
This paper is included in the Proceedings of the

14th USENIX Conference on

File and Storage Technologies (FAST ’16).

February 22–25, 2016 • Santa Clara, CA, USA

ISBN 978-1-931971-28-7

Open access to the Proceedings of the

14th USENIX Conference on

File and Storage Technologies

is sponsored by USENIX

CacheDedup: In-line Deduplication
for Flash Caching

Wenji Li, Arizona State University; Gregory Jean-Baptise, Juan Riveros, and Giri Narasimhan,

Florida International University; Tony Zhang, Rensselaer Polytechnic Institute;

Ming Zhao, Arizona State University

https://www.usenix.org/conference/fast16/technical-sessions/presentation/li-wenji

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 301

CacheDedup: In-line Deduplication for Flash Caching

Wenji Li

Arizona State University

Gregory Jean-Baptise

Florida International University

Juan Riveros

Florida International University

Giri Narasimhan

Florida International University

Tong Zhang

Rensselaer Polytechnic Institute

Ming Zhao

Arizona State University

Abstract

Flash caching has emerged as a promising solution to the

scalability problems of storage systems by using fast flash

memory devices as the cache for slower primary storage. But

its adoption faces serious obstacles due to the limited ca-

pacity and endurance of flash devices. This paper presents

CacheDedup, a solution that addresses these limitations using

in-line deduplication. First, it proposes a novel architecture

that integrates the caching of data and deduplication meta-

data (source addresses and fingerprints of the data) and effi-

ciently manages these two components. Second, it proposes

duplication-aware cache replacement algorithms (D-LRU, D-

ARC) to optimize both cache performance and endurance.

The paper presents a rigorous analysis of the algorithms to

prove that they do not waste valuable cache space and that

they are efficient in time and space usage. The paper also

includes an experimental evaluation using real-world traces,

which confirms that CacheDedup substantially improves I/O

performance (up to 20% reduction in miss ratio and 51% in

latency) and flash endurance (up to 89% reduction in writes

sent to the cache device) compared to traditional cache man-

agement. It also shows that the proposed architecture and al-

gorithms can be extended to support the combination of com-

pression and deduplication for flash caching and improve its

performance and endurance.

1 Introduction

Flash caching employs flash-memory-based storage as a

caching layer between the DRAM-based main memory and

HDD-based primary storage in a typical I/O stack of a stor-

age system to exploit the locality inherent in the I/Os at this

layer and improve the performance of applications. It has

received much attention in recent years [7, 5, 2, 23], which

can be attributed to two important reasons. First, as the level

of consolidation—in terms of both the number of workloads

consolidated to a single host and the number of hosts con-

solidated to a single storage system—continues to grow in

typical computing systems such as data centers and clouds,

the scalability of the storage system becomes a serious issue.

Second, the high performance of flash-memory-based storage

devices has made flash caching a promising option to address

this scalability issue: it can reduce the load on the primary

storage and improve workload performance by servicing I/Os

using cached data.

There are however several key limitations to effective

caching with flash memories. First, with the increasing data

intensity of modern workloads and the number of consoli-

dated workloads in the system, the demands on cache ca-

pacity have skyrocketed compared to the limited capacity of

commodity flash devices. Second, since flash memories wear

out with writes, the use of flash for caching aggravates the en-

durance issue, because both the writes inherent in the work-

load and the reads that miss the cache induce wear-out.

This paper presents CacheDedup, an in-line flash cache

deduplication solution to address the aforementioned obsta-

cles. First, deduplication reduces the cache footprint of work-

loads, thereby allowing the cache to better store their work-

ing sets and reduce capacity misses. Second, deduplication

reduces the number of necessary cache insertions caused by

compulsory misses and capacity misses, thereby reducing

flash memory wear-out and enhancing cache durability. Al-

though deduplication has been studied for a variety of stor-

age systems including flash-based primary storage, this paper

addresses the unique challenges in integrating deduplication

with caching in an efficient and holistic manner.

Efficient cache deduplication requires seamless integration

of caching and deduplication management. To address this

need, CacheDedup embodies a novel architecture that inte-

grates the caching of data and deduplication metadata—the

source addresses and fingerprints of the data, using a sepa-

rate Data Cache and Metadata Cache. This design solves two

key issues. First, it allows CacheDedup to bound the space

usage of metadata, making it flexible enough to be deployed

either on the client side or the server side of a storage sys-

tem, and implemented either in software or in hardware. Sec-

ond, it enables the optimization of caching historical source

addresses and fingerprints in the Metadata Cache after their

data is evicted from the Data Cache. These historical dedu-

plication metadata allow CacheDedup to quickly recognize

duplication using the cached fingerprints and produce cache

hits when these source addresses are referenced again.

Based on this architecture, we further study duplication-

aware cache replacement algorithms that can exploit dedu-

plication to improve flash cache performance and endurance.

First, we present D-LRU, a duplication-aware version of LRU

which can be efficiently implemented by enforcing an LRU

policy on both the Data and Metadata Caches. Second, we

present D-ARC, a duplication-aware version of ARC that ex-

302 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

ploits the scan-resistant ability of ARC to further improve

cache performance and endurance. For both algorithms, we

also prove theoretically that they do not lead to wastage in the

Data and Metadata caches and can efficiently use their space.

CacheDedup is implemented atop block device virtualiza-

tion [5], and can be transparently deployed on existing stor-

age systems. We evaluate it using real-world traces, includ-

ing the FIU traces [18] and our own traces collected from

a set of Hadoop VMs. The results show that CacheDedup

substantially outperforms traditional cache replacement algo-

rithms (LRU and ARC) by reducing the cache miss ratio by

up to 20%, I/O latency by 51%, and the writes sent to flash

memories by 89%. It can effectively deduplicate data both

within a workload and across multiple workloads that share

the cache. We also measure the overhead of CacheDedup

using the fio benchmark [1], which shows that the through-

put overhead is negligible and the latency overhead from fin-

gerprinting can be overlapped with concurrent I/O operations

and dominated by the hit ratio gain from deduplication. In

terms of space overhead, CacheDedup needs < 4% of the

flash cache to store the deduplication metadata in order for

our algorithms to achieve peak performance.

CacheDedup is among the first to study duplication-aware

cache management for cache deduplication. Compared to

the related work, which also considered data reduction tech-

niques for server-side flash caching [19], we show that our ap-

proach can be naturally extended to support both duplication-

and compression-aware cache management and that it can im-

prove the read hit ratio by 12.56%. Our approach is not spe-

cific to flash-based caches—it leverages only flash devices’

faster speed compared to HDDs and larger capacity com-

pared to DRAMs. Therefore, it is also applicable to other

non-volatile memory technologies used as a caching layer be-

tween DRAMs and the slower secondary storage. While the

new technologies may have better endurance, they are likely

to have quite limited capacity compared to NAND flash, and

will still benefit greatly from CacheDedup, which can sub-

stantially reduce both cache footprint and writes sent to cache

device.

The rest of the paper is organized as follow: Section 2 ex-

plains the background; Section 3 presents the architectural

design of CacheDedup; Section 4 describes the duplication-

aware cache management algorithms; Section 5 presents the

evaluation results; Section 6 examines the related work; and

Section 7 concludes the paper.

2 Background and Motivations

Need of Integrated Flash Cache Deduplication. The emer-

gence of flash-memory-based storage has greatly catalyzed

the adoption of flash caching at both the client side and server

side of a network storage system [7, 5, 2]. However, flash

caches still face serious capacity and endurance limitations.

Given the increasingly data-intensive workloads and increas-

ing level of storage consolidation, the size of commodity flash

devices is quite limited. The use of flash for caching also

aggravates the wear-out problem of flash devices, because

not only the writes from the workloads cause wear-out, but

also all the reads that are inserted into the cache due to cache

misses.

Deduplication is a technique for eliminating duplicate

copies of data and has been used to reduce the data footprint

for primary storage [12, 15] and backup and archival stor-

age [27, 22]. It often uses a collision-resistant cryptographic

hash function [4, 28] to identify the content of a data block

and discover duplicate ones [27, 18, 8]. Deduplication has the

potential to solve the above challenges faced by flash caching.

