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ABSTRACT
Online social networks (OSNs) such as Facebook and
Google+ have transformed the way our society communi-
cates. However, this success has come at the cost of user
privacy; in today’s OSNs, users are not in control of their
own data, and depend on OSN operators to enforce access
control policies. A multitude of privacy breaches has spurred
research into privacy-preserving alternatives for social net-
working, exploring a number of techniques for storing, dis-
seminating, and controlling access to data in a decentral-
ized fashion. In this paper, we argue that a combination
of techniques is necessary to efficiently support the complex
functionality requirements of OSNs.

We propose Cachet, an architecture that provides strong
security and privacy guarantees while preserving the main
functionality of online social networks. In particular, Cachet
protects the confidentiality, integrity and availability of user
content, as well as the privacy of user relationships. Cachet
uses a distributed pool of nodes to store user data and en-
sure availability. Storage nodes in Cachet are untrusted; we
leverage cryptographic techniques such as attribute-based
encryption to protect the confidentiality of data. For ef-
ficient dissemination and retrieval of data, Cachet uses a
hybrid structured-unstructured overlay paradigm in which
a conventional distributed hash table is augmented with so-
cial links between users. Social contacts in our system act
as caches to store recent updates in the social network, and
help reduce the cryptographic as well as the communication
overhead in the network.

We built a prototype implementation of Cachet in the
FreePastry simulator. To demonstrate the functionality of
existing OSNs we implemented the ‘newsfeed’ application.
Our evaluation demonstrates that (a) decentralized architec-
tures for privacy preserving social networking are feasible,
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and (b) use of social contacts for object caching results in
significant performance improvements.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems—Distributed Applications; K.6.m
[Management of Computing and Information
Systems]: Miscellaneous—Security

General Terms
Algorithms, Security

Keywords
privacy, peer-to-peer systems, social networking, caching

1. INTRODUCTION
In the last decade, online social networks (OSNs) such

as Facebook, Google+, and Twitter have revolutionized the
way our society communicates and have become the de facto
mechanism for information sharing between users. Their
user bases exceed hundreds of millions of users and their
adoption is still growing at a rapid pace.1

However, the success of OSNs has come at the cost of user
privacy. Users are not in control of their data and depend
on the OSN operator to protect their sensitive information.
Users’ expectations of privacy are often at odds with the op-
erator’s business incentives, and, in fact, several providers
have been caught selling user data [53]. Moreover, the pri-
vacy policies of OSNs are often hard to understand, and
constant changes therein further magnify this problem [48].
Additionally, existing centralized architectures present a sin-
gle point of failure in the system. Any vulnerability in these
systems (or even accidental leaks) can be exploited by a ma-
licious adversary to obtain unencrypted sensitive user data.

This lack of user privacy in deployed OSNs has spurred re-
search into the design of mechanisms for privacy-preserving
social networking. Some work has focused on using cryptog-
raphy to protect the contents stored by a centralized OSN
provider [7, 17, 30]; our view, however, is that this does not
sufficiently protect users’ privacy as it allows the provider
to learn user relationships and patterns of interactions by

1http://newsroom.fb.com/
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means of traffic analysis. Decentralized architectures can
address this issue, yet present a new series of challenges, as
in addition to confidentiality and integrity protection that
cryptography can provide, it is necessary to ensure the avail-
ability of and efficient access to data that is necessary to
support common OSN functionality, such as a ‘newsfeed’.

Previous work on decentralized OSNs [3, 7, 13, 18, 22, 40]
has explored several design decisions: how nodes are orga-
nized (in a structured distributed hash table (DHT) or with
links between social contacts), where content is stored (by
the owner, social contacts, or in a DHT), how it is dissem-
inated (push or pull), and how access control is enforced
(cryptographically or with online authentication). We ar-
gue that to efficiently support the complex functionality of
an OSN, a combination of methods must be used. For ex-
ample, replicating data at random DHT nodes ensures its
availability even when users are offline; however, assembling
a newsfeed requires thousands of DHT lookups and, as we
saw in our preliminary work [32], can take hundreds of sec-
onds to generate. Likewise, encrypting stored content can
provide strong confidentiality guarantees, yet we found that
we need online authentication of updates and annotations
to ensure the availability of data. Furthermore, attribute-
based encryption schemes that provide highly flexible poli-
cies are computationally expensive and contribute signifi-
cantly to the above performance overhead.

In our preliminary design [32], we showed how the confi-
dentiality and integrity of data can be protected by a crypto-
graphic mechanism so that they can be stored in untrusted
nodes of a DHT. However, the design suffers from perfor-
mance issues that arise due to the fetching and decryption
of hundreds of small objects belonging to friends, which is
required for viewing their walls or for viewing one’s own
newsfeed. We therefore propose Cachet, a decentralized ar-
chitecture for social networks that provides strong security
and privacy guarantees while efficiently supporting the cen-
tral functionality of OSNs. Central to Cachet is a hybrid
structured-unstructured overlay in which a conventional dis-
tributed hash table is augmented with social links between
users. We use the distributed hash table as a base storage
layer, but add a gossip-based social caching algorithm that
dramatically increases performance. New updates are im-
mediately propagated to online social contacts. When an
offline user comes back online a presence protocol is used to
locate online contacts and query them directly for updates.
Additionally, these contacts are used to retrieve cached up-
dates from mutual contacts who are offline as well as speed
the discovery of other online contacts. The DHT is then
used to retrieve updates that may not be cached, ensuring
high availability of data. As mentioned earlier, while several
works have been proposed for privacy-enhanced OSNs, Ca-
chet is the first that offers a comprehensive design for OSNs
that combines decentralization, attribute-based encryption,
and the use of caches to provide high availability, low laten-
cies, and flexible policies for protecting data.

