
I 1
8
G
5
3
3
2
1

40
-10
44
'14
52
61
92

148
244
364
380

Table 3: liivestigating the effect of the R,,i,, pwamet.er on the ADULT2 dataset a i d
the BIRTH dalaset. #M6 is the memory used by the ADtree. #nodes is the number
of nodes in the ADtree. Build &sics is thc time to build the ADtrcc. Senlrh Sfcs is the
time needcd to perform 100.000 iterat.ions of Lhe Bayes tict, struct.iire search.

larger numbers of rows woulcl. of course. rcveal larger savings.

8 Alternative Data Structures

Why not use a I;d-tree?
kd-trees can be used lor accelerating learning algorithms (Omohundro, lClS7; Moore et a,l..
1997). The primary difference is that. a kd-tree node sp1it.s on only one attrih1it.e i1istea.d
of all attributes. This rcsuhs in much less memory (linear in the number of rccords). But.

16

ADUU1'2
Kumber Number ADtree Regular Speedup

Attributes Rules "I'inle Time Factor
1 116 .000019 ,0056 295.0
2 4.251 ,000019 ,0014 i 5 .3
3 56,775 .000024 .00058 23.8
4 338.384 .000031 .00030 9.8
5 1,5051763 ,000042 -00019 4. i

counting can lie expensive. Suppose, for example, that level one of the tree splits on (11.

Ir\:el two splits on C I . ~ etc. Then in the case of hina.ry varia.bles. if we have a qiicr?; iiiivlvi~ig
only attributes a20 and higher then we have to explore ail pa,ths i n the t.rrc down 1.0 level
20. With dataset.s of fewer tha,n 2'' records this may he no cheaper tha,n performing a linear
spa.rch through the rccords. Another possibility are R-trees (Gutt,man. 198.1; R.ousso]~oulos
and Leifl<er: 1985). which store databases of M-dimensional geometric olijects. 1.Iowri
this context. t,hey offer no advantages over Ld-txers.

Why not use a frequent set finder?
Frequent. set finders (Agrarval et al.> 1996) are typically used with very large Mabases
of millions of records containing very sparse binary attribut,es. Efficient algorithms exist,
for finding all subsets of attributes t.ha.t co-occur with value T K U E in more t,lian a fixed
number (chosen by the user: and called the support) of records. (Ma,nnila and Toivonenl
1996) suggests that such frequent sets can he used to perform efficient counting. In the case
where support = 1. all such frequent sets are gathered and if counts of each freqiicnt sct a.re
retained. this is equivalent t.o producing an Antree in which insbead of performing r? node
cutoff for the most common value, t,he cutoff always occurs for value FALSE.

The usc of frequent set.s i n this way would thus he very similar to the use of ADlrees.
with one advantage and one disadvantage. The advant,age is that efiicierit algoritlinis have
bcen developed for building frequent, sets from a small number of sequential passes t,hrough
data. The ADtree requires random access to t,he dataset while it. is being built. and for its
leaf-lists. This is impractical if the dat,asct, is too large to reside iii main memory and is
accessed through database queries.

The disadvantage of rrequent sets in co~nparison with ADlrees is tha,t under sonie circum-
stances they may require much more memory. Assume the value 2 is r a r w than I ~.Iiroiigt~out.
all at.trihutes in the dataset and assume rea,sonably that. we thus choose to find all l 'rqwut.
s r t s of 2's. [Innecessarily inany sets will be produced i l h e r e itre currela,tiuiis. I11 tlic CX-
t.reme case: imagine a datasct in which 30% of the values are 2 > 70%' are 1 and attributes are
perfectly correlated-all values in each record are identical! Then with :\-I attributes t.here
\vould he P' frequent sets of 2's. In contrast, the ADtree would only curitair1 :M + I noiies.
"1"his is an extreme example, but datasets w4t.h much weaker int,er-attribute correlations can

BIRTH
Number ADtrre Regular Spc.cdup

Rules Time Time F'nctor
194 .000025 ,0072 2Rii

17.738 .000021 .00% 259
987,134 .000022 ,0040 186

37,824,734 .000024 .U030 127
1,077,672,055 .000026

similarly benefit from using an AUtree.

be irsed for the frcquent set representation.
Leaf-lists are another technique to reduce the size of Alltrees further. They could also

9 Discussion

What about numeric attributes?
The ,ilDtree representat,ion is designed entirely for symbolic attributes. When facrtl \,villi
numeric attributes. the simplest solution is to discret,ize them int.0 a. fixed finit,, sr t of \d i ics
which are then treated as symbols, but this is of little help if chc user requests counts for
queries involving inequalities on numeric attributes. I n future work we will e \dua . t r the
use of structures combining elements from inult~iresolution M-trces of real attributes (Moore
et a].: 199i) with ADtrccs.

