
Caching Complementary Space for
Location-Based Services

Ken C.K. Lee1, Wang-Chien Lee1, Baihua Zheng2, and Jianliang Xu3

1 Pennsylvania State University, University Park, USA
{cklee, wlee}@cse.psu.edu

2 Singapore Management University, Singapore
bhzheng@smu.edu.sg

3 Hong Kong Baptist University, Hong Kong
xujl@comp.hkbu.edu.hk

Abstract. In this paper, we propose a novel client-side, multi-granularity
caching scheme, called “Complementary Space Caching” (CS caching),
for location-based services in mobile environments. Different from con-
ventional data caching schemes that only cache a portion of dataset, CS
caching maintains a global view of the whole dataset. Different portions
of this view are cached in varied granularity based on the probabilities
of being accessed in the future queries. The data objects with very high
access probabilities are cached in the finest granularity, i.e., the data ob-
jects themselves. The data objects which are less likely to be accessed in
the near future are abstracted and logically cached in the form of com-
plementary regions (CRs) in a coarse granularity. CS caching naturally
supports all types of location-based queries. In this paper, we explore
several design and system issues of CS caching, including cache memory
allocation between objects and CRs, and CR coalescence. We develop al-
gorithms for location-based queries and a cache replacement mechanism.
Through an extensive performance evaluation, we show that CS caching
is superior to existing caching schemes for location-based services.

1 Introduction

Due to the rapid advances in wireless and positioning technologies, location-
based services (LBSs) [1] have emerged as one of the killer applications for mo-
bile computing. To improve the access efficiency and alleviate the contention of
limited wireless bandwidth in mobile environments, data caching techniques are
particularly important for LBSs.

Conventional caching techniques cache a portion of a database in units of
tuples or pages. Due to the lack of data semantics, clients cannot be sure whether
the cached data alone can sufficiently satisfy some complex queries, forcing them
to submit requests to the server even if the answers are completely available in
the cache. Semantic caching addresses this problem by caching query results
along with their corresponding queries (which serve as the semantic descriptions
of the cached query results) [2, 3, 4]. Thus, a query and its result form a semantic

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 1020–1038, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Caching Complementary Space for Location-Based Services 1021

a
b c

d

f g h

i
1

2 3 4 91

2

6 7 85

3

4

5

6

7

8

9

Q3

a
b c

d

e
f g h

i
1

2 3 4 91

2

6 7 85

3

4

5

6

7

8

9

(a) Semantic Caching (b) Complementary Space Caching

Complementary region of a, b and c

Complementary region of h

Q1 (Semantic region)

x x

y y

e

probe query

remainder
query

Q2

0 0

Q3

Q2

p p

Fig. 1. Semantic caching and Complementary space caching

region. By consulting cached semantic regions, a new query can be decomposed
into a probe query which can be answered locally by the cache and a remainder
query which is only answerable by the server. If a query is fully covered by cached
semantic regions, no contact with the server is needed.

However, the representation of semantic regions is highly query-dependent. If
a query is of different type from the queries captured by semantic regions, the
cached data objects cannot be reused. Besides, because clients’ knowledge about
data objects is constrained by cached semantic regions, the clients are unable
to determine whether there are objects beyond the cached semantic regions.
Therefore if a query is partially covered by semantic regions, remainder queries
(i.e., uncovered portions of the query) must be formed and submitted to the
server to retrieve possibly missing objects. The following example (as shown in
Fig. 1(a)) illustrates the above described deficiencies.