Data in Cachet are stored in container objects that in-
clude content, such as status updates and photos, as well as
references to other containers; authorized contacts can add
comments or other annotations to containers. A container
is protected by a cryptographic structure that ensures confi-
dentiality and integrity while supporting multi-principal in-
teractions without revealing policies or user relationships to
the storage nodes. The structure includes two components:

cryptographic capabilities used by the storage nodes to au-
thenticate update requests and attribute-based encryption
used to provide flexible and fine-grained access policies. To
reduce computational overhead cached containers are stored
in decrypted form and are shared with other contacts upon
verifying that they satisfy the corresponding access policy;
as such, containers must be decrypted only when fetched
directly from the DHT. Storage nodes are trusted only to
provide availability of the data with replication used to de-
fend against node failures or intentional misbehavior.

We develop a prototype implementation of Cachet in the
FreePastry simulator [51]. To demonstrate the functional-
ity of existing OSNs, we also build and evaluate the news-
feed application. Our results show the importance of us-
ing social caching, which reduces the latency of displaying a
newsfeed from hundreds of seconds in the base architecture
to less than 10. Our architecture thus demonstrates how a
careful combination of several distributed systems and cryp-
tographic techniques can be used to provide a compelling
privacy-preserving alternative to centralized OSNs.

2. REQUIREMENTS AND PROPERTIES
Functional Model. At a high level OSN functionality con-

sists primarily of users sharing some form of content with
their contacts, who then view, comment on, and annotate
it. To support this generic functionality, we define a con-
tainer object that consists of a main content object and a
list of annotations. The main content can take many types,
such as a status, a web URL, a photo, or a collection of
container objects (e.g., a photo album, or a ‘wall’). Annota-
tions take the form of references to other container objects.
A key application common in OSNs is a ‘newsfeed’, which
aggregates and displays recent updates from a user’s social
contacts; implementing such a newsfeed efficiently is a key
challenge in a decentralized OSN.

The container also becomes the unit of access control, with
a potentially different set of permissions associated with a
container, internally referenced objects, and each individual
annotation. Access policies can be defined over social con-
tacts and their attributes, as well as social network distance
(e.g., ‘friend-of-friend’). Usable access controls in OSNs re-
main an area of active research [19,26,38], so a highly flexi-
ble and fine-grained permissions architecture is necessary to
support future developments in this field.

Security Requirements. The primary security require-
ments are confidentiality and integrity of user data, stored
in distributed and untrusted storage nodes, and availability
of the correct and latest version of the data. Users should be
able to have complete control over the permissions to con-
tent they create and no user should be able to access content
unless explicitly authorized by the owner. Finally, user rela-
tionships should remain hidden from third parties, such as
the storage nodes.

Threat Model. We assume that the participants in the
decentralized OSN may be malicious (or compromised),
Byzantine, and capable of launching both active and passive
attacks. Distributed systems are vulnerable to the prob-
lem of Sybil attacks [24]. However, existing mechanisms are
available to defend against them [15, 37]. We consider that
up to 25% of the nodes in the system can be malicious,
since, beyond that, existing mechanisms [15] are not able to
securely route in distributed hash tables, which is a neces-
sary prerequisite to provide both integrity and availability
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guarantees. We also assume the existence of mechanisms to
defend against denial-of-service (DoS) attacks [25,49].

3. BASE ARCHITECTURE
Our efficient newsfeed algorithm builds on our prelimi-

nary work, which describes a basic storage architecture for
decentralized social networks [32].

In our base architecture, privacy is provided through a
combination of design features including a DHT for decen-
tralization, cryptography to enforce attribute-based policies,
and data representation in terms of objects. Users can de-
fine relationships of various types asymmetrically. The basic
prototype supports user profile and wall features including
status updates, wall posts from social contacts, commenting
on posts, and a basic newsfeed algorithm. Existing OSNs
such as Facebook, Google+, and Twitter feature such func-
tionality as a major use case.

3.1 Policies
Policies are described through user identities or attributes,

as required. Identity-based policies define user-specific
access, whereas attribute-based (AB) policies define ac-
cess for a group of social contacts sharing some com-
mon features. AB policies represent formulas over at-
tributes, using operators such as ∧, ∨, and k-of-n. Exam-
ples of AB policy are: (friend ∧ coworker) ∨ family, and
2 of {friend , family , coworker}.

Each object is protected with three policies: 1) Read
Policy, defined through user attributes, describes who can
view an object; 2) Write Policy, generally set to the object
owner’s identity, describes who can delete or overwrite the
object; and 3) Append Policy, an attribute-based policy, de-
fines who can append to an object—in other words, who can
comment on an object.

These policies are defined by the owner at the time of ob-
ject creation and stored in the object metadata. The Read
Policy is enforced through the use of cryptography. The
Write and Append Policies are enforced through a combina-
tion of cryptography and authorization by DHT nodes. The
authorization does not reveal a user’s identity, hence the
storage node is not aware of the identities of users storing or
retrieving data from it, and therefore a user’s social graph is
hidden from the storage nodes. DHT nodes also implement
a special append operation that adds a new annotation to
the object while leaving existing content unmodified.

3.2 Cryptography
Access policies are enforced cryptographically through a

hybrid scheme of traditional public key and attribute-based
encryption (ABE) [11, 31]. In ABE an object is encrypted
with an AB policy; for example, P = friend ∧ family. Each
of the intended parties is issued a unique secret key by a
key authority defining what attributes apply to that per-
son. For example, a person Alice may receive a key with the
attributes “friend”, “colleague”. A person can decrypt an
object if and only if her secret key satisfies the policy used
to encrypt it (the object). In the hybrid mode, the message
is encrypted with a randomly chosen symmetric encryption
key, which is in turn encrypted with ABE. In the previ-
ous example, Alice cannot decrypt a ciphertext that was
encrypted with P since her key does not satisfy the policy
P .

We place the Read Policy in the object reference rather

than the object itself to protect policy privacy from the stor-
age nodes. The main motivation for this choice is that the
version of ABE we are using lacks policy privacy and this
approach keeps the policy hidden from untrusted storage
nodes. The reference is a part of the parent object and
is encrypted with its symmetric key. As a result, the ref-
erence cannot reveal the policy. Therefore, confidentiality
is ensured through a hybrid approach where the object is
encrypted with a symmetric key, and the symmetric key,
placed as a part of the reference, is encrypted with ABE. The
ABE scheme that we use is an extended version of EASiER,
which supports efficient revocation for Ciphertext Policy
Attribute-based Encryption [11] with the help of a minimally
trusted proxy. Please refer to this extended scheme [31] for
further details on the cryptographic scheme.