Algori thm-specif ic coui i t ing tricks
Many algorithms that count using t,he conventional "linear" method have algorit,lin-specific
ways of accelerating their performance. For examplel a Hayes net structure finder may t,ry
t,o remember all the contingency tables it has tried previously in case i t needs to re-evaluate
them. When i t deletes a link, i t can deduce the new contingency table from the old one
withoiit needing a linear count.

In such cases. the most, appropriate use of the ADtrcc may be as a lazy caching niecli-
anisrn. At birth, t,he ADtree consists only of the root, node. Whenever the striictrirc finder
needs a contingency table that cannot lie detlucetl from the current Amrep s t r i i(, i i i r r . 1 Iw
appropriate nodes of the ADtree are expanded. The ..Illtree then takes on the roir UT the
algorithm-specific caching methods. whilc (in general) using up much less iiieinury t.lian if
all contingency t,ables were remembered.

Hard t o update i i ic rementa l ly
Although the tree can be built cheqdy (see the esprrimental results i n Section 7) . and
dthoiigh it, can be built lazily, the ADtree cannot bc updated clieaply with a new record.
This is because one new record may match up t,o 2"' nodes in the tree in the worst casc.

Scaling up
The ilM.ree representation can be useful for datasets of the rough size and shape used iii this
pa,per. Rut they cannot represent all the sufficient stat,istics for huge dat,aset,s wit,h Inany
hundreds of non-sparse and poorly correlat,ed atkributes. What. should we do if our dataset
or our ADtree cannot fit into main memory? In the latter case, we could simply incrcasc the
size of lea,f-lists, trading off decreased memory against increased t.imc t,o build r.ont,ingencv
tables. Rut, if that is inadequa,te a,t least t,hrce possibilities remain. First, we could biiild
a.pproximate ADtrees that. don't. st,orc any information for nodes that, match fewer t,liali a
i.lireshold number of records. Then approxiriiat,e contingency tables (complet,e w i t h rrror
bounds) C ~ I I he produced using methods descrilied in (hlannila aud Toivoilrarl. l ~ (i) . ,4
second possibility is to exploit secondary sorage and store deep, rarely visited iiotles of t.lle

18

ADtree on disk. This would doubtless hest be achieved by integra.ting t.lie niachinc Irarniiig
algorit,hms with ciirrent database management tools-a topic. of considerable interest i i i the
data minirig community (Fayyad et al., 1997). A third possibility. whjch restricts t,lic size ol
contingency tahlrs we may ask for, is to refuse t,o store counts for queries \villi niore than
some threshold numher of atkibutes.

ADtrees are algorithm and learning-task independent
Once an .4D~ree is built3 i t may be s a d to disk along wit,h the dat,aset. arid reused d i m e v e r
an a,lgorithm needs contingency tables. The tree does not, treat input. and output att.rihutcs
any differently: so t,he same t,ree may be used for inult,iple tasks. Finally. a leariling algorithm
might wish t,o run over a rest,ricted subset of the data specified by a query. For rsaniple
we might want to run a rule learner restricted to the subset of records in which a , = I and
a; = 3. In t,liat case h e same A B r e e c.an also be reused.

Acknowledgements

This work was sponsored by a Sational Science Foundation Career Award to Andre\<: Moorr.
The aut,liors thank Justin Boyan. Scott Davies a.nd Jeff Schneider for t.lieir suggpstions.

Appendix 1: Memory Costs
In this appendix we examine the size or the tree. For simplicity, we restrict at,tention to the
case of binary attrihutes.

The worst-case number of nodes in an AUtree
Given a dataset wi th :21 at,tributes and R records: the worst,-case for the .4Dtree will ucciir if
all 2" possihlr records exist in the dataset,. Then, for every subsct of att,ributes there exists
exactly one node in the ADtree. For example consider the attribute set { n i l l) , . . qn)}, where
i(1) < i (2) < ... < i(i1.). Suppose there is a node in the t,ree corresponding t,o the query
{q1) = v1 . . . n , (y = un} for some values u l , . . vn. From the definition of an ADbree. and
reniernbering we arc only considering the case of binary attributes. we can state:

rn

rn ' ~ 2 is the least common value of ni(2) anioug t.hosc records that. match (ai,,) = L : ,) .

is the least common value of qi).

rn vlc+l is the least common value of ~ l i (k + ~) among those records that. niat,rh (qIl =

1.1. 1 . , . , fL<(k) = l ' k) .