Example 1. Suppose that a database server contains 9 objects, namely, ‘a’ through
‘i’. A client with an empty cache submits a window query, Q1, to the server. A
result set of three objects {f, e, g} is returned and cached along with the query
window as a semantic region. Later, a nearest neighbor (NN) query, Q2 (with
a query point p), is issued. Due to incompatibility between window and NN
queries, the cached semantic region cannot answer the query even though the
result (i.e., e) is in the cache. Consequently, Q2 is submitted to server and e
is retrieved again. Later, the client issues another window query, Q3, which is
partially covered by the semantic region. Thus, a remainder query is submitted
to the server even though this query actually retrieves no object. �

These deficiencies are due to the lack of a global view of data in the cache.
For a cache designed to support various kinds of queries, it is desirable to main-
tain certain auxiliary location information that provides a global view of all data
objects in the database. Motivated by this observation, we propose a novel multi-
granularity data caching scheme for mobile clients called Complementary Space
Caching (CS caching). The CS caching distinguishes itself from other caching
schemes by having a global view of the whole dataset. Different portions of this
cached view have varied granularity based on the probabilities of corresponding

1022 K.C.K. Lee et al.

data objects to be accessed in the future queries. The data objects with very
high access probabilities are cached in the finest granularity, i.e., the actual data
objects. Those data objects less likely to be accessed in the near future are not
physically cached, rather are abstracted and logically cached in the form of com-
plementary regions (CRs) in a coarse granularity. In our design, CRs present
auxiliary location information regarding to missing objects, i.e., those objects in
the server but not kept in the cache. This auxiliary information can facilitate
the local processing of various location-dependent queries and alleviate unnec-
essary queries to the server. Fig. 1(b) shows that same scenario as Example 1
except that CS caching is adopted (where black dots are objects and rectan-
gle boxes are CRs). Since the result of Q1 is cached, object e in the cache can
answer Q2 because no other object or CR is closer than e to p. Q3 finds only
object f inside the query window so no additional objects are needed from the
server.

Due to limited cache memory, there is a trade-off between keeping objects
and keeping CRs in the cache. Storing more data objects in the cache can
potentially provide a higher cache hit rate but reduce the precision of the
auxiliary location information in CRs (because more CRs need to be merged
and stored in a coarse granularity in order to make rooms for objects). This
could lead to more false misses, i.e., a query finds a CR for potentially an-
swer objects but no objects are returned. On the other hand, taking more
cache memory to maintain fine-granularity CRs will reduce the number of data
objects cached physically and thus reduce the cache hits. The design of CS
caching strives to optimize the cache memory allocation for physical data ob-
jects and CRs in order to achieve a high cache hit rate and a low false miss
rate (which leads to the excellent performance in terms of response time and
bandwidth consumption). In this paper, we explore several design and system
issues of CS caching. We develop and implement algorithms for processing win-
dow, range, and k nearest neighbor queries based on CS caching, and develop
a very efficient cache replacement mechanism for cache maintenance. Through
comprehensive experiments based on simulation, we validate our proposal and
show that CS caching is superior to existing caching schemes for location-based
services.

The rest of this paper is organized as follows. Section 2 gives an overview of
the CS caching model and reviews related work. Section 3 describes the query
processing in CS caching. Section 4 discusses CR coalescence, an important tech-
nique for reducing transmission overhead. Section 5 describes the cache manage-
ment. Section 6 reports the simulation result. At last, Section 7 states our future
directions.

2 Complementary Space Caching

In this section, we first briefly review the R-tree and the notion of minimum
bounding boxes that we adopt to represent complementary regions. We then
describe the CS caching model and discuss some relevant research.

Caching Complementary Space for Location-Based Services 1023

2.1 Preliminaries

In many spatial databases, objects are very often indexed using R-tree [5] or its
variants for its efficiency and wide acceptance. In R-tree, objects close in space
are clustered in a leaf node represented as a minimum bounding box (MBB).
Nodes are then recursively grouped together following the same principle until
the top level, which consists of a single root. To process a query, a search algo-
rithm starts traversal at the root and recursively visits index nodes and objects.
By simply examining MBBs of index nodes or objects (e.g., by checking the
intersection of the query and an MBB for window queries or the mindist be-
tween a query point and an MBB for kNN queries [6]), whether the enclosed
objects are candidates of the query can be quickly determined. If an MBB
does not satisfy the query requirement, the corresponding subtree (i.e., the en-
closed group of objects) can be safely discarded from further investigation. The
query traversal ends when all objects are retrieved and all irrelevant subtrees
are pruned.