Integrity of objects is guaranteed through digital signa-
tures. Object owners sign the content of the object. The
Write and Append policies are enforced by controlling access
to the corresponding signature keys. The Write Policy key
is generally encrypted to the object owner, and the Append
Policy key is encrypted with an attribute-based policy. The
public part of the Write Policy key is also made available as
a part of the object reference to ensure its authenticity and
prevent vandalism from the storage node. Comment refer-
ences are signed by commenters using Append Policy keys,
thus ensuring the integrity of the comment. Note that when
someone comments on an object, status, for example, both
the commenter and the status owner’s policies are enforced
since each of the objects is encrypted using the policies de-
fined by its owner.

An object reference is constructed as follows:

objRef
def
= (objID ,ABE(K,P ),WPK )

where objID is a random object identifier used to locate it
in the DHT, K is the symmetric key used to encrypt the
referenced object, P is the read policy, and WPK is the
Write-Policy signature public key. ABE(K,P ) represents
ABEncryption of K with the policy P .

3.3 Data Storage
In the base architecture, users form a DHT, such as Pas-

try [51] or Kademlia [41]. Data is stored as an object in
the DHT using objID as the DHT key. In addition to the
standard get and put operations, the DHT also supports an
append operation. Additionally, the storage nodes verify the
Write Policy on objects.

Several security and privacy issues are taken care of
through existing mechanisms: lookups can be secured
against attacks [5,15,33,46]; availability is ensured through
replication; and malicious data overwrites are prevented
through write-policy verification. The write policy prevents
malicious users from creating modifications that will be ac-
cepted by the readers, as they cannot produce a correct sig-
nature, but they may overwrite and destroy legitimate data.
To address this, the write-policy public key is stored unen-
crypted as part of the object metadata. The storage node
will refuse to overwrite the stored object unless the new
data is properly signed by the write-policy key; deletions
must likewise be authenticated with a signature. The write
policy public key is random and unique for each object to
prevent linking an object to its owner.
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3.4 Newsfeed
A user’s newsfeed is a collection of the latest status up-

date objects from each of her social contacts. To provide
users with their newsfeed, we designed a basic newsfeed al-
gorithm in our base architecture. However, the algorithm in
the base architecture is inefficient — the latest status up-
date objects are fetched sequentially, and each of them is
decrypted individually, which makes viewing the newsfeed
non-practical. This means that if a user has hundreds of so-
cial contacts, then she has to wait until all of her contacts’
latest status update objects are fetched and decrypted. In
addition, users have to decrypt the wall objects of all of their
social contacts and decrypt the most recent reference on the
wall. In Cachet though, the update object contains a link
to the most recent update and the user does not need to de-
crypt the potentially large wall object. Additionally, since
the ABE format contains the policy necessary for decryp-
tion, users can infer whether they will be able to decrypt
the object or not and do not need to spend time decrypting
the object if they are not authorized to read it.

Decryption is time-consuming. Besides, we do not per-
form any type of caching or utilize social links to expedite
the loading of a user’s newsfeed in the base architecture.
Furthermore, in practice a user may not be interested in
viewing all of her contacts’ latest statuses, but subscribe to
a few selected ones instead. In Section 4 we will present our
enhanced design in which social contacts are employed to
cache update objects and a social caching algorithm is used
to provide faster access to the objects.

3.5 Example
User Alice joins Cachet by generating several keys, creat-

ing profile information and a wall, and saving this informa-
tion as root and wall objects (respectively) in the DHT. To
establish the relationship friend, co-worker with Bob, Alice
generates an ABE secret key for Bob with the attributes
friend, co-worker. Bob may establish a different type of re-
lationship with Alice. The necessary keys are exchanged
out-of-band.

Figure 1 shows an example object structure. To post
a status update to her wall, Alice creates a status ob-
ject, complete with version number, contents, and pub-
lic and secret keys for the Write and Append policies
(WPK 1,WSK 1,APK 1,ASK 1). She generates a signature
over the Write-policy signature key (WSK 1). She then picks
a random symmetric encryption key K1 and encrypts the
object (except for WPK 1 and APK 1 and the signature).
She also chooses a random ID ID1 and uses this to insert
the object into the DHT. Finally, she creates a reference to
the status update, including ID1,K1, and her Write-Policy
public key (WPK 1) and adds it to her wall.

When Bob wants to read Alice’s update, he finds the ref-
erence on Alice’s wall and decrypts K1 with his attribute-
based secret key that he got from Alice. He then retrieves
the object from the DHT with the key ID1 and decrypts
the encrypted fields using K1. Finally, he verifies the signa-
ture to ensure the integrity of the object. To comment, Bob
first creates a comment object following a process similar
to Alice’s creation of her update. He then uses the append
operation to insert a reference to the new object into Al-
ice’s update. Assuming he satisfies the A-policy AP1, Bob
decrypts ASK1 and uses it to generate a signature on the
reference.

Alice's Wall

ID1, ABE(K1, P1), WPK1

.

.

.

.

.

.

Alice's status

WPK 1

Version #

Enc(KAlice, WSK1)

APK1

ABE(ASK1, AP1)

 "Cachet Rocks"
(content)

SignWSK1

ID2, ABE(K2, P2), WPK2

Bob's comment

Version #

"like"
(content)

WPK2

APK2

ABE(ASK2, AP2)

SignWSK2

ID1

Hash

= Encrypted with K1

SignASK1

Hash
ID2

Hash

Enc(KBob, WSK2)

= Encrypted with K2

Figure 1: Example objects

Please refer to our prior workshop paper for further de-
tails [32].