So there is at. most one such node. Moreover sincr our worst,-ca,sr assumpt,ion ib t.11a.t
dl possihle records exist in t,he database, we see that. t,he AEtree will indeed contain this
node. 'Thus. the worst-case iiumber of nodes is t.he same as the number of possible subset^
of att,rihutes: P'.

The worst-case number of nodes in an ADtree with a reasonable number of rows

19

It is frequently the case that a dataset has R << 2’”. LVit,h fcwer records, there is a much
lower worst-case bound on t.he ADtree si A node at. the kth level of the trec correspo~ids
to a query involving k altributes (counting the root, node as level 0). Such a node call match
at most R T k records because each of the node’s ancestors u p thc tree has pruned off at
least half the records by clioosing to expand only t.he least. common value of the at,tril)ube
introduced by tha.t ancestor. Thtls there can be no t,ree nodes at level [log, Rj + 1 of t,he
t,ree. because suc.11 nodes would have to match fewer tlmn R2-110gzRJ-1 < 1 records. ‘l’hry
~vonld t.Iius match no records. making Ihern A’L’LL..

The nodes in an ADtree must all exist at level [log, Ri or higher. The nunher of nodrs

at level k is at most (1:) ~ becausc cvery node at level X: involves a.n atLriIxite set, of s i w

k and beca,tisr (given binary attributes) for every a.ttribut,c set there is at ino% one inodr iu
the ADlree. Thus the total number of nodes in the tree, suinining over the levels is less than

(15)

The number of nodes assuming skewed independent attribute values
Imagine t,liat all values of all attributes in t h c dataset, are independent random binary vari-
a.bles. laking ~ a l n c 2 with proba,bility p and taking value 1 with probability 1 - p . The11
the further p is from 0.5: t.he smaller we can expect, the ADtree to be. ‘l‘his is hcca.use: on
average. the less common value of a Vary node will match fraction Inin(p? 1 - p) of its parent’s
records. And, on avera,gcl the number of records matched at the kbh level of the tree will be
R(min[p: 1 - P)) ~ . Thus. the maxiniuin level i n t h e tree at which we may find a node nmtrh-
iiig one or more records is approximately [(log, I?)/(- log, q)] : where y = inin(p. 1 - [I) . A u d
so the t,ntal number of nodes in the tree is approxiimtely

(16)
Since the exponent is reduced by a fa.ctor of lug2(l/4): skewedness among t,he att.ril)utcs t,hiis
brings enormous savings in memory.

The number of nodes assuming correlated attribute values
The ADtree benefits from correlations aniong att.ributes in much the same way that i t bcnefit,s
from skewedncss. For example. suppose that each record was generated by the siniplr Rayes
net. in Figure 12, where the random variable B is hidden (not included in thc record). ‘l’hen
for i # j, P(IA # a i) = 2p(l - p) . If ADA‘ is any node in the resulting ADtree then the
nuniber of records matching any other node two levels below ADXin the tree will be fraction
2p(1 - p) of the number of records matching ADAr. From this we can see that lhe iiuniher
of nodes in Ihe tree is approximately

20

where q = ,/-. Correlation among thc attributes can thus also bring ~ I I O ~ I U O U S

savings in memory even if (as is the case in our example) the ma.rginal distrihuliun of
individual att,ributes is uniform.

m

Figure 12: A Rayes net that generates correlated boolean attributes ol. 0 2 . , .a&,

The number of nodes for the dense ,4Dtree of Section 2
The dense ADtrees do not cut off the tree for the most common value of a Va,ry node. Thc
worst case ADtree will occur if all 2" possible vccords exist in the da,taset.. Then t,lic dciisc,
ilUtrce will require 3" nodes because every possible query (wit.11 each attribute taking va l iws

2 or *) will have a count in the tree. The number of nodes at, tlie k!,h level of !tie deiisc.

ADt.ree can be P (' y) i n the worst case.

The number of nodes when using Leaf-lists
Leaf-lists were described in Section 7. If a tree is built, using maximum leaf-list. sizc of K,,,i,,,
then any node i n the ADtree matching fewer than R,,,i,, records is a leaf node. This means
that. formulae 15, 16 and 17 can be reusedi replacing R with R/Rll,i,,. I t is impurta,Iit to
remember. however. that the leaf nodes must now cont,ain room for R,,i, numbers instead
of a. single count.