Root
eN1 eN2 eN3

N1
ea eb ec

N2
ed ee ef

N3
eg eh ei

a b c d e f g h i

a
b c

d

e
f g

h

i
1

2 3 4 91

2

6 7 85

3

4

5

6

7

8

9

(a) Rtree (fanout=3) (b) Query Q and object placement

N1

N2

N3

Unexplored index
entries

x

y

Q

ed

eb

ea ec

eh

ei

0

Fig. 2. R-tree example

Fig. 2(a) depicts an R-tree (with a fanout of 3) that has 3 leaf nodes, labeled
N1, N2 and N3, and 9 objects labeled ‘a’ through ‘i’. The corresponding object
placements are shown in Fig. 2(b). Suppose a window query Q is evaluated. It
first traverses the root and skips its child entry eN1 whose MBB does not overlap
with the query. Next, N2 is explored. Entry ed is not explored since it is outside
Q. Then objects e and f are collected. Similarly for N3, object g is retrieved
while eh and ei are not explored. Finally, objects e, f and g are collected as the
query result while the unexplored entries are {eN1, ed, eh, ei}.

It can be observed from the above index traversal that the unexplored entries
exactly represent the complement set of objects to queried objects. In other
words, both queried objects and those unexplored entries’ MBBs cover the en-
tire data space. If such information is available in mobile clients, a new query,
Q′, of any type can be supported and resolved at the client side by simply
examining the previous queried objects and by checking whether the areas cov-
ered by MBBs need to be further explored (i.e., by sending requests to the
server). This observation inspires the ideas we proposed for the design of CS
caching.

1024 K.C.K. Lee et al.

2.2 Complementary Space Caching Model

We assume that the server is stateless and a point-to-point communication chan-
nel is established between the server and a client. We also assume that the
database is indexed by R-tree. To simplify our discussion, we assume all updates
occur in the server and the update is infrequent. The issue of cache coherence is
out of scope of this study and will be the extension of this work.

Formally, we consider a database at the server composed of a set of objects,
O. All object locations (x-,y-coordinates) constitute a bounded geographical
space, S. Data objects O ⊆ O residing in a subspace S ⊆ S can be determined
by a function, m, i.e. m(S) → O1. Conversely, given a set of objects O, the
corresponding (minimal) subspace S can also be determined.

The CS cache C is defined as (O,R), where O is a set of cached objects and R
is a set of subspaces that is complementary regions (CRs). The CRs are presented
in a form of MBBs2. Initially, a client cache is empty and is initialized as (∅, {S}).
After the first query is processed by the server, queried objects along with MBBs
of unexplored entries are returned to the client and are cached. There is obviously
an overhead for maintaining the MBBs in the client cache, but it is justifiable for
the following reasons: (1) collection of unexplored entries and their MBBs via
R-tree based query processing at the server is almost effortless; (2) individual
MBBs are compact in size and thus do not consume a lot of bandwidth and
cache memory; (3) the number of unexplored entries (and MBBs) is reasonably
small since most of irrelevant data objects are pruned at high-level branches of
the R-tree due to its nice clustering property; (4) It is only a one-time cost,
which will be amortized over subsequent queries; and (5) as shown previously,
keeping MBBs in the cache can effectively avoid sending unnecessary queries to
the server. As to be discussed in Section 6, our evaluation demonstrates that the
performance gain outweighs the overhead cost.

With both objects and CRs kept in the cache to preserve a global view of the
dataset, query processing and cache management in CS caching behave differ-
ently from the conventional ones. Fig. 3 that continues the running example in
Fig. 2(b) gives the overview of query processing and cache replacement. Suppose
after Q, the cache content of a client becomes ({e, f, g}, {rN1, rh, ri, rd}) (where
rx is the MBB of ex). Suppose the client moves and issues a query that covers
rN1 (see Fig. 3(a)). The client explores rN1 by querying the server. Then an
object c together with two MBBs, ra and rb, that are part of rN1 are received.
Both are in a finer granularity and they represent other areas of current client
interest. In that sense, query processing resembles as a zooming-in action that
brings more details about queried area into the cache. Memory should be re-
claimed to accommodate new coming objects and other finer CRs if the cache is
full. Suppose an object g is chosen to be removed from the cache (see Fig. 3(b)).
First, rg, a CR for object g is introduced in the g’s position (so that the global
view is preserved) and then g is physically deleted. Further, if more free space is
demanded, rg, rh and ri, three closely located CRs, are coalesced into a single
1 This function is logically supported by the database.
2 If no ambiguity caused, we would use CR and MBB interchangeably.