4. SOCIAL CACHING
Given the use of decentralization and cryptography in our

base architecture, downloading and reconstructing a social
contact’s wall or an aggregated newsfeed is a lengthy process
requiring the following steps: 1) decrypting update objects,
which are ABEncrypted, to yield metadata such as an up-
date’s DHT key and symmetric decryption key; 2) access-
ing multiple small objects located in different storage nodes
using DHT keys provided in the previous step; and 3) de-
crypting the retrieved update objects with their correspond-
ing symmetric keys. Our preliminary analysis [32] indicates
that these operations can take hundreds of seconds, and thus
the design needs to be improved for practical deployments.

We propose a gossip-based social caching algorithm that,
in combination with an underlying DHT, leverages social
trust relationships for dramatically increased performance
and reliability. Nodes maintain continuous secure (SSL) con-
nections with online contacts to receive updates directly as
soon as they are produced. We describe a presence protocol,
which itself uses social caching for finding online contacts.
Since ABDecryption of objects is a time-consuming bottle-
neck, online social contacts who satisfy the ABE policy are
leveraged to provide cached, decrypted objects to other con-
tacts who also satisfy the policy for objects related to offline
contacts. We emphasize that a data object is not cached by a
social contact unless he/she satisfies the ABE policy. Thus,
the original ABE policies provided by our base architecture
are also preserved by Cachet. The basic object structure in
Cachet is extended to include a list of users’ IDs that are
authorized to decrypt and read the object. Therefore, an
object can be forwarded to/cached by the intersection set of
one’s social contacts and the users in the attached list, and
the ABE policies are honored as before.

Our algorithm also seeks to minimize the number of such
decryptions (corresponding to DHT lookups for the objects)
by dynamically learning which peers yield the most cached
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objects. Yet, this approach provides reliability by treat-
ing the DHT as a persistent store for objects that may not
be cached. Moreover, social caching improves data locality
because the social contacts of a user are usually geographi-
cally co-located, which minimizes the needed bandwidth for
downloading an object.

Gossip-based protocols are reliable and robust tools for
data dissemination especially when used in P2P and wire-
less networks [9, 10, 20, 29, 42]. However, relying purely on
gossip protocols for disseminating updates through the so-
cial network has some drawbacks: 1) redundant information
is passed around and stored in the network, even at nodes
that do not desire this information; and 2) social circles have
correlated patterns of online presence, making it challenging
to ensure availability when large parts of a circle are offline.

4.1 Presence Protocol
Usually a centralized server keeps track of users’ pres-

ence information (e.g., their current IP address) in P2P net-
works [3, 52]. In Cachet a distributed approach is applied
where every peer stores a presence object in the DHT so
that social contacts can obtain a peer’s presence information
at any time. The presence object has the same structure as
other objects, and is ABEncrypted so that the storage node
cannot learn the contents of the presence object.2 It con-
tains the peer’s current IP address, and port. With this IP
address, peers can connect to their social contacts directly
and maintain live connections. The object is signed so that
the storage node only allows the owner to update or rewrite
it. Whenever a peer joins or leaves the Cachet network, it
updates its presence information.

Note that retrieving and decrypting presence objects for
all of one’s social contacts will have overhead similar to con-
structing a newsfeed directly from the DHT. To speed up
this process presence objects are cached using gossip-based
social caching along with content updates. As such, once
a few social contacts have been located, discovery of other
contacts can proceed at an accelerated pace. Once links to
online contacts have been established, subsequent updates
are pushed to online contacts directly using the caching pro-
tocol described next.

4.2 Gossip-based Social Caching
When a node comes online and joins the Cachet network,

it does not have the presence or newsfeed information for
any of its social contacts. We now describe the caching al-
gorithm used to progressively retrieve cached, unencrypted
versions of these objects to greatly speed up the process of
loading the newsfeed. The basic idea of the caching algo-
rithm is for the user to perform a few DHT lookups to get
presence objects of some social contacts. Then, she iden-
tifies those who are online and contacts them to 1) inform
them that she is online, and 2) pull both the cached pres-
ence objects and the cached recent updates of their mutual
social contacts. The user then uses the new unencrypted
presence objects to recursively repeat the two steps above
until no new contacts are obtained. At this point another
DHT lookup is made for a social contact whose status is
unknown and the process is repeated until the presence and
status objects of all contacts have been obtained. If a user
is contacted by a social contact Q who was offline before,

2It could be a separate object or simply embedded in the
profile or root object.

she pushes her all cached objects that Q is authorized to
read.This algorithm is thus a pull-push based gossiping al-
gorithm because it involves both operations; a joining node
pulls information from online nodes, and a node generating
an update pushes them to other online nodes.

Algorithms 1 and 2 are employed by a user P when she
joins the social network and the algorithm includes the fol-
lowing steps:

1. Creating the Presence Table: User P maintains a pres-
ence table that lists all social contacts along with their
presence statuses. The social contacts are listed in de-
scending order based on the number of mutual social
contacts in common with P — a social contact who
has the most mutual social contacts in common with
P appears at top of the list. Listing social contacts
in descending order of mutual contacts is a greedy ap-
proach that attempts to minimize the number of DHT
lookups and communications that are needed to re-
trieve data objects. Thus, by contacting the social
contacts on top of the table, more data objects can be
potentially obtained. Initially, the presence status for
all contacts is undefined.