By reducing the data footprint, it allows the flash cache to

more effectively capture the locality of I/O workloads and

improve the performance. By eliminating the caching of du-

plicate data, it also reduces the number of writes to the flash

device and the corresponding wear-out.

Although one can take existing flash caching and dedu-

plication solutions and stack them together to realize cache

deduplication, the lack of integration will lead to inefficien-

cies in both layers. On one hand, it is infeasible to stack a

caching layer upon a deduplication layer because the former

would not be able to exploit the space reduction achieved by

the latter. On the other hand, there are also serious limitations

to simply stacking a deduplication layer upon a caching layer.

First, the deduplication layer has to manage the fingerprints

for the entire primary storage, and may make fingerprint-

management decisions that are detrimental to the cache, e.g.,

evicting fingerprints belonging to data with good locality and

causing duplicate copies in the cache. Second, the caching

layer cannot exploit knowledge of data duplication to improve

cache management. In contrast, CacheDedup employs an in-

tegrated design to optimize the use of deduplication for flash

caching for both performance and endurance.

The recent work Nitro [19] studied the use of both dedupli-

cation and compression for server-side flash caches. Cache-

Dedup is complementary to Nitro in its new architecture and

algorithms for duplication-aware cache management. More-

over, our approach can be applied to make the cache man-

agement aware of both compression and deduplication and

improve such a solution that uses both techniques. A quanti-

tative comparison to Nitro is presented in Section 5.6.

Deduplication can be performed in-line—in the I/O path—

or offline. CacheDedup does in-line deduplication to prevent

any duplicate block from entering the cache, thereby achiev-

ing the greatest reduction of data footprint and wear-out. Our

results show that the overhead introduced by CacheDedup is

small. Deduplication can be done at the granularity of fixed-

size chunks or content-defined variable-size chunks, where

the latter can achieve greater space reduction but at a higher

cost. CacheDedup chooses deduplication at the granularity of

cache blocks, which fits the structure of flash caches and fa-

cilitates the design of duplication-aware cache replacement.

Our results also confirm that a good level of data reduction

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 303

Figure 1: Architecture of CacheDedup

can be achieved with fixed-size cache deduplication.

Need for Deduplication-aware Cache Management. There

exists a number of cache replacement schemes. In particular,

the widely used LRU algorithm is designed to exploit tem-

poral locality by always evicting the least-recently used entry

in the cache. Theoretically, it has been shown to have the

best guarantees in terms of its worst-case performance [30].

But it is not “scan resistant”, i.e., items accessed only once

could occupy the cache and reduce the space available for

items that are accessed repeatedly. ARC [21] is an adaptive

algorithm that considers both recency and frequency in cache

replacement. It is “scan resistant” and shown to offer better

performance for many real-world workloads.

However, cache replacement algorithms typically focus on

maximizing the hit ratio, and disregard any issues related to

the lifespan and wear-and-tear of the hardware device, which

are unfortunately crucial to flash-based caches. Attempts to

reduce writes by bypassing the cache invariably affect the hit

ratio adversely. The challenge is to find the “sweet spot” be-

tween keeping hit ratios close to the optimum and lowering

the number of write operations to the device. CacheDedup

addresses this challenge with its duplication-aware cache re-

placement algorithms, designed by optimizing LRU and ARC

and enabled by an integrated deduplication and cache man-

agement architecture.

3 Architecture

3.1 Integrated Caching and Deduplication

CacheDedup seamlessly integrates the management of cache

and deduplication and redesigns the key data structures re-

quired for these two functionalities. A traditional cache needs

to manage the mappings from the source addresses of blocks

on the primary storage to the cache addresses of blocks on

the cache device. A deduplication layer needs to track the

fingerprints of the data blocks in order to identify duplicate

blocks. There are several unique problems caused by the in-

tegration of caching and deduplication to the design of these

data structures.

First, unlike a traditional cache, the number of source-to-

cache address mappings in CacheDedup is not bounded by

the size of the cache, because with deduplication, there is

now a many-to-one relationship between these two address

spaces. Second, even though the number of fingerprints that a

cache has to track is bounded by the cache size, there is an im-

portant reason for CacheDedup to track fingerprints for data

beyond what is currently stored in the cache. Specifically,

it is beneficial to keep historical fingerprints for the blocks

that have already been evicted from the cache, so that when

these blocks are requested again, CacheDedup does not have

to fetch them from the primary storage in order to determine

whether they are duplicates of the currently cached blocks.

Such an optimization is especially important when CacheDe-

dup is employed as a client-side cache because it can reduce

costly network accesses. However, fingerprint storage still

needs to abide by the limit on CacheDedup’s space usage.

To address these issues, we propose a new Metadata Cache

data structure to cache source addresses and their fingerprints.

This design allows us to solve the management of these meta-

data as a cache replacement problem and consider it sepa-

rately from the Data Cache that stores data blocks (Figure 1).

The Metadata Cache contains two key data structures. The

source address index maps a source addess of the primary

storage to a fingerprint in the Metadata Cache. Every cached

source address is associated with a cached fingerprint, and

because of deduplication, multiple source addresses may be

mapped to the same fingerprint. The fingerprint store maps

fingerprints to block addresses in the Data Cache. It also con-

tains historical fingerprints whose corresponding blocks are

not currently stored in the Data Cache. When the data block

pointed to by a historical fingerprint is brought back to the

Data Cache, all the source addresses mapped to this finger-

print can generate cache hits when they are referenced again.

Each fingerprint has a reference count to indicate the number

of source blocks that contain the same data. When it drops to

zero, the fingerprint is removed from the Metadata Cache.

The decoupled Metadata Cache and Data Cache provide

separate control “knobs” for our duplication-aware algo-

rithms to optimize the cache management (Section 4). The

algorithms limit the metadata space usage by applying their

replacement policies to the Metadata Cache and exploiting

the cached historical fingerprints to opportunistically improve

read performance. Both caches can be persistently stored on

a flash device to tolerate failures as discussed in Section 3.3.

Moreover, our architecture enables the flash space to be flex-

ibly partitioned between the two caches. For a given Data

Cache size, the minimum Metadata Cache size is the required

space for storing the metadata of all the cached data. Our

evaluation using real-world traces in Section 5 shows that

the “minimum” size is small enough to not be an issue in

practice. More importantly, the Metadata Cache can be ex-

panded by taking away some space from the Data Cache to

store more historical fingerprints and potentially improve the

performance. This tradeoff is studied in Section 5.4.

304 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

3.2 Operations

Based on the architecture discussed above, the general oper-

ations of CacheDedup are as follows. The necessary cache

replacement is governed by the duplication-aware algorithms

presented in Section 4.

Read. A read that finds its source block address in the Meta-

data Cache with a fingerprint pointing to a Data Cache block

is a hit in the Data Cache. Otherwise, it is a miss. Note

that the read may match a historical fingerprint in the Meta-

data Cache which does not map to any data block in the Data

Cache, and it is still a miss. Upon a miss, the requested data

block is fetched from the primary storage and, if it is not a du-

plicate of any existing cached data block, it is inserted into the

Data Cache. The corresponding source address and finger-

print are inserted into the Metadata Cache if necessary. If the

fingerprint already exists in the Metadata Cache, it is then “re-

vived” by pointing to the new Data Cache block, and all the

historical source addresses that point to this fingerprint are

also “revived” because they can generate hits when accessed

again.

Write. The steps differ by the various write policies that

CacheDedup supports:

1. Write invalidate—the requested source address and the

cached data for this address are invalidated in the Meta-

data and Data Caches if they exist. The write goes di-

rectly to the primary storage.

2. Write through—the write is stored in cache and at the

same time submitted to the primary storage. The source

address and fingerprint are inserted into the Metadata

Cache if they are not already there. If the data contained

in the write matches an existing cached block, no change

needs to be made to the Data Cache, while the reference

count of its fingerprint is incremented by one. If the pre-

vious data of this block is already in the Data Cache,

the reference count of the previous fingerprint is decre-

mented by one.