Caching Complementary Space for Location-Based Services 1025

a
b

c

e

f g

1

2 3 4 91

2

6 7 85

3

4

5

6

7

8

9

(a) Query processing

x

y

0

r
N1

r
h

r
i

r
d

c

e

f
g

1

2 3 4 91

2

6 7 85

3

4

5

6

7

8

9

(b) Cache Replacement

x

y

0

r
h

r
ir

d

r
a

r
b

“Explore r
N1

”
“Converting g to r

g
”

“Coalesce r
g
, r

h
 and r

i
”

Fig. 3. Overview of query processing and cache replacement with CS caching

CR that is cached in a coarser granularity. This cache replacement is analogous
to a zooming-out action that removes the details of an area that is currently not
interested by the client.

In order for query processing and cache replacement to maintain a global view
of the dataset, CS caching reinforces the following integrity requirements:

Requirement 1 Full dataset coverage. At any time, the union of cached
objects, O, and missing objects captured by the set of CRs, R, must equal O,
formally (∪r∈Rm(r)) ∪ O = O. �
This integrity requirement assures that every missing object (/∈ O) is captured
by one of the CRs, r ∈ R. Based on R, a client can determine whether there are
potentially missing objects for a query.

Requirement 2 No CR-object overlap. A CR should not cover any cached
object, formally ∀r ∈ R,m(r) ∩ O = ∅. �

Requirement 3 No full CR-CR containment. No CR is contained in an-
other CR, formally, ∀ri ∈ R, rj ∈ R, i �= j,m(ri) � m(rj). �
The second requirement aims at reducing false misses. The third requirement
eliminates redundant CRs. A CR is redundant if it is already covered by another
CR and thus is safe to remove.

2.3 Related Work

As discussed earlier, semantic caching [2, 3, 4] is query-dependent and provides
limited knowledge about the cached subspace. By fixed space partitioning, chunk-
based caching [7] partitions the semantic space into chunks, independent of query
and object distribution. Every window query is mapped into a set of chunks. Query
fetches chunks from the server if they are not in the cache, regardless of whether
the chunks have objects or not. Without keeping an entire view of semantic space,
chunk-based caching cannot support various kind of queries.

Similar to CS caching, proactive caching [8] supports a number of different
types of spatial queries. It is important to note that these two caching schemes

1026 K.C.K. Lee et al.

are conceptually and functionally different. Proactive caching tightly adheres to
R-tree, yet CS caching does not. Proactive caching maintains traversed index
paths (a portion of index) and a set of objects below the cached index paths in
the cache. The cached partial index enables a client to execute query processing
algorithms as the server does. If a query needs to find any missing index nodes
or objects, the query and all intermediate execution states are shipped to the
server for remaining execution. The cached index path in proactive caching is
the only means to access underlying objects so implicitly the index nodes are
granted higher priority than objects to cache. This has an impact on cached
hit rate because cached index nodes alone (without beneath objects) cannot
make query locally answered. Besides, excessive bandwidth is taken to transmit
index structures which in fact can be reconstructed using objects and CRs as
shown in CS caching. Without the necessity to conform to the R-tree at the
server, CRs can be flexibly coalesced and partitioned for optimizing the cache
performance.

3 Location-Based Query Processing

With the global view maintained in the cache, a location-based query of any
kind can be answered by reusing cached objects and exploring some involved
CRs for missing objects from the server. Generally speaking, query processing
with CS caching is a three-step procedure:

1. Cache probing: Qualified objects in the cache are collected as a tentative
query result and CRs that could contribute to the query result are identified.
The cache probing varies with different types of queries and will be discussed
shortly in Section 3.1.