2. Selecting a Contact : P chooses an unvisited contact Q
from the presence list as follows. P chooses the first
contact in the presence table whose status is known to
be online. If none exist, then it chooses the top contact
with an undefined status. If all contacts are visited or
known to be offline, P proceeds to step 7;

3. DHT Lookup and Connection: If the presence status
of Q is undefined, then P retrieves Q’s presence object
from the DHT and decrypts it. If Q is offline, then it
returns to step 2 to select another contact;

4. Pulling Information: Since Q is online, P marks Q as
visited and creates a secure connection to Q. P uses
this connection to pull presence and update objects for
mutual social contacts that P and Q have in common;

5. Caching Information: P caches the pulled objects (in
unencrypted form). We assume that the object cache
is unlimited and can store all social contacts’ updates
during a session. As argued by Mega et al. [42] most of
the objects such as status, posts, comments, links, and
pictures are small enough; large objects such as videos
can be retrieved from the DHT or online services (e.g.,
YouTube) on demand only;

6. Updating Presence Table: P updates the presence ta-
ble with the online status of social contacts based on
information learned from Q. Then it returns to Step 2
to locate the next social contact to connect to;

7. Performing DHT Lookups for Offline social contacts
with No Mutual Social Contacts: If the recent updates
of some social contacts are missing, then this shows
that they do not have any online mutual social con-
tacts with P , and P must obtain these objects from
the DHT. Thus, to retrieve the newsfeed, P needs to
1) derive the key for their updates by ABDecryption
of their reference embedded in the parent/containing
object; 2) perform DHT lookups for them; and 3) de-
crypt the updates by their corresponding symmetric
key.
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By exchanging presence status and recent updates be-
tween online social contacts, the presence table and the
cache are always up-to-date. Thus, for viewing the news-
feed, peer P just retrieves recent updates from the cache.

4.3 Identifying Mutual Contacts and Autho-
rized Users

Many of the benefits of social caching come from being
able to identify mutual social contacts. Although relation-
ships between users are privacy sensitive, in practice many
users are comfortable sharing this information with at least
their immediate social circle. For further privacy protection
it is possible to use a social contact discovery protocol that
reveals only mutual social contact relationships and nothing
else [21].

Since cached content is stored unencrypted, it is also im-
portant to verify that a contact satisfies the access policy
associated with the object. It should be possible to extend
the private contact discovery protocol to learn the attributes
shared by P and Q and thus make an authorization decision
based on that.3 For simplicity, however, in our current im-
plementation we instead include an explicit list of authorized
users in each container that can be used to mediate sharing.

We note that users who wish to conceal their social rela-
tionships, or reveal only a selected subset, may do so, trading
off privacy for the efficiency of social caching.

Algorithm 1: User P joins the network
1
2 //User P j o i n s the network
3 generatePresenceTable ( t ab l e ) ;
4 soc ia lCach ingAlg ( tab le , cache ) ;
5 f o r ( s o c i a l contact Q : t ab l e . keySet ( ) ){
6 i f ( ! cache . conta in s (Q. update ) ){
7 getDHTKeyFor (Q. update ) ;
8 encUpdate = dhtLookUp (Q, Q. updateObj ) ;
9 update = decrypt ( encUpdate ) ;

10 cache . put (Q, update ) ;
11 }
12 }

Algorithm 2: Social caching algorithm
1
2 void soc ia lCach ingAlg ( presenceTable tab le ,
3 Cache cache ){
4 f o r ( Soc ia lContact Q : t ab l e . keySet ( ) ){
5 Q. v i s i t e d = TRUE;
6 dhtLookUp (Q, Q. presenceObj ) ;
7 i f (Q. presence . s t a tu s ){
8 sendTo (Q, Q. presenceObj ) ;
9 receiveMessageFrom (Q, bufr ) ;

10 i f ( bufr . conta in s ( presenceObj ) )
11 updateTable ( tab le , bufr ) ;
12 i f ( bufr . conta in s (UpdateObj ) )
13 selectUpdatesToKeep ( cache , bufr ) ;
14 }
15 Soc ia lContact R = s e l e c t So c i a lCon t a c t (& tab l e ) ;
16 soc ia lCach ingAlg (R, t ab l e ) ;
17 }

4.4 Deletion and Revocation
When a user deletes an object or modifies the access pol-

icy to an object (including changes to a social contact’s at-

3Briefly, instead of a contact certificate as in [21] one would
use a (contact,attribute) certificate for each attribute.

tributes) these changes are reflected immediately for data
that are ABEncrypted and fetched from the DHT. Affected
data in the caches must be updated or invalidated. While
we do not specify the protocol here, in short: users can send
object invalidation requests to remove deleted objects from
caches, and revocation requests to update the access policies
for cached objects, i.e., the list of names to be removed from
the access lists for various objects. We leave the evaluation
of such deletion and revocation to future work.

5. EVALUATION
In this section, we evaluate the performance of our pres-

ence and social-caching algorithms. We do not compare Ca-
chet’s performance with other caching mechanisms [12, 36,
42,56,59] since they are not specifically designed for provid-
ing security and privacy as in our setting.

5.1 Implementation and Simulation Setup
We built a simulator for Cachet based on the FreePastry

simulator [51], which implements the underlying DHT. We
simulate the cryptographic operations for EASiER [31] with
1 attribute policy and 100 revocations run on a standard
machine with 2.40GHz Intel Core 2 Duo, 4GB memory, and
running Ubuntu 10.04. With this setting, the ABDecryp-
tion takes 422ms. The symmetric key decryption (openssl
aes-128-enc) takes 0.04ms on a file of size 2500 bytes, the
average size of a status update object. We simulated the
communication overhead between peers by setting the av-
erage communication latency to be 180 ms.4 To simulate
the social graph in Cachet, we used the Facebook friendship
graph from the New Orleans regional network [54]. This
data set contains a list of all of the user-to-user links from
the Facebook New Orleans network and consists of 63,732
nodes and 1.54 million edges. This data set has been used for
simulating social graphs in other published work [43,47,55].

We evaluated the performance of Cachet by averaging re-
sults over the following unit experiment: we used FreePastry
to setup a DHT amongst all nodes in the social network, ex-
cept a particular random user P . We then generate updates
for the entire social circle of node P , and simulate Cachet’s
algorithms. Although our system could be used to cache
comments on objects as well, for evaluation we considered
a model where newsfeeds include status updates only; we
assume a usage model where users click on a particular item
to fetch specific comments for that item.