3. Write back—the write is stored only in the cache and

submitted to the primary storage later, when the block is

evicted or when the total amount of dirty data exceeds

a predefined threshold. The steps are identical to the

write-through policy except that the write is not imme-

diately submitted to the primary storage.

3.3 Fault Tolerance

The nonvolatile nature of flash storage allows the cached data

to persist when the host of the cache crashes, but to recover

the cached data, their metadata also needs to be stored per-

sistently. If the goal is to avoid data loss, only the source-to-

cache address mappings for the locally modified data from

using the write-back policy must be persistent. CacheDe-

dup synchronously commits both the metadata and data to

the cache device to ensure consistency. If the goal is to avoid

warmup after the host restarts, the entire Metadata Cache, in-

cluding the source block index and fingerprints, is made per-

sistent. The time overhead of making the Metadata Cache

persistent is not as significant as its space overhead on the

flash device, because the metadata for clean blocks can be

written in batches and asynchronously. For both fault toler-

ance goals, the Metadata Cache is also kept in main mem-

ory to speed up cache operations, and its memory usage is

bounded. Finally, if the goal is to tolerate flash device fail-

ures, additional mechanisms [26] need to be employed. We

can also leverage related work [17] to provide better consis-

tency for flash caching.

3.4 Deployment

CacheDedup can be deployed at both the client side and

server side of a storage system: client-side CacheDedup can

more directly improve application performance by hiding the

high network I/O latency, whereas server-side CacheDedup

can use the I/Os from multiple clients to achieve a higher

level of data reduction. When CacheDedup is used by multi-

ple clients that share data, a cache coherence protocol is re-

quired to ensure that each client has a consistent view of the

shared data. Although it is not the focus of this paper, Cache-

Dedup can straightforwardly extend well-studied cache co-

herence protocols [13, 24] to synchronize both the data in

the Data Cache and the fingerprints in the Metadata Cache,

thereby ensuring consistency across the clients.

While the discussions in this paper focus on a software-

based implementation of CacheDedup, its design allows it to

be incorporated into the flash translation layer of specialized

flash devices [29, 25]. The space requirement is bounded by

the Metadata Cache size, and the computational complexity

is also limited (Section 4), making CacheDedup affordable

for modern flash hardware.

The discussions in the paper also assume the deployment

of CacheDedup at the block-I/O level, but its design is largely

applicable to the caching of filesystem-level reads and writes,

which requires only changing the Metadata Cache to track

(file handle, offset) tuples instead of source block addresses.

4 Algorithms

In this section we present two duplication-aware cache re-

placement algorithms. Both are enabled by the integrated

cache and deduplication management framework described

above. We first define some symbols (Table 1).

• Data Cache, D, stores the contents of up to d dedupli-

cated data blocks, indexed by their fingerprints.

• Metadata Cache, M, holds a set of up to m source ad-

dresses and corresponding fingerprints, a function f that

maps a source address to the fingerprint of its data block,

and a function h that maps a fingerprint to the location of

the corresponding data block in D. We denote the com-

position of f and h by the function h� that maps a source

address to the location of the corresponding data block.

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 305

Symbol Definition

D Data Cache

d Total number of data blocks in the Data Cache

M MetaData Cache

m Total number of source addresses in M

pi A source address in M

gi A fingerprint in fingerprint store

ai The content of a data block in D

f (pi) Function that maps a source address to a

fingerprint

h(gi) Function that maps a fingerprint to a data block

h�(pi) Function that maps a source address to a data

block

Table 1: Variable definitions

Thus, for a source address x in M, f (x) is its fingerprint,

and h�(x) = h(f (x)) is the corresponding data block in D. If

f (x) = f (y) and x �= y, then x and y contain duplicate data. If

f (x) = g, we will refer to x as an inverse map or one of the ad-

dresses of fingerprint g. If we have a source address in M for

which the corresponding data is absent from D, we call it an

orphaned address; if we have a block in D for which the map-

ping information is not available in M, then it is an orphaned

data block. Instead of strictly disallowing orphaned addresses

and data, we will require our algorithms to comply with the

no-wastage policy, which states that the cache replacement

algorithms are required to not have orphaned addresses and

orphaned data blocks simultaneously. The no-wastage pol-

icy is important because “wastage” implies suboptimal use of

the cache, i.e., instead of bringing in other useful items into

cache, we are storing items in cache with incomplete infor-

mation that would surely result in a miss if requested.

In the rest of this section, we describe the algorithms and

analyze their no-wastage property and complexity. Note

that the size of data structures required by the algorithms is

bounded by the space required to store up to m source ad-

dresses and fingerprints; therefore, we omit the space com-

plexity analysis.

4.1 D-LRU

4.1.1 Algorithm

We present D-LRU (pronounced “dollar-you”), a duplication-

aware variant of LRU. The pseudocode (Algorithm 1) con-

sists of two separate LRU policies being enforced first on

the Metadata Cache (M) and then on the Data Cache (D).

INSERT-USING-LRU(x,A,n) inserts x in list A (with capac-

ity n) only if it is not already in A, in which case the LRU

item is evicted to make room for it.

4.1.2 Analysis

The algorithm of D-LRU is rather simple, but our analysis

shows that it is also quite powerful as it allows efficient use

of both the Metadata and Data Caches with no wastage. We

Algorithm 1: D-LRU pseudocode

REMARKS: D is indexed by f (x) and M is indexed by x

INPUT: The request stream x1,x2, . . . ,xt , . . .
INITIALIZATION: Set D = /0, M = /0

for every t ≥ 1 and any xt do
INSERT-USING-LRU(xt ,M,m)
INSERT-USING-LRU(f (xt),D,d)

start the analysis with several useful observations. The first

is that no duplicate addresses are inserted into M and no du-

plicate data blocks are inserted into D. However, every new

address does result in an entry in M, even if it corresponds to

a duplicate data block.

To discuss more observations, we introduce the following

notation. Let {p1, . . . , pm} be the source addresses in the

Metadata Cache M, ordered so that p1 is the LRU entry and

pm the MRU entry. Let {g1, . . . ,gn} be the corresponding fin-

gerprints stored in the fingerprint store. Let {a1,a2, . . . ,ad}
be the Data Cache contents, ordered so that a1 is the LRU en-

try and ad the MRU entry. For any data block a, let maxM(a)
be the position in the Metadata Cache of its most recently

accessed source address. In other words, for any a ∈ D,

maxM(a) = max{i|h(f (pi)) = a ∧ pi ∈ M}, if a is not an

orphan, and 0 otherwise. Next we observe that the order in

D is the same as the order of their most recently accessed

addresses. Finally, any orphans in D must occupy contigu-

ous positions at the bottom of the DataCache LRU list. Any

orphans in M need not be in contiguous positions but must

occupy positions that are lower than maxM(a1), where a1 is

the LRU item in D.

To prove that D-LRU does indeed comply with the no-

wastage policy, we propose the following invariants.

P1: If ∃a ∈ D s.t. maxM(a) = 0, then ∀q ∈ M,h�(q) ∈ D.

P2: If ∃q ∈ M s.t. h�(q) /∈ D, then ∀a ∈ D,maxM(a)> 0.

Simply put, invariant P1 states that if there are orphaned

data items in D, there are no orphaned addresses in M. In-

variant P2 states the converse. When p is the only entry in

M, then p ∈ M and h�(p) ∈ D. The invariants hold. We then

need to show that if these two invariants hold after serving

a set of requests (inductive hypothesis), then it continues to

hold after processing one more request. Let the next request

be for source address x and fingerprint f (x). We list the base

case and then one of three cases must occur before the new

request is processed.

CASE 1: x ∈ M and h(f (x)) ∈ D. D-LRU performs no evic-

tions and the contents of the Metadata and Data Caches re-

main unchanged, as do the invariants.

CASE 2: x∈M and h(f (x)) /∈D. In this case D-LRU evicts an

item from D to bring back the data h(f (x)) for the orphaned

address x. Using the inductive hypothesis, and the fact that

x ∈ M is orphaned, we know that no orphaned items exist in

306 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

Figure 2: Architecture of D-ARC

D. Since D-LRU does not evict any entry from M, no new

orphans will be created in D, leaving the invariants true.