2. Remainder query processing: If no CR is identified for the query meaning the
query is fully covered by the cache, the query processing terminates here.
Otherwise, the missing objects in the identified CRs need to be requested
from (and possibly checked by) the server. This will be discussed in Sec-
tion 3.2.

3. Cache maintenance: After the remainder query is answered, the newly re-
turned data objects and CRs are admitted to the cache. This invokes the
cache maintenance operations such as cache replacement and CR coalescence
that will be discussed in Section 5.

3.1 Cache Probing

In the following, we informally describe the cache probing for some typical
location-based queries such as window, range, and k nearest neighbors (kNN)
queries3. They are incompatible in nature but can be processed in a similar fash-
ion using CS caching. The outputs of cache probing are cached objects in the
answer set and CRs to be explored in the server via remainder query processing.
3 A range query is specified by a query point and a radius.

Caching Complementary Space for Location-Based Services 1027

rN1

rd

f g rh

ri

1

2 3 4 91

2

6 7 85

3

4

5

6

7

8

9

ed

ef

g rh

ri
1

2 3 4 91

2

6 7 85

3

4

5

6

7

8

9

(a) Window query (QW) (b) NN and kNN query (QNN & Q2NN)

x x

y y

e

0 0

rN1

QW
QNN

qNN

q2NN

Q2NN

Fig. 4. Examples of lookup mechanism for various types of queries

Cache probing for a window (or range) query is pretty straightforward. The
client scans the cached objects and CRs to return those overlapped by the query
window (or range). Figure 4(a) shows an example of a window query, QW . In this
example, cached object, g, and CR, rh, are identified. Without an explicit search
range, cache probe for an NN query expands a search range from a query point
outwards until one object is touched. Then, all CRs within the search range are
identified for further exploring. The extension to handle kNN query is straightfor-
ward by extending the search range to first k covered objects. Fig. 4(b), the client
finds objects f and e, the two closest objects to q2NN of the query Q2NN . The CR
rN1 overlapped with the vicinity circle across e is identified for further exploring.

3.2 Remainder Query Processing

A remainder query is submitted to the server to retrieve missing objects if some
CRs are identified for a query. Besides, refined CRs (i.e., MBBs of those entries
inside submitted CRs but not explored by a query) may be returned. One of
the primary issues in processing remainder queries is “how to express the query”
which has a major impact on the processing cost (in terms of response time and
bandwidth overhead) and the quality of cached information. We examine two
possible approaches: 1) CRs only, and 2) Query+CRs.

The first approach is to submit only the identified CRs treated as window
queries in the server. As shown in Fig. 5(a), a query, Q, overlaps with three
objects, e, f , g and three CRs, rN1, rh, ri. The remainder query in this approach
is expressed as (rN1, rh, ri). Because rN1 covers a large area outside Q’s range,
some extra objects may be returned to the client. Even worse, they would not
be used at all eventually. This approach consumes minimal uplink bandwidth.

The second approach is to submit the original query along with the identified
CRs. The CRs are used as filters for processing of Q in the server. When the
R-tree index is traversed, only the branches overlapped with the CRs are further
explored. The MBBs unexplored by Q and intersecting with the CRs are also
returned (as refined CRs in the original CRs) along with qualified data objects
to the client. As shown in Fig. 5(a), a remainder query in this approach is

1028 K.C.K. Lee et al.

rN1

rd

f g

1

2 3 41

2

6 75

3

4

5

6

7

8

9

(a) Query Q covering e, f, g, rh, rh, rN1

x

y

e

0

Q

rh

ri

8

rN1

P1

P2 P3

Q

(b) CR Partitioning of rN1

rN1

rd

f g

1

2 3 41

2

6 75

3

4

5

6

7

8

9

(c) Request CR Coalescence of rh and ri

x

y

e

0

Q

rh

ri

8

r: coalescence of rh and ri

Fig. 5. Remainder query

expressed as Q+(rN1, rh, ri). With this approach, the downlink cost is expected
to be reduced because a precise set of required objects and a smaller number of
CRs are downloaded.