Next we introduce churn in the network, and consider dif-
ferent percentages of nodes amongst P ’s social contacts and
FoFs that remain online — 10%, 30% and 50%. We focus
on an online/offline model where different percentages of
online friends will affect the caching performance. We note
that we are not attempting to evaluate the impact of churn
at the DHT layer. In this work we are assessing the effect
of nodes joining/leaving and impacting the performance at
the caching layer based on how many social, trusted con-
tacts are available. Due to the lack of pertinent data about
online/offline patterns in OSNs, we picked various percent-
ages. The 10–30% range is perhaps more pertinent because,
for example, Skype has about 45M concurrent users online
and 200M active users per month.5

4http://pdos.csail.mit.edu/p2psim/kingdata/
5Skype Reaches A 45M Concurrent User Peak, And What
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We then simulate the node join process for node P , and
measure the performance of the newsfeed application.

Performance metrics. We measure performance using the
following metrics.

• Hit Rate: the percentage of the newsfeed or the presence
objects that has been provided by social contacts. To mea-
sure worst-case performance, we assume that the number
of updates on a user’s newsfeed is equal to the number of
her social contacts.

Let em be a single unit experiment for a user u with m
social contacts. Let d be the number of DHT lookups
(involving ABDecryptions) that have been performed for
obtaining either u’s newsfeed or u’s social contacts’ pres-
ence objects, then:

hitRate(em) = m−d
m

This metric measures what fraction of objects were found
in the cache.

• Progressive Hit Rate: the percentage of the newsfeed or
the presence status objects that have been obtained after d
DHT lookups and pulling social contacts’ cached objects.
Let em be a single unit experiment for a user, u, who
should retrieved presence information of m social contacts
and let σ(d) be the number of obtained social contacts’
presence or status objects after d DHT lookups, then:

hitRate(em) = σ(d)
m

This metric gives an indication of what percentage of the
total objects have been obtained after some number of
lookups.

5.2 Results
• Social caching provides most of the update objects for

viewing the newsfeed

Figure 2(a) depicts the average Newsfeed Hit Rate as a
function of number of updates (equal to the number of
social contacts of a person) and the fraction of online so-
cial contacts. As it is expected, the Newsfeed Hit Rate in-
creases with a larger percentage of online social contacts.
However, interestingly, retrieving a larger newsfeed where
each of its objects corresponds to a social contact does
not decrease the Newsfeed Hit Rate, because more online
social contacts are available to push the cached data to
the user.

We repeated a slightly different experiment where online
FoFs are also be contacted by a user to get cached objects
belong to their mutual offline social contacts by adding
them to the presence table. Although Figure 2(b) shows
that leveraging FoFs increases the hit rate slightly, the
difference is not very high. Thus, we decided to not in-
clude FoFs in our algorithm given the additional overhead
of caching FoF objects.

These figures are dependent on the social network graph,
and they show what fraction of updates can be provided
by social contacts using the social caching algorithm. The
results indicate that by using social caching one can rely
on her social network to provide most of her newsfeed
objects. However, social caching alone is insufficient to

Looks Like A New Stage Of Momentum, TechCrunch, Oct.
14, 2012.
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Figure 2: These figures depict the average Newsfeed
Hit Rate as a function of the number of updates
and the fraction of online social contacts. It can be
seen that social caching provides most of the update
objects needed for viewing the newsfeed. By com-
paring the two figures it can be seen that leveraging
FoFs increases the hit rate slightly, but the differ-
ence is not great.

ensure availability of the complete newsfeed, necessitating
the DHT storage layer.

• Social caching decreases the latency for retrieving the
newsfeed

The results illustrated in Figure 2 imply that with so-
cial caching, the latency for viewing the newsfeed would
be much lower than loading all objects from the DHT
and decrypting them. To investigate, we examined the
latency for retrieving the newsfeed in Cachet both with
and without social caching enabled.

To calculate the latency, in each single experiment, we
considered the simulation time for 1) the communication
latency between peers, 2) ABDecrypting the references to
both presence and update objects that are not provided by
social contacts, 3) performing DHT lookups for retrieving
these objects, and 4) decrypting the objects.

Figure 3 shows that using just the base architecture, the
latency for obtaining newsfeed is very high and is also
highly dependent on the number of updates; it is also
dominated by the ABDecryption latency time. In con-
trast, applying social caching, the latency decreases by
up to an order of magnitude. The time needed to view a
newsfeed decreases as the number of online social contacts
grows, but even with only 10% of social contacts online,
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Figure 3: This Figure shows the latency for retriev-
ing the newsfeed in Cachet both with and without
social caching enabled. It can be seen that even with
only 10% of social contacts online, social caching
provides a dramatic performance improvement.

social caching provides a dramatic performance improve-
ment.

• Most of the presence objects would be available after a few
DHT lookups and decryptions

We measured the number of presence (or newsfeed up-
date) objects that is provided by online social contacts
after contacting them. Figure 4 plots the Average Progres-
sive Hit Rate after d DHT lookups and ABDecryptions.
For this experiment, we plotted the Average Progressive
Hit Rate for users with 100 ≤ m ≤ 200 where m is one’s
number of social contacts. As it can be seen, having 50%,
30%, and 10% online social contacts, one can receive about
70% of all presence objects by performing about 2, 5, and
18 DHT lookups (and ABDecryptions) respectively.

This figure shows that users do not need to wait until all
presence (or update) objects are retrieved. Furthermore,
they can identify most online social contacts (and their
updates) by looking up only a few presence (or update)
objects and contacting the social contacts who are iden-
tified to be online. Thus, user perceived latency can be
reduced by rendering the newsfeed when a threshold num-
ber of objects are retrieved, and then the feed is updated
as more objects are fetched. For example, with 30% online
social contacts, 70% of the newsfeed can be loaded after
only a tenth of the total lookups, corresponding to load
times of the majority of the newsfeed in under a second.

6. RELATED WORK

6.1 Access Control in Decentralized OSNs
Researchers have designed and proposed several decentral-

ized OSNs such as Diaspora [22], PeerSon [13], Safebook [18],
LotusNet [3], SCOPE [40], and Persona [7]. These works do
not focus on caching or leveraging social links for fast and
efficient data retrieval, but address privacy either through
cryptography, architectural modifications, or decentraliza-
tion of the provider. We have shown that in the absence of
social caching, the performance overhead due to cryptogra-
phy and decentralization is high.