Appendix 2: Building the ADtree
We define tlie function MakeADTree(a, , RecodVuns) rvhcrc RecordA'ums is a subset of
{ I q 2 : . . . , R } (R is t,he total number of rccords iu the dataset) and where 1 5 i 5 M . This
makes an ADtree from the rows spccificd in Record:V.urns in which all A h o d e s represent
qucries in which only attributes a, a.nd higher arc used.

MakeADTree(a; , Recod\?ms)
Make a new ADnode called 4DX

For j := i.i + I.. . . . M AD:V.COI!NT := 1 Record:\'.urns I.

j t h Vary nodc of AUX : = MakeVaryNode(aj. Record;V~m.s).

21

To build thc entire tree, we must call M a k e A D T r e e (a l : (1. . . E }) . Assnining hina,ry a.1-
trihut,es, the cost of building a tree from R rccords and i1.f att,rihutes is bounded a l ~ ~ (~
hS

(1Sj

References
Agrawa,l, R... blannila: H.: Srikant. R.? Toivonenl H., and Verkarno, A . I. (19%). Fast

discovery of associat,ion rules. In Faypad: U. R.I.: Piatet.sky-Shapirol G.! Sinyt,li: P.: and
Uthurusamv. " . K.., editors, Adra.n.ces in. Iil~owbedge Discovery and f h f a M i n i ~ ~ . g . A A , \ I
Press.

Breirrian. L. : Friedman, J. H., Olsheri: R . A, . and Stone. C. J. (1934). L'lnssificatioii nrad
R egrsssio rl Trecs. Wads wor t 11.

Clark. P. arid Nihlett, R. (1SSS). Thc (IN2 induction algorit,hm. Mnchiirr I,cnrniriy. :3:X I
2.1.

Fayyad: IL!.. _Ila.Iinila. H . . and Piatet.sky-Sliapiro, C. (1997). Data M i n i i q a n d lir>.ou:/edyt
f h c o o t r y . Iduwer Academic Publishers. A new journal.

Fayyatl, U. and Uthurusamy. K . (1996). Spccial issiic on I h t a Mining. ~ ~ ~ ~ r r ~ r i i ~ ~ ~ i ~ ~ ~ ~ ~ / ~ ~ ~ r i . ~ LJ/

fhr .AC."W, 39(11).

Friedinan. S. and Yakhini. Z. (1996). On the sample complexity of leariiiiig Bayesian nrt-
works. In Proceedings o,J the 12111 c ~ n j e r t n c c 011. Uii.certninty in Arfificinl i n t d l i y e i i r r ,

Cut,tnla.nl .A. (1984). R-trees: A dynamic index structure for spatial searching. In Procetdinys
oJ SICMOU 84.

Iiohavi, R.. (1996). Scaling up t,hc accuracy of naive-Hayes classifiers: a drcisioI1-tree hybrid.
111 Proceedings of the Second Initrnationa.l Conference on Iirtou!ledgc /Xscover,y and
Dn t n Mi 11 i ny.

Ma,dala., H . H . . and Ivakluncnko. A. G. (1994). Itidactiue L.cctming ..llgorifhms ,fool, r o n i p k : r
Syslems Modeling. CRC Press Inc.. Roca K.aton.

Mannila,: H . and Toivonen. H. (1996). Multiple uses of freqiicut sets aud coride11st.d re11rccr.11-
t a,t ions, In Proceedings of the Secoit d Int trnut iorml Con Jciwice on Iin otl.ltdgr D i s c o r ~ t q
arid Data Mining.

Moore, A. W.. Schneider. J . , and Deng, I<. (1 997). Efficient Locally Weighted Polyiioiiiial
111 Proceedings of thr. I997 Iialerrmtional :Zfurhine L.enir? i n g Regression Prcdictions.

ColtJe~tiice. Morgan I i a u h a n n .

Ornohundro. S. M. (1987). Efficient Algorithms with Xeural Network Behaviour. Jo7i.r-rad of
Complez Systtms: I(2):273-347.

Quinlan. J . K. (1983). Learning Efficient Classification Procedures and their Applicat,ion t.0
Chess End Games. In Michalski, R.. S.: Carbonell, J . G., and Mitchell, T. M.: editors,
Mu chi 1: e Lea 1.n ing -A n il rl i j c d In t ellig e n ct Approach (I) . T i oga P 11 b I i s h i ng Coin pany?
Palo Alto.

Quinlan. J . R. (1990). Learning logical definitions from relations. Machine Learning. 5:239-
266.

Roussopoulos, N . and L,eiflter, D. (198.5). Direct spatial search on pict,orial da,tabases uyiug
packed R-trees. In ACM SIGMOD 1.985 Pro