CASE 3: x /∈ M. In this case, D-LRU evicts p1 and adds x as

the new MRU in M. Also, if h(f (x)) /∈ D, then D-LRU will

evict a1 and add h(f (x)) as MRU in D. Two possible cases

apply for the analysis of this situation.

CASE 3.1: If there is at least one orphaned data item in D

(and none in M) prior to processing the new request, then

since all orphans in D are at the bottom, its LRU item a1 is an

orphan. Thus, the eviction of a1 cannot create any orphans in

M, and thus the invariants will hold.

CASE 3.2: If there are no orphans in D and x /∈ M, we have

two cases. First, if h(f (x)) /∈ D, the algorithm must evict the

LRU items from both M and D. If maxM(a1) > 1 then the

eviction of p1 will leave no orphans. If maxM(a1) = 1 then

p1 is the only address in M that maps to a1 and since both

will get evicted, no new orphans are created in the process.

Second, if h(f (x)) ∈ D, the algorithm only evicts p1 from

M. If maxM(a1) > 1 then the eviction of p1 will not leave

orphans in D. If maxM(a1) = 1 then the eviction of p1 makes

a1 an orphan. But because there can be no orphan addresses

occupying positions lower than p1 in M, the invariants still

hold.

Thus, D-LRU complies with the no-wastage policy.

Complexity. D-LRU can service every request in O(1) time

because the LRU queues are implemented as doubly linked

lists and the elements in the lists are also indexed to be able

to access in constant time. Evicting an element or moving it

to the MRU position can also be done in constant time.

4.2 D-ARC

4.2.1 Algorithm

Next we present a duplication-aware cache management al-

gorithm, D-ARC, that is based on ARC [21], which is a major

advance over LRU because of its scan-resistant nature. Simi-

larly, the algorithm of D-ARC is more complex than D-LRU.

We start with a brief description of ARC. ARC assumes

a Data Cache of size C. It uses four LRU lists, T1, T2, B1,

and B2 to store metadata, i.e., cached source addresses, with

total size 2C. The key idea is to preserve information on fre-

quently accessed data in T2 and to let information on “scan”

data (single-access data) pass through T1. Together, the size

of T1 and T2 cannot exceed C. When a new data block is added

to the cache, its corresponding metadata is added to T1, and

it is moved to T2 only when that address is referenced again.

The relative sizes of the two lists, T1 and T2, are controlled by

an adaptive parameter p. The algorithm strives to maintain

the size of T1 at p. When an item is evicted from T1 or T2, its

data is also removed from the cache. ARC uses B1 and B2 to

save metadata evicted from T1 and T2, respectively. Together

they store an additional C metadata items, which help moni-

tor the workload characteristics. When a source address from

B1 or B2 is referenced, it is brought back into T2, but triggers

an adjustment of the adaptive parameter p.

Our ARC-inspired duplication-aware cache replacement

algorithm is named D-ARC. The idea behind it is to main-

tain a duplication-free Data Cache D of maximum size C,

and to use an ARC-based replacement scheme in the Meta-

data Cache M. If evictions are needed in D, only data blocks

with no mappings in T1 ∪T2 are chosen for eviction. Figure 2

illustrates the architecture of D-ARC. The corresponding fin-

gerprints are stored in the fingerprint store, which is omitted

for clarity.

The first major difference from ARC is that the total size of

T1 and T2 is not fixed and will vary depending on the duplica-

tion in the workload. If the workload has no duplicate blocks,

then M will hold at most C source addresses, each mapped to

a unique block in D, just as with the original ARC. In the pres-

ence of duplicates, D-ARC allows the total size of T1 and T2

to grow up to C+X , in order to store X more source addresses

whose data duplicates the existing ones. A single block in D

may be mapped from multiple source addresses in T1 and T2.

X is a parameter that can be tuned by a system administrator

to bound the size of M to store up to 2C +X items (source

address/fingerprint pairs).

Second, when source addresses are evicted from T1 or T2

and moved into B1 or B2, as dictated by the ARC algorithm,

D-ARC saves their fingerprints and data to opportunistically

improve the performance of future references to these ad-

dresses. Moreover, D-ARC employs an additional LRU list

B3 to save source addresses (and their fingerprints) evicted

from B1 and B2, as long as the lists T1, T2, and B3 together

store less than C+X mappings. In essence, B3 makes use of

the space left available by T1 and T2. When a hit occurs in B3,

it is inserted into the MRU position of T1, but does not affect

the value of p. A future request to a source address retained

in B1 ∪B2 ∪B3 may result in a hit in D-ARC if its fingerprint

shows that the data is in D. In contrast, any item found in B1

or B2 always results in a miss in the original ARC.

Third, when eviction is necessary in the Data Cache, D-

ARC chooses an item with no mappings in T1 ∪ T2. If no

such data item is available, then items are evicted from T1∪T2

using the original ARC algorithm until such a data block is

found. Note that at most X +1 items are evicted from T1 ∪T2

in the process.

The D-ARC pseudocode is shown in Algorithms 2 and

arnold
Sticky Note
Marked set by arnold

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 307

Algorithm 2: D-ARC(C, X) pseudocode

INPUT: The request stream x1,x2, . . . ,xt , . . .
PROCESSREQUEST ()

if xi ∈ T1 ∪T2 then
Move xi to MRU position on T2

if xi ∈ B1 ∪B2 then
Increase p, if xi ∈ B1; else Decrease p.

if h�(xi) /∈ D then
INSERTINDATACACHE()

CHECKMETADATACACHE()

Move xi to MRU position in T2

if xi ∈ B3 then

if h�(xi) /∈ D then
INSERTINDATACACHE()

Move xi to MRU position in T1

if xi /∈ T1 ∪T2 ∪B1 ∪B2 ∪B3 then

if h�(xi) /∈ D then
INSERTINDATACACHE()

CHECKMETADATACACHE()

Move xi to MRU position in T1

3. In the main program (PROCESSREQUEST), we have four

cases, of which only the third (xi ∈ B3) is not present in ARC.

In each of the other cases, we have at most two independent

operations—one to insert into the Data Cache (if needed) and

second to insert into the Metadata Cache (if needed). In IN-

SERTINDATACACHE, an appropriate victim to evict from D

is one with no references in T1 ∪ T2. However, to find such

a victim, several items may have to be deleted from M, as

indicated by the while loop. In CHECKMETADATACACHE,

if T1 ∪ T2 ∪ B3 exceeds C + X , an item from B3 is always

evicted, possibly after moving something from T1 ∪B1 ∪B2

(as achieved in MANAGEMETADATACACHE). Finally, RE-

PLACEINMETADATACACHE is similar to the REPLACE oper-

ation in original ARC and creates space for the new metadata

item to be placed.

4.2.2 Analysis

To show that D-ARC complies with the no-wastage policy,

we show that no orphans are created in the metadata contents

of T1 ∪ T2. (The B lists store historical metadata by design

as they do in ARC, so we exclude them from the analysis.)

On one hand, if a duplicated item is requested, it does not

change the Data Cache, and therefore cannot create orphans

in T1 ∪ T2. On the other hand, every time a non-duplicated

item is requested, it results in an insert into the Data Cache,

causing some item to be evicted. As per the algorithms, the

only evictions that are allowed involve items that have no

source addresses in T1 ∪T2. If one exists, we are done and no

orphans are created in the Metadata Cache by this insertion.