Diaspora is a social network that users install on their own
personal web servers without support for encryption. We
note that Diaspora is a deployed system with several hun-
dreds of thousands of users [58] and demonstrates the fea-
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Figure 4: This Figure shows the Average Progressive
Hit Rate for users who have 100 to 200 social con-
tacts. It can be seen that after a few DHT lookups,
users learn about online/offline status of most of
thier social contacts. Similarly, most of newsfeed up-
dates can be retrieved after performing a few DHT
lookups and contacting the identified online social
contacts.

sibility of large scale decentralized approaches to social net-
working. Backes et al. [6] present a core API for social net-
working, which can also constitute a plug-in for distributed
OSNs. Their primary focus is on an API that supports
anonymous data access in a distributed OSN. However, they
assume that the server is trusted with the data for access
control. PeerSon, LotusNet, Safebook, and SCOPE benefit
from DHTs in their architecture. PeerSon and Safebook sug-
gest access control through encryption, but they fall short
in providing fine-grained policies compared to ABE-based
access control in Cachet. Moreover, in all of these schemes,
the overhead of key revocation affects performance whereas
revocation in Cachet is efficient through the use of a semi-
trusted proxy (please refer to the base architecture [32]).

In LotusNet, which is based on Likir [4], the authors con-
sider the distributed storage to be trusted and do not per-
form encryption. Likir uses signed grants to specify per-
missions and provide access control. Safebook is based on
a peer-to-peer overlay network named “Matryoshka”. The
end-to-end privacy in Matryoshka is provided by leveraging
existing hop-by-hop trust of the links. In contrast to using
hop-by-hop trust for data lookup and privacy, we leverage
trust relationships to improve performance and ensure pri-
vacy using cryptographic techniques.

SCOPE is a distributed data management system for spe-
cialized P2P social networks. Clients connect to and store
data on a group of super-nodes with higher computation and
storage capacity. However, clients do not participate in the
DHT; only the super-nodes run the DHT code. Clients con-
nect to super-nodes and rely on them for sharing and access
control on their data.

Persona [7] combines ABE with a decentralized OSN ar-
chitecture to ensure data confidentiality. However, Persona
does not support fine-grained policies and lacks suitable re-
vocation mechanisms [11]. Persona is not built upon a DHT;
users and applications use a storage service hosted on a ded-
icated storage server or a user’s own storage server. The
storage service authenticates write operations through the
requester’s public key and hence can learn the user’s social
contacts.

We note that some techniques leverage a centralized
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provider for maintaining the overall functionality of an OSN
but encrypt messages to keep them confidential from the
provider [8, 27, 39]. These approaches, however, allow the
OSN provider to monitor the interactions of users, censor or
remove content by users, and even regulate who can be part
of the network. Cachet and the other decentralized solutions
attempt to democratize such systems by getting rid of such
a powerful centralized provider.

6.2 Information Dissemination in OSNs
One approach for disseminating information in a network

is based on gossiping techniques. Mostly, this approach has
been applied for disseminating information through wire-
less networks [9, 28, 29, 44] and P2P networks [34, 35, 60].
However, very few have done research on dissemination of
information through decentralized social networks.

Datta and Sharma propose GoDisco [20], a gossip-based
decentralized mechanism in which information can be dis-
seminated by using social links and exploiting semantic con-
text. This mechanism is targeted at probabilistic publish/-
subscribe systems where a vector of interest categories is
attached to each message, and information is broadcast to
receivers who may be interested in the message. This mech-
anism is thus orthogonal to our work — while GoDisco dis-
seminates public information to interested parties, Cachet
focuses on disseminating private information to authorized
parties.

Abbas et al. [1] propose a basic gossip-based protocol for
establishing friendship links in a distributed social network
considering network dynamics. However, many require-
ments of social networks, such as dissemination of updates,
availability of data, and privacy were not in the scope of
their work.

Mega et al. [42] show that applying gossiping algorithms
for disseminating users’ updates through a P2P social net-
work is feasible. They focus their analysis on the coverage
of disseminated updates to the social network, average la-
tency for an update to reach a destination, and the average
load in terms of messages sent and received. They do not
consider privacy or access control in their design and up-
dates are pushed to all friends and FoFs. In addition, their
system relies purely on gossiping protocols for disseminating
updates through the social network, which has several draw-
backs; for example, there is no guarantee that all updates
will be available over time, and a large amount of redundant
information is passed around and stored in the network. In
Cachet though, updates are stored in the DHT so available
over time and friends cache updates for a short time.

Carrasco et al. [14] address the problem of loading news-
feeds efficiently in centralized social networks, where data is
stored in distributed databases (e.g., at a data center). They
propose partitioning the social network based on users’ ac-
tivities over time so that data belonging to users in a par-
tition can be stored in a way that improves locality. The
proposed solution implicitly assumes that a centralized man-
agement system keeps track of all users over time to facilitate
on data partitioning, but such information is not available
in decentralized social networks. Nevertheless, distributed
algorithms to improve locality of information in the context
of decentralized social networks could improve newsfeed per-
formance, and we leave such an exploration to future work.

7. DISCUSSION
Searching social contacts. To enable users to search for

their social contacts, we propose leveraging a centralized di-
rectory service that maintains the mapping between user
names and their root objects (profile page). To prevent the
directory service from inferring user relationships, users can
either (a) use anonymous communication channels such as
Tor [23] to query the server, or (b) leverage private informa-
tion retrieval protocols [16] to hide the user name mapping
that is being retrieved from the server.

Privacy issues. While we believe that Cachet’s privacy
guarantees surpass existing systems, there is still room for
further improvement. First, users that do not satisfy the
access control policy of a particular object will be aware
that they are being excluded from accessing the object, as
opposed to being oblivious to its existence (as in current
OSNs). Second, our social caching algorithm leaks informa-
tion about the identities of users who satisfy a particular
policy to all of those identities. Finally, our newsfeed al-
gorithm also reveals information about when a user comes
online or offline. However, we emphasize that “online” does
not necessarily mean that users are logged in and available.
It could be that the person’s laptop/desktop is connected to
the Internet and participating in the DHT and caching pro-
tocol, although the person is not at the computer. In future
work we will investigate techniques to limit such sources of
information leakage.