Delivering a large number of fine-granularity CRs back to the clients may
incur an excessive downlink overhead (and the additional energy consumption
of clients). To address this issue, a client can partition CRs if they are only
partially covered by a query during remainder query preparation. An example is
depicted in Fig. 5(a), CR rN1 is partially covered by a query Q and thus can be
partitioned into three parts, namely, P1, P2 and P3 (as shown in Fig. 5(b)). The
portion, P3, enclosing the overlap between rN1 and Q, is taken to formulate a
remainder query. Thus, rN1 is removed while P1 and P2 are retained as CRs in
the cache. This partitioning may result in some savings of download overhead
because the number of refined CRs in P3 is expected to be smaller than those
in rN1. However, a low precision CR will be resulted like P1 and P3 having
not exact bounding box of enclosed objects. It is also probable that the par-
titioned CRs have no missing object inside. Examining them definitely causes
false misses.

On the other hand, a large number of CRs could be covered by a query.
Submitting all those individual CRs to the server incurs a high upload cost.
Thus, CRs can be merged into a few coarse CRs. This merging of CRs is called
CR coalescence. As shown in Fig. 5(c), rh and ri are coalesced to a coarse CR
r. rN1 and r can be submitted instead, i.e., the remainder query is Q + (r, rN1).
However, the newly formed CR may overlap with some answer objects already
found in the cache. For example, further coalescence of r and rN1 may form a
larger CR, r′, that overlaps with cached objects e, f , and g. Using r′ as request
CR will redundantly fetch these already cached objects.

To tackle this problem, we supplement IDs of overlapped cached objects in
the remainder query as a result filter that removes the objects already cached
from the downlink. Then, the new remainder query becomes Q+(r′)+({e, f, g})
and is sent to the server. It raises a question if an expression Q+(r′)+({e, f, g})
saves more uplink bandwidth than Q + (r, rN1) or other expressions else. This
is an optimization issue in CR coalescence, which will be discussed in Section 4.
Finally, for NN or kNN query processing, instead of exploring all potential CRs

Caching Complementary Space for Location-Based Services 1029

covered by the conservative vicinity circle as described above, we can take an
incremental approach to explore the identified CRs one by one until the answer
set is obtained.

4 CR Coalescence

CRs are essential information to transmit between the client and the server.
An efficient CR coalescence algorithm is needed to condense those overly fine
CRs to save bandwidth. In this section, we first devise a generic CR coalescence
algorithm, based on which two specializations for coalescing CRs in request
messages and in reply messages are derived.

4.1 Generic CR Coalescence Algorithm

Given a set of CRs, R, a coalescence algorithm selects n subsets of R, that is
R′

1, · · · , R′
n (R′

i ⊆ R), to coalesce. Each R′
i is replaced by a newly formed CR

called coalescing CR, denoted by rR′
i
, that is an MBB of all original CRs in R′

i.
Hence, the coalescence operation on R can be described as (R−∪iR

′
i)∪(∪i{rR′

i
}).

The key issue here is to determine the optimal subsets of CRs to be coalesced.
In order to tackle this selection problem, we first formulate a cost model. Every
CR, r, bears a cost, c(r), which measures the performance loss due to missing
objects. The definition of cost function varies with the operation scenario (to be
detailed later in this section). In general, the larger is the region, the higher is the
cost, and the more is the potential performance loss. Therefore, after coalescing
R′

i’s (i = 1, 2, · · · , n), the cost increase is:

total cost increase =
∑

1≤i≤n

(
c(rR′

i
) −

∑

r∈R′
i

c(r)
)
, (1)

but the number of CRs is reduced by:

total CR saving =
(∑

1≤i≤n

|R′
i|
)

− n (2)

Given an expected CR saving, the optimal selection algorithm should mini-
mize the cost increase. Here, we propose a greedy algorithm to choose CRs to
coalesce until an application-dependent termination condition is met. The algo-
rithm is outlined in Fig. 6. At each step, it selects the best pair of CRs to merge.
The “best” means the least cost increase after coalescing the pair of CRs. A
priority queue is used to keep track of the possible CR pairs. Initially, we deter-
mine the best counterpart for each CR in R and coalesce the best pair of CRs.
After coalescence, the original CRs ri and rj are replaced with the coalescing
CR, r{ri,rj}; the CR saving and cost increase are 1 and c(r{ri,rj})− c(ri)− c(rj),
respectively. Based on r{ri,rj}, a new candidate pair is inserted to the queue.
The algorithm continues until the termination condition is satisfied. The termi-
nation condition can be specified by limiting the number of CRs coalesced so