If none exists, we “clear” items from T1 ∪T2 until we find an

item in the Data Cache with no source address in T1 ∪T2, and

Algorithm 3: D-ARC(C, X) subroutines

Subroutine INSERTINDATACACHE()
while no “victim” in D with no references in

T1 ∪T2 do
MANAGEMETADATACACHE()

replace LRU “victim” in D with h�(xi)

Subroutine CHECKMETADATACACHE()

if |T1|+ |T2|+ |B3|=C+X then

if |B3|= 0 then
MANAGEMETADATACACHE()

evict LRU item from B3

Subroutine MANAGEMETADATACACHE()

if |T1|+ |B1| ≥C then

if |T1|<C then
move LRU from B1 to B3

REPLACEINMETADATACACHE()

else

if |B1|> 0 then
move LRU from B1 to B3

move LRU from T1 to B1

else
move LRU from T1 to B3

else

if |B1|+ |B2| ≥C then
move LRU from B2 to B3

REPLACEINMETADATACACHE()

Subroutine REPLACEINMETADATACACHE()
if |T1|> 0∧ (|T1|> p∨ (xi ∈ B2 ∧|T1|= p))
then

move LRU from T1 to B1

else
move LRU from T2 to B2

then that item becomes the victim to be evicted. This vic-

tim cannot create an orphan in the Metadata Cache because

of the way it is identified. Thus, D-ARC complies with the

no-wastage policy.

Complexity. The ARC-based insert to the Metadata Cache

can be performed by D-ARC in constant time. However,

an insert into the Data Cache may trigger repeated deletions

from T1 ∪T2, which cannot be done in constant time. In fact,

if |T1|+ |T2|=C+δ , for some number δ ≤ X , then at most δ

evictions are needed for this operation. However, in order to

have reached C+δ elements there must have been δ requests

serviced in the past for which there were no evictions. So the

amortized cost of each D-ARC request is still O(1).

5 Evaluation

5.1 Methodology

Implementation: We created a practical prototype in Linux

kernel space, based on block device virtualization [10]. It

arnold
Sticky Note
Marked set by arnold

308 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

20% 40% 60% 80%

R
e

a
d

 M
is

s
 R

a
ti
o

 (
%

)

Cache size (Percentage of WSS)

LRU

D-LRU

ARC

D-ARC

(a) Read miss ratio

 0

 5

 10

 15

 20

20% 40% 60% 80%

W
ri
te

 M
is

s
 R

a
ti
o

 (
%

)

Cache size (Percentage of WSS)

LRU

D-LRU

ARC

D-ARC

(b) Write miss ratio

 0

 5

 10

 15

 20

 25

 30

 35

 40

20% 40% 60% 80%

T
o

ta
l
M

is
s
 R

a
ti
o

 (
%

)

Cache size (Percentage of WSS)

LRU

D-LRU

ARC

D-ARC

(c) Total miss ratio

Figure 3: Miss ratio from WebVM

Name Total I/Os Working Write-to Unique

I/Os (GB) Set (GB) -read ratio Data (GB)

WebVM 54.5 2.1 3.6 23.4

Homes 67.3 5.9 31.5 44.4

Mail 1741 57.1 8.1 171.3

Hadoop 23.6 14.4 0.4 3.7

Table 2: Trace statistics

can be deployed as a drop-in solution on existing systems

that run Linux (including hypervisors that use the Linux I/O

stack [6, 3]). It appears as a virtual block device to the appli-

cations/VMs if deployed on the client side, or to the storage

services (e.g., iSCSI, NFS) if deployed on the server side.

Storage setup: We evaluated the real I/O performance of

CacheDedup as the client-side flash cache for an iSCSI-based

storage system, a widely used network storage protocol. The

client and server each runs on a node with two six-core

2.4GHz Xeon CPUs and 24GB of RAM. The client uses a

120GB MLC SATA SSD as the cache, and the server uses a

1TB 7.2K RPM SAS disk as the target. Both nodes run Linux

with kernel 3.2.20.

Traces: For our evaluation, we replayed the FIU traces [18].

These traces were collected from a VM hosting the depart-

mental websites for webmail and online course management

(WebVM), a file server used by a research group (Homes),

and a departmental mail server (Mail). To study the support

for concurrent workloads, we also collected traces (Hadoop)

from a set of Hadoop VMs used to run MapReduce course

projects. The characteristics of these traces are summarized

in Table 2 where every I/O is of 4KB size. The working set

size of a trace is calculated by counting the number of unique

addresses of the I/Os in the trace and then multiplying it by

the I/O size.

Metrics: We use the following metrics to compare the differ-

ent cache-management approaches.

1) Miss ratio: We report both read miss ratio and write miss

ratio, which are the numbers of reads and writes, respectively,

over the total number of I/Os received by the cache. When the

write-through policy is used, the read miss ratio is more im-

portant because writes always have to be performed on both

cache and primary storage [11]. When the write-back policy

is used, writes that hit the cache are absorbed by the cache,

but the misses cause writes to the primary storage (when they

are evicted). Therefore, the write miss ratio has a significant

impact on the primary storage’s I/O load and the performance

of read misses [17, 5]. Therefore, we focus on the results

from the write-back policy where the read miss ratio is also

meaningful for the write-through policy. We omit the results

from the write-invalidate policy which performs poorly for

the write-intensive traces, although the deduplication-aware

approaches still make substantial improvements as for the

other two write policies.

2) I/O latency/throughput: To understand how the improve-

ment in cache hits translates to application-perceived perfor-

mance, we measure the latency of I/Os from replaying the

traces on the storage system described above. To evaluate the

overhead of CacheDeup, we measure both the I/O latency and

throughput using an I/O benchmark, fio [1].

3) Writes to flash ratio: Without assuming knowledge of a

flash device’s internal garbage collection algorithm, we use

the percentage of writes sent to the flash device, w.r.t. the

total number of I/Os received by the cache manager, as an

indirect metric of wear-out.

Cache configurations: We compare several different cache

management approaches: 1) LRU (without deduplication); 2)

ARC (without deduplication); 3) D-LRU; 4) D-ARC. To com-

pare to the related work Nitro [19], we also created CD-ARC,

a new ARC-based cache management approach that is aware

of both duplication and compressibility.

For all the approaches that we considered, we show the

results from the fault-tolerance configuration that keeps the

entire metadata persistent (as discussed in Section 3.3). The

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 309

 8

 10

 12

 14

 16

 18

 20

20% 40% 60% 80%

T
o
ta

l
M

is
s
 R

a
ti
o
 (

%
)

Cache size (Percentage of WSS)

LRU

D-LRU

ARC

D-ARC

(a) Homes

 3

 4

 5

 6

 7

 8

 9

 10

10% 20% 40% 60% 80%

T
o
ta

l
M

is
s
 R

a
ti
o
 (

%
)

Cache size (Percentage of WSS)

LRU

D-LRU

ARC

D-ARC

(b) Mail

Figure 4: Miss ratio from Homes and Mail

 0

 20

 40

 60

 80

 100

 120

 140

WebVM Homes Mail

T
im

e
 (

u
s
)

LRU
D-LRU

ARC
D-ARC

Figure 5: I/O latency from WebVM, Homes,

and Mail with a cache size that is 40% of their

respective WSS

same size of flash storage is used to store both data and meta-

data, so the comparison is fair. As discussed in Section 3.1,

the Data Cache size can be traded for storing more histori-

cal fingerprints in the Metadata Cache as an optimization in

the duplication-aware approaches. This tradeoff is studied in

Section 5.4. In the other experiments, the Metadata Cache

size is fixed at its minimum size (which is under 1% and 3%

of the Data Cache size for D-LRU and D-ARC, respectively)

plus an additional 2% taken from the Data Cache.

5.2 Performance

We evaluate the cache performance for each trace with dif-

ferent total cache sizes that are chosen at 20%, 40%, 60%,

and 80% of its total working set size (WSS), which is listed

in Table 2. Figure 3 compares the miss ratios of the WebVM

trace. Results reveal that the duplication-aware approaches,

D-LRU and D-ARC, outperform the alternatives by a signif-

icant margin for most cache sizes in terms of both read miss

ratio and write miss ratio. Comparing the total miss ratio, D-

LRU reduces it by up to 20% and D-ARC by up to 19.6%.

Comparing LRU and ARC, ARC excels at small cache sizes,

which is leveraged by D-ARC to also outperform D-LRU.

For example, when the cache size is 20% of the trace’s WSS,

D-ARC has about 5% lower total miss ratio than D-LRU.