Deployment challenges. In contrast to the deployment
model of today’s popular OSNs, users in Cachet face the bur-
den of (a) spending additional computational resources, and
(b) volunteering data storage and bandwidth. However, we
note that our social gossiping and caching algorithms make
the computational overhead of decrypting ABEncrypted ob-
jects practical. Furthermore, online social networks are
mostly used to store small objects such as status posts and
comments, minimizing the burden for users to volunteer ex-
cessive storage and bandwidth.

The decentralized architecture of Cachet brings with it
several challenges from a networking viewpoint. First, re-
silience against node churn becomes an important consider-
ation. The underlying DHT should have enough replication
to handle temporary instabilities. We note that data ob-
jects are also available through our caching mechanism to
alleviate instability issues due to churn. In future work we
will study the use of less structured overlay topologies, e.g.,
the use of more stable ‘super peers’ [2, 40, 50, 57] to further
improve stability. Second, users behind NAT make it dif-
ficult to realize peer-to-peer connections with other users.
Our architecture requires NAT hole-punching mechanisms,
such as that of Evans et al. [45].

Social and economic challenges. Existing OSNs such as
Facebook and Google+ already have several hundred million
users. Thus a significant challenge for new social network
architectures is to be able to attract enough users to achieve
a critical mass. We believe that enhanced privacy properties
of decentralized architectures such as Cachet would give an
incentive to users to switch. Furthermore, government regu-
lations or standards encouraging inter-operable OSN archi-
tectures can also help to offset the economic challenges for
deployment.

Scalability issues. DHTs are designed to be scalable, but
as the network becomes very large, e.g., with one billion
nodes, scalability concerns are valid — nodes will be involved
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in more overhead for maintaining the DHT structure, and
the amount of cached objects may be larger. We leave such
evaluations to future work but comment that our caching
algorithm scales with the number of friends, and thus we
do not expect the large network size to overly affect the
performance of our caching algorithm.

8. CONCLUSION
We have presented Cachet, a decentralized architecture

for social networks that provides strong security and privacy
guarantees while efficiently supporting the central function-
ality of OSNs. Cachet uses an object-oriented design for
flexible data management, attribute-based cryptography for
access control, and a hybrid combination of distributed hash
table and social contacts for information retrieval. The use
of social contacts is the key to making the architecture prac-
tical; social contacts in Cachet not only provide informa-
tion about their own updates, but also about updates from
other mutual contacts. Our experimental evaluation using
the FreePastry simulator shows that the average time to re-
construct an aggregate newsfeed is less than 10 seconds, as
compared with hundreds of seconds without the use of social
caching. Our architecture thus demonstrates that a decen-
tralized approach to privacy-preserving social networking is
practical.

9. ACKNOWLEDGMENTS
This material is based upon work supported by the Na-

tional Science Foundation under Awards CNS–0953655 and
CNS–1115693, by the Boeing Trusted Software Center at the
University of Illinois and by the National Security Agency.
We thank John McCurley for his editorial help, and also
anonymous reviewers for their useful comments. We also
thank our shepherd Cristina Nita-Rotaru.

10. REFERENCES
[1] S. M. A. Abbas, J. A. Pouwelse, D. H. J. Epema, and

H. J. Sips. A gossip-based distributed social
networking system. In Proceedings of the 2009 18th
IEEE International Workshops on Enabling
Technologies: Infrastructures for Collaborative
Enterprises, WETICE ’09, pages 93–98, Washington,
DC, USA, 2009.

[2] D. Adami, C. Callegari, S. Giordano, M. Pagano, and
T. Pepe. A real-time algorithm for skype traffic
detection and classification. In S. Balandin,
D. Moltchanov, and Y. Koucheryavy, editors, Smart
Spaces and Next Generation Wired/Wireless
Networking, volume 5764 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2009.

[3] L. Aiello and G. Ruffo. LotusNet: tunable privacy for
distributed online social network services. Computer
Communications, 35(1):75–88, 2012.

[4] L. M. Aiello, M. Milanesio, G. Ruffo, and
R. Schifanella. Tempering Kademlia with a robust
identity based system. In P2P, 2008.

[5] M. S. Artigas, P. G. Lopez, J. P. Ahullo, and A. F. G.
Skarmeta. Cyclone: A novel design schema for
hierarchical DHTs. In P2P, pages 49–56, Washington,
DC, USA, 2005. IEEE Computer Society.

[6] M. Backes, M. Maffei, and K. Pecina. A security API
for distributed social networks. In NDSS, 2011.

[7] R. Baden, A. Bender, N. Spring, B. Bhattacharjee,
and D. Starin. Persona: an online social network with
user-defined privacy. In ACM SIGCOMM, 2009.

[8] F. Beato, M. Kohlweiss, and K. Wouters. Scramble!
your social network data. In Proceedings of the 11th
international conference on Privacy enhancing
technologies, PETS’11, pages 211–225, Berlin,
Heidelberg, 2011. Springer-Verlag.

[9] S. Ben Mokhtar, A. Pace, and V. Quema. FireSpam:
Spam Resilient Gossiping in the BAR Model. In 29th
IEEE Symposium on Reliable Distributed Systems
(SRDS 2010), Nov. 2010.

[10] M. Bertier, D. Frey, R. Guerraoui, A.-M. Kermarrec,
and V. Leroy. The GOSSPLE anonymous social
network. In Proceedings of the ACM/IFIP/USENIX
11th International Conference on Middleware,
Middleware ’10, pages 191–211. Springer-Verlag, 2010.

[11] J. Bethencourt, A. Sahai, and B. Waters.
Ciphertext-policy attribute-based encryption. In IEEE
Security & Privacy, 2007.

[12] S. Borst, V. Gupta, and A. Walid. Distributed caching
algorithms for content distribution networks. In
Proceedings of the 29th conference on Information
communications, INFOCOM’10. IEEE Press, 2010.
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