1030 K.C.K. Lee et al.

Algorithm. GenericCRCoalescence(R: a set of CRs)
Input/output: R: a set of CRs;
Local: Q: priority queue;
Begin
1 foreach r ∈ R do
2 find r’s best counterpart CR, r′ from R − {r};
3 push (r, r′, anticipated cost increase) into Q;
4 while (termination condition is not satisfied) do
5 pop (ri, rj , anticipated cost increase) from Q;
6 r ← coalesce(ra, rb);
7 replace ri and rj with r in R;
8 find r’s best partner CR, r′ from R − {r};
9 push (r, r′, anticipated cost increase) into Q;
10 output R;
End.

Fig. 6. Generic CR coalescence algorithm

that the remaining number of CRs can be controlled or by setting a threshold
on cost increase metric that guarantees the CR fineness. In the following two
subsections, we shall derive specific coalescence techniques for coalescing CRs in
requests (request CRs) and CRs in replies (reply CRs).

4.2 Client Request CR Coalescence

In Section 3.2, we briefly discussed the issue of request CR coalescence and raised
the question about what CRs should be coalesced. Here, we address this problem
with our generic coalescence algorithm described above. Let r be a CR. We set
the cost of r, c(r), as the number of objects covered by r. As the size of remainder
query is our main concern in coalescing request CRs, we aim at maximizing the
overhead reduction specified below:

overhead reduction = total CR saving × CR size −
total cost increase × object ID size.

(3)

This expression considers the volume saved by CR coalescence (CR saving) and
the overhead of including additional object IDs (cost increase). Reconsider the
situation in Fig. 5(c), rh and ri can be coalesced to form a coalescing CR, r,
with 1 CR saved and no object included, i.e., c(r) = 0. Further, coalescing r and
rN1 into r′ has 1 more CR saved but covers three objects, i.e., c(r′) = 3. As a
CR and an object ID respectively take 16 bytes and 4 bytes, the total overhead
reduction for taking r′ and {e, f, g} is 32 − 12 = 20 and that for taking r and
rN1 is 16. Thus, both r′ and {e, f, g} are used to express the remainder query.

4.3 Server Reply CR Coalescence

Very often, portions of CRs, submitted as remainder queries, might not be fully
explored for answering queries in the Query + CRs approach. Thus, refined CRs

Caching Complementary Space for Location-Based Services 1031

are returned to the client along with the answer objects. To save the downlink
cost, the server reply CRs can be coalesced. The optimization should consider
reducing the number of CRs while retaining the quality of CRs such that a
low false miss rate can be achieved. We associate CR quality with some quan-
titative metrics by defining cost function c(r) for a CR r based on different
heuristics:

– Area. Generally, the larger the area of a CR, the more likely the CR provides
a higher false miss rate since it may include more empty regions in which no
objects exist. Therefore, c(r) is set to the area of r, area(r). In this case, we
expect a smaller average size of coalescing CRs.

– Distance. With spatial access locality, the closer is the CR located to the
user location, the more likely is the CR to be accessed in the near future. It
is thus important to have a fine granularity for those nearby CRs. Hence, we
model c(r) as the inverse of its distance to the user, i.e., 1/dist(r). In this
case, we expect to coalesce farther CRs.

– Area By Distance. Area and distance are two orthogonal factors and they
can be used in setting the cost c(r), i.e., area(r)/dist(r).

Server reply CR coalescence can save download cost but it also haunts the CR
quality. To balance the transmission overhead saving and the quality of coalesced
CRs, we limit the CR saving. In our implementation, we set a threshold that is
the percentage of the total number of CRs before coalescence. When the number
of remained CRs falls below the threshold, the coalescence terminates. Note that
server reply CR coalescence has an additional constraint in coalescing CRs. If a
coalesced CR contains some returning objects, the corresponding coalescence is
prohibited because the resultant CR is highly possible to give a false miss if the
client issues the same queries later (see Requirement 2 in Section 2.2).