As discussed in Section 3, keeping historical source ad-

dresses and fingerprints in the Metadata Cache can help im-

prove the hit ratio, because when the data block that a histor-

ical fingerprint maps to is brought back to the Data Cache, all

the source addresses that map to this fingerprint can generate

hits when they are referenced again. To quantify this benefit,

we also measured the percentage of read hits that are gener-

ated by the historical metadata. For WebVM with a cache size

that is 20% of its WSS, 83.25% of the read hits are produced

by the historical metadata, which confirms the effectiveness

of this optimization made by CacheDedup.

For the Homes and Mail traces, we show only the total miss

ratio results to save space (Figure 4). Because the Mail trace

is much more intensive than the other traces, we also show

the results from the cache size that is 10% of its total WSS.

Overall, D-ARC has the lowest total miss ratio, followed by

D-LRU. D-ARC reduces the miss ratio by up to 5.4% and 3%

compared to LRU and ARC, respectively in Homes and up to

2% and 1% in Mail. Compared to D-LRU, it reduces misses

by up to 2.71% and 0.94% in Homes and Mail, respectively.

Figure 5 shows the average I/O latency from replaying the

three traces with a cache size of 40% of their respective WSS.

D-LRU and D-ARC deliver similar performance and reduce

the latency by 47% and 42% compared to LRU and ARC,

respectively for WebVM, 8% and 6% for Homes, and 48%

and 51% for Mail. The improvement for Homes is smaller

because of its much higher write-to-read ratio; the difference

between a write hit and write miss is small when the storage

server is not saturated. Note that the latency here does not

include the fingerprinting time, which is < 20µs per finger-

print, since the fingerprints are taken directly from the traces.

But we cannot simply add this latency to the results here be-

cause many cache hits do not require fingerprinting. Instead,

we evaluate this overhead in Section 5.7 using a benchmark.

5.3 Endurance

The results in Figure 6 confirm that the two duplication-aware

approaches can substantially improve flash cache endurance

by reducing writes sent to the flash device by up to 54%, 33%,

and 89% for the WebVM, Homes, and Mail traces, respec-

tively, compared to the traditional approaches. The difference

between D-LRU and D-ARC is small. This interesting obser-

vation suggests that the scan-resistant nature of ARC does not

help as much on endurance as it does on hit ratio. It is also

noticeable that the flash write ratio decreases with increasing

cache size, but the difference is small for Homes and Mail

and for WebVM after the cache size exceeds 40% of its WSS.

This can be attributed to two opposite trends: 1) an increasing

hit ratio reduces cache replacements and the corresponding

flash writes; 2) but when write hits bring new data into the

cache they still cause flash writes, which is quite common for

these traces.

5.4 Sensitivity Study

We used the Mail trace to evaluate the impact of partitioning

the shared flash cache space between the Data Cache and the

310 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

 40

 50

 60

 70

 80

 90

 100

20% 40% 60% 80%

W
ri
te

 t
o

 F
la

s
h

 R
a

ti
o

 (
%

)

Cache size (Percentage of WSS)

LRU

D-LRU

ARC

D-ARC

(a) WebVM

 60

 65

 70

 75

 80

 85

 90

 95

 100

20% 40% 60% 80%

W
ri
te

 t
o

 F
la

s
h

 R
a

ti
o

 (
%

)

Cache size (Percentage of WSS)

LRU

D-LRU

ARC

D-ARC

(b) Homes

 0

 20

 40

 60

 80

 100

10% 20% 40% 60% 80%

W
ri
te

 t
o

 F
la

s
h

 R
a

ti
o

 (
%

)

Cache size (Percentage of WSS)

LRU

D-LRU

ARC

D-ARC

(c) Mail

Figure 6: Writes to flash ratio

 5.8

 6

 6.2

 6.4

 6.6

 6.8

 7

 7.2

 150 300 450 600 750 900 1050 1200

T
o

ta
l
M

is
s
 R

a
ti
o

 (
%

)

Metadata Cache Size (MB)

D-LRU

D-ARC

(a) Total miss ratio

 14.4

 14.5

 14.6

 14.7

 14.8

 14.9

 15

 15.1

 15.2

 150 300 450 600 750 900 1050 1200

W
ri
te

 t
o

 F
la

s
h

 R
a

ti
o

 (
%

)

Metadata Cache Size (MB)

D-LRU

D-ARC

(b) Writes to flash ratio

Figure 7: D-LRU and D-ARC with varying Metadata/Data

Cache space sharing for Mail

 0

 20

 40

 60

 80

100

Total Miss Ratio(%)

LRU
D-LRU

ARC
D-ARC

(a)

 0

 50

100

150

200

250

300

350 Latency (us)

(b)

 0

 20

 40

 60

 80

100 Write to Flash
 Ratio (%)

(c)

Figure 8: Results from concurrent Hadoop

traces

Metadata Cache for the duplication-aware approaches. As

discussed in Section 3.1, for a given Data Cache size, the

minimum Metadata Cache size is what is required to store

all the metadata of the cache data. But the Metadata Cache

can take a small amount of extra space from the Data Cache

for storing historical metadata and potentially improving per-

formance. In this sensitivity study, we consider a cache size

of 11GB which is 20% of Mail’s WSS, and evaluate D-LRU

and D-ARC while increasing the Metadata Cache size (and

decreasing the Data Cache size accordingly). The results in

Figure 7 show that both total miss ratio and wear-out initially

improve with a growing Metadata Cache size. The starting

points in the figure are the minimum Metadata Cache sizes

for D-LRU and D-ARC (129MB for D-LRU and 341MB for

D-ARC). Just by giving up 2% of the Data Cache space to

hold more metadata (240MB of total Metadata Cache size for

D-LRU and 450MB for D-ARC), the total miss ratio falls by

0.73% and 0.55% in D-LRU and D-ARC respectively, and

the writes-to-flash ratio falls by 0.33% and 0.51%. The per-

formance however starts to decay after having given up more

than 3% of the Data Cache space, where the detrimental ef-

fect caused by having less data blocks starts to outweigh the

benefit of being able to keep more historical metadata.

5.5 Concurrent Workloads

Next we evaluate CacheDedup’s ability in handling concur-

rent workloads that share the flash cache and performing

deduplication across them. We collected a set of VM I/O

traces from a course where students conducted MapReduce

programming projects using Hadoop. Each student group was

given three datanode VMs and we picked three groups with

substantial I/Os to replay. All the VMs were cloned from the

same templates so we expect a good amount of duplicate I/Os

to the Linux and Hadoop data. But the students worked on

their projects independently so the I/Os are not identical. The

statistics of these VM traces are listed as Hadoop in Table 2.

We replayed the last three days before the project submis-

sion deadline of these nine datanode VM traces concurrently,

during which the I/Os are most intensive. The flash cache

that they shared has a capacity of 40% of their total working

set size. Figure 8 compares the performance of D-LRU and

D-ARC to LRU and ARC. Overall, DLRU and DARC lower

the miss ratio by 11% and the I/O latency by 12% while re-

ducing the writes sent to the cache device by 81%. Notice

that the reduction in flash write ratio is much higher than the

reduction in miss ratio because, owing to the use of dedupli-

cation, a cache miss does not cause a write to the cache if the

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 311

 50
 60
 70
 80
 90

 100
 110
 120

5% WSS 10% WSS

R
e
a
d
 M

is
s
 R

a
ti
o
 (

%
)

CD-ARC(2)
Nitro(2)

CD-ARC(4)
Nitro(4)

Figure 9: CD-ARC and Nitro for WebVM with a com-

pression ratio of 2 and 4

requested data is a duplicate to the existing cached data.

5.6 Compression- and Duplication-aware Cache Man-

agement

Compression can be employed in addition to deduplication to

further reduce the volume of data written to cache and im-

prove cache performance and endurance. The recent work

Nitro [19] was the first to combine these two techniques. It

performs first deduplication and then compression on the data

blocks. The compressed, variable-length data chunks (named

extents) are packed into fixed-size blocks, named Write-Evict

Units (WEU), and stored in cache. Cache replacement uses

LRU at the granularity of WEUs. The size of a WEU is

made the same as the flash device’s erase block size to reduce

garbage collection (GC) overhead. The fingerprints are man-

aged using LRU separately from data replacement. If the pri-

mary storage also employs deduplication, Nitro can prefetch

the fingerprints for identifying duplicates in future accesses.

CacheDedup is complementary to Nitro. On one hand, it

can use the concept of WEU to manage compressed data in

cache and reduce the flash device’s internal GC overhead. On

the other hand, CacheDedup can improve Nitro with its inte-

grated cache management to reduce cache wastage and im-

prove its performance and endurance. To prove this point, we

created a version of D-ARC that is also compression-aware,

named CD-ARC. It is still based on the integrated Metadata

and Data Cache management architecture of CacheDedup.

The main differences from D-ARC are that 1) the Data Cache

stores WEUs; 2) the fingerprints in the Metadata Cache point

to the extents in the WEUs; and 3) replacement in the Data

Cache preferably uses a WEU with no mappings in T1 ∪T2.

We compare CD-ARC to a Nitro implementation without

fingerprint prefetching because prefetching is an orthogonal

technique that can be used by both approaches. But we extend

Nitro to also cache historical fingerprints, so the comparison

is fair. We also set the same limits on the two algorithms’

data cache capacity and metadata space usage. We present

the results from a 2MB WEU size with a compression ra-

tio of 2 and 4, and report the read miss ratios in Figure 9

for the WebVM trace. CD-ARC improves the read hit ratio

by up to 12.56% compared to Nitro. This improvement can

be largely attributed to CD-ARC’s scan-resistant and adap-

 0

 50

 100

Read
(Cold)

Read
(Warm)

Write
(Cold)

Write
(Warm)

T
im

e
 (

u
s
)

 1900

 1950

 2000
LRU

D-LRU
ARC

D-ARC

Figure 10: FIO latency with random reads and writes

tive properties inherited from ARC, which is possible only

because of the integrated cache and deduplication design of

our approach.

Although compression can further reduce a workload’s

cache footprint and wear-out, it also adds additional over-

head. Moreover, for a write-intensive workload which has

a large number of updates, the use of compression also intro-

duces wastage, because the updated data cannot be written in

place in the cache. For example, for WebVM with a cache

size that is 20% of its WSS and a compression ratio of 2,

CD-ARC achieves only 8% higher read hit ratio, because in

average 46% of the cache capacity is occupied by invalid data

caused by updates.

5.7 Overhead

Finally, we used an I/O benchmark fio [1] to measure Cache-

Dedup’s overhead compared to a stand-alone caching layer

that does not use deduplication. The benchmark issued ran-

dom reads or writes with no data duplication, so the results

reveal the worst-case performance of CacheDedup. Direct

I/O is used to bypass the main memory cache. First, we used

a single fio thread with 1GB of random I/Os. Figure 10 shows

that D-LRU and D-ARC adds a 10−20µs latency to LRU and

ARC for writes and for reads when the cache is cold, which

is mainly the overhead of creating the fingerprint.

Although this fingerprinting overhead is considerable, in

typical workloads, concurrent I/Os’ fingerprinting operations

can be overlapped by their I/Os and become insignificant in

the overall performance. To demonstrate this, in the next ex-

periment, we used eight concurrent fio threads each issuing

512MB of I/Os to evaluate the throughput overhead. Fig-

ure 11 shows that CacheDedup does not have significant over-

head in terms of throughput. Moreover, CacheDedup’s hit

ratio gain and the corresponding performance improvement

(as shown in the previous experiments) will significantly out-

weigh the fingerprinting overhead.

6 Related Work

A variety of research and commercial solutions have shown

the effectiveness of flash caching for improving the perfor-

mance of storage systems [7, 2, 5]. Compared to traditional

main-memory-based caching, flash caching differs in its rel-

312 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

 0

 5

Read
(Cold)

Read
(Warm)

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

 85

 90

 95 LRU

D-LRU

D-ARC

(a) Read throughput

 0

 50

 100

 150

 200

Write
(Cold)

Write
(Warm)

T
h
ro

u
g
h
p
u
t
(M

B
/s

) LRU
D-LRU
D-ARC

(b) Write throughput

Figure 11: FIO throughput with 8 concurrent threads

atively larger capacity and ability to store data persistently.

Therefore, related work revisited several key design deci-

sions for flash caching [11, 5]. In particular, it has been

observed that write-through caching can provide good per-

formance when the writes are submitted asynchronously to

the backend storage, whereas write-back caching can reduce

the I/O load on the backend and further improve the perfor-

mance. The solution proposed here, CacheDedup, supports

both write policies. Related work on the allocation of shared

cache capacity among concurrent workloads [23, 20] is also

complementary to CacheDedup’s support for reducing each

workload’s footprint through in-line deduplication.

Deduplication has been commonly used to reduce the data

footprint in order to save the bandwidth needed for data trans-

fer and the capacity needed for data storage. Related solu-

tions have been proposed to apply deduplication at different

levels of a storage hierarchy, including backup and archival

storage [27, 22], primary storage [12, 15], and main mem-

ory [33]. The wear-out issue of flash devices has motivated

several flash deduplication studies [8, 9, 16] which show that

it is a viable solution to improving endurance. Compared to

these related efforts, CacheDedup addresses the unique chal-

lenges presented by caching. First, caching needs to process

both reads and writes, while for primary storage only writes

create new data and need to be considered. Second, the man-

agement of deduplication cannot be dissociated from cache

management issues if localities have to be captured.

As discussed in Section 2, although a solution that sim-

ply stacks a standalone deduplication layer upon a standa-

lone caching layer could also work, it would have a much

higher metadata space overhead because both layers have

to maintain the source block addresses, and the deduplica-

tion layer also has to manage the fingerprints for the entire

source device. Moreover, such simple stacking cannot sup-

port a more sophisticated cache replacement algorithm such

as ARC, which is made possible in D-ARC because of its

integrated cache and deduplication management.

Nitro [19] is a closely related work which combines dedu-

plication and compression to manage a flash cache employed

at the server-side of a network file system. As discussed in

Section 5.6, CacheDedup is complementary to Nitro in that

our proposed architecture and algorithms can be incorporated

to create a compression- and duplication-aware caching solu-

tion with further improved cache hit ratio and endurance.

As small random writes can decrease the throughput and

device lifespan of a flash cache, related work RIPQ [32] pro-

posed several techniques to address this problem, including

aggregating the small random writes, which is similar to the

WEU technique of Nitro, and our CD-ARC. It is also con-

ceivable to apply WEU to D-LRU and D-ARC to aggregate

small writes in order to sustain cache throughput and further

improve flash endurance.

Related work studied cache admission policies to reduce

flash wear-out [34, 14]. By not caching data with weak tem-

poral locality, they showed improvements in endurance. Suei

et al. [31] created a device-level cache partition design to dis-

tribute frequently-updated data into different erase blocks and

lower the chances of blocks to be worn-out soon. These solu-

tions are complementary to CacheDedup’s focus on optimiz-

ing the use of deduplication for improving endurance.

7 Conclusions

This paper presents CacheDedup, a first study on integrat-

ing deduplication with flash caching using duplication-aware

cache management. The novelties lie in a new architectural

design that seamlessly integrates the caching of metadata and

data, and new cache replacement algorithms D-LRU and D-

ARC that allow the optimization for both performance and

endurance. The paper offers an in-depth study of these algo-

rithms with both theoretical analysis and experimental eval-

uation, which proves their no-cache-wastage property and

shows the improvement on cache hit ratio, I/O latency, and

the amount of writes sent to the cache device.

Between the two algorithms, D-ARC achieves the best per-

formance, and D-LRU is attractive because of its simplicity.

Both are efficient in terms of time and space usage. Cache-

Dedup is a versatile framework for enabling various algo-

rithms, including one (CD-ARC) that improves the use of

compression with deduplication. As its design is not specific

to flash devices, we believe that the CacheDedup approach

can be also applied to new non-volatile memory technologies

and improve their performance and endurance when used for

caching.