5 Cache Management

As CS caching keeps both objects and CRs to preserve the global view of a
dataset, its cache management is totally different from conventional ones that
cache homogeneous caching units such as data objects. In this section, we discuss
the CS cache organization and two cache space allocation strategies, followed by
description of the cache CR coalescence and the cache replacement algorithm.

5.1 Cache Organization

The cache memory is structured as a table. Each table entry is of equal size and
large enough to accommodate either one object or a collection of CRs. A table
entry assigned to maintain CRs (called CR entry) keeps at most n CRs and one
coalescing CR, which is an MBB enclosing all the CRs within this entry with n
the capacity of a CR entry. Each stored CR has a timestamp about the latest
access time. The coalescing CR facilitates fast CR lookup and CR coalescence
in the cache, serving cache replacement.

1032 K.C.K. Lee et al.

The admission of an object is straightforward, i.e., finding a vacant entry to
accommodate the object. The admission of CRs is handled in a way similar to R-
tree insertion. A CR entry is chosen to store the admitted CRs if the expansion of
its coalescing CR after insertion is the smallest among all candidate CR entries.
If a CR entry overflows after insertion, all CRs (except the coalescing CR) are
migrated to other CR entries with free space. If the space is insufficient, the
collection of CRs in a CR entry are split into two groups and each group is
placed into two CR entries. Deletion removes a CR from an entry. To maintain
high occupancy, an occupancy threshold is set4. An underflowed entry (i.e., its
occupancy below the threshold) is removed and all its CRs (except the coalescing
CR) are re-inserted to other CR entries.

We propose two possible space allocation strategies, namely static allocation
and dynamic allocation. For static allocation, cache memory is split into two
portions with each dedicated to caching objects or CRs. Dynamic allocation has
no fixed portions and treats objects and CRs in the same way to exploit higher
flexibility in space utilization.

5.2 Cache CR Coalescence

Cache CR coalescence replaces a set of fine CRs with a bounding CR in a coarser
granularity to release cache space. The efficiency of CR coalescence is crucial to
the performance when cache replacement occurs frequently. Therefore, instead
of using the generic algorithm described in Section 4, we adopt a pre-clustering
technique that groups CRs in the same CR entry into their corresponding coa-
lescing CR.

The pre-clustering of CRs is performed when CRs are admitted to the cache
(as described in Section 5.1). We use minimal expansion of coalescing CRs as
the criteria to determine which CR entry a new CR can be inserted into. Since
the coalescing CR in a CR entry readily represents the result of coalescing all
CRs in the entry, we can quickly perform CR coalescence to release a CR entry
by looking up the coalescing CRs only.

5.3 Cache Replacement

Cache replacement in CS caching is responsible not only for fitting objects and
CRs in the cache but also for balancing the granularity of different portions of
the global view (in terms of objects and CRs) maintained in the cache. An object
removal is performed as converting the object to a CR. A CR removal implies
coalescence of a set of CRs. However, to make cache replacement efficient, usually
all CRs in a victim CR entry will be removed by inserting its coalescing CR
into another CR entry. In the following, we discuss the replacement algorithms
corresponding to both static allocation and dynamic allocation.

Static allocation. Replacement starts in the object portion. If the object por-
tion is full, victim objects are removed by transforming them into CRs, which

4 Our simulation uses n/2 where n is the capacity of a CR entry.

Caching Complementary Space for Location-Based Services 1033

are put to the CR portion. If a CR portion is full, victim CR entries are chosen to
remove and their coalescing CRs are re-inserted to the CR portion. The victim
selection (i.e. cache replacement policy) is based on LRU and FAR [9] heuristics.
For FAR heuristic, distance is measured between the current client position and
the anticipated CR (either resulted from object deletion or CR coalescence).

Dynamic allocation. Both object replacement and CR coalescence