8 Acknowledgements

We thank the anonymous reviewers and our shepherd, Geoff

Kuenning, for their thorough reviews and insightful sugges-

tions, and our colleagues at the VISA Research Lab, Dul-

cardo Arteaga, for his help with the caching framework, and

Saman Biook Aghazadeh for his support of this paper in-

cluding collecting the Hadoop traces. This research is spon-

sored by National Science Foundation CAREER award CNS-

125394 and Department of Defense award W911NF-13-1-

0157.

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 313

References

[1] Fio — Flexible I/O Tester Synthetic Benchmark.

http://git.kernel.dk/?p=fio.git.

[2] Fusion-io ioCache. http://www.fusionio.com/

products/iocache/.

[3] Kernel Based Virtual Machine. http://www.

linux-kvm.org/page/Main_Page.

[4] Federal Information Processing Standards (FIPS) publi-

cation 180-1: Secure Hash Standard. National Institute

of Standards and Technology (NIST), April 17, 1995.

[5] D. Arteaga and M. Zhao. Client-side flash caching for

cloud systems. In Proceedings of International Con-

ference on Systems and Storage (SYSTOR), pages 7:1–

7:11, New York, NY, USA, 2014. ACM.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,

A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen

and the art of virtualization. In Proceedings of the Nine-

teenth ACM Symposium on Operating Systems Princi-

ples (SOSP), pages 164–177, New York, 2003.

[7] S. Byan, J. Lentini, A. Madan, L. Pabon, M. Condict,

J. Kimmel, S. Kleiman, C. Small, and M. Storer. Mer-

cury: Host-side flash caching for the data center. In

Proceedings of the 28th IEEE Conference on Massive

Data Storage (MSST), Pacific Grove, CA, USA, 2012.

IEEE.

[8] F. Chen, T. Luo, and X. Zhang. CAFTL: A content-

aware flash translation layer enhancing the lifespan of

flash memory based solid state drives. In Proceedings of

the 9th USENIX Conference on File and Storage Tech-

nologies (FAST), volume 11, 2011.

[9] A. Gupta, R. Pisolkar, B. Urgaonkar, and A. Sivasub-

ramaniam. Leveraging value locality in optimizing

NAND flash-based SSDs. In Proceedings of the 9th

USENIX Conference on File and Storage Technologies

(FAST), pages 91–103, 2011.

[10] E. V. Hensbergen and M. Zhao. Dynamic policy

disk caching for storage networking. Technical Report

RC24123, IBM, November 2006.

[11] D. A. Holland, E. L. Angelino, G. Wald, and M. I.

Seltzer. Flash caching on the storage client. In Proceed-

ings of the 2013 USENIX conference on Annual Techni-

cal Conference (ATC). USENIX Association, 2013.

[12] B. Hong, D. Plantenberg, D. D. Long, and M. Sivan-

Zimet. Duplicate data elimination in a SAN file system.

In Proceedings of Mass Storage Systems and Technolo-

gies (MSST), pages 301–314, 2004.

[13] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,

M. Satyanarayanan, R. N. Sidebotham, and M. J. West.

Scale and performance in a distributed file system. ACM

Transactions on Computer Systems (TOCS), 6(1):51–

81, 1988.

[14] S. Huang, Q. Wei, J. Chen, C. Chen, and D. Feng. Im-

proving flash-based disk cache with lazy adaptive re-

placement. In Proceeding of 29th Symposium on Mass

Storage Systems and Technologies (MSST), pages 1–10.

IEEE, 2013.

[15] K. Jin and E. L. Miller. The effectiveness of deduplica-

tion on virtual machine disk images. In Proceedings of

International Conference on Systems and Storage (SYS-

TOR), page 7. ACM, 2009.

[16] J. Kim, C. Lee, S. Lee, I. Son, J. Choi, S. Yoon, H.-u.

Lee, S. Kang, Y. Won, and J. Cha. Deduplication in

SSDs: Model and quantitative analysis. In Proceedings

of IEEE 28th Symposium on Mass Storage Systems and

Technologies (MSST), pages 1–12. IEEE, 2012.

[17] R. Koller, L. Marmol, R. Ranganswami, S. Sundarara-

man, N. Talagala, and M. Zhao. Write policies for host-

side flash caches. In Proceedings of the 11th USENIX

conference on File and Storage Technologies, 2013.

[18] R. Koller and R. Rangaswami. I/O deduplication: Uti-

lizing content similarity to improve I/O performance.

ACM Transactions on Storage (TOS), 6(3):13, 2010.

[19] C. Li, P. Shilane, F. Douglis, H. Shim, S. Smaldone, and

G. Wallace. Nitro: A capacity-optimized SSD cache for

primary storage. In Proceedings of the USENIX Annual

Technical Conference (ATC), pages 501–512. USENIX

Association, 2014.

[20] T. Luo, S. Ma, R. Lee, X. Zhang, D. Liu, and L. Zhou.

S-CAVE: Effective SSD caching to improve virtual ma-

chine storage performance. In Proceedings of the 22nd

International Conference on Parallel Architectures and

Compilation Techniques (PACT), pages 103–112. IEEE

Press, 2013.

[21] N. Megiddo and D. S. Modha. ARC: A self-tuning,

low overhead replacement cache. In Proceedings of the

2nd USENIX Conference on File and Storage Technolo-

gies (FAST), pages 115–130, Berkeley, CA, USA, 2003.

USENIX Association.

[22] D. Meister and A. Brinkmann. Multi-level comparison

of data deduplication in a backup scenario. In Proceed-

ings of The Israeli Experimental Systems Conference

(SYSTOR), page 8. ACM, 2009.

[23] F. Meng, L. Zhou, X. Ma, S. Uttamchandani, and

D. Liu. vCacheShare: Automated server flash cache

space management in a virtualization environment. In

Proceedings of the USENIX Annual Technical Confer-

ence (ATC), 2014.

[24] M. N. Nelson, B. B. Welch, and J. K. Ousterhout.

Caching in the Sprite network file system. ACM Trans-

actions on Computer Systems (TOCS), 6(1):134–154,

1988.

[25] J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, and

Y. Wang. SDF: Software-defined flash for web-scale

internet storage systems. In Proceedings of the 19th

International Conference on Architectural Support for

Programming Languages and Operating Systems (ASP-

LOS), pages 471–484. ACM, 2014.

[26] D. Qin, A. D. Brown, and A. Goel. Reliable write-

314 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

back for client-side flash caches. In Proceedings of

the USENIX Annual Technical Conference (ATC), pages

451–462. USENIX Association, 2014.

[27] S. Quinlan and S. Dorward. Venti: A new approach

to archival storage. In Proceedings of USENIX Con-

ference on File and Storage Technologies (FAST), vol-

ume 2, pages 89–101, 2002.

[28] R. Rivest. The MD5 message-digest algorithm. 1992.

[29] M. Saxena, M. M. Swift, and Y. Zhang. FlashTier:

a lightweight, consistent and durable storage cache.

In Proceedings of the 7th ACM European Conference

on Computer Systems (EuroSys), pages 267–280, New

York, NY, USA, 2012. ACM.

[30] D. D. Sleator and R. E. Tarjan. Amortized efficiency

of list update and paging rules. Communication. ACM,

28(2):202–208, Feb. 1985.

[31] P.-L. Suei, M.-Y. Yeh, and T.-W. Kuo. Endurance-

aware flash-cache management for storage servers.

IEEE Transactions on Computers (TOC), 63:2416–

2430, 2013.

[32] L. Tang, Q. Huang, W. Lloyd, S. Kumar, and K. Li.

RIPQ: Advanced photo caching on flash for Facebook.

In Proceedings of the 13th USENIX Conference on File

and Storage Technologies (FAST), 2015.

[33] C. A. Waldspurger. Memory resource management in

VMware ESX server. ACM SIGOPS Operating Systems

Review, 36(SI):181–194, 2002.

[34] J. Yang, N. Plasson, G. Gillis, and N. Talagala. HEC:

Improving endurance of high performance flash-based

cache devices. In Proceedings of the 6th International

Systems and Storage Conference (SYSTOR), page 10.

ACM, 2013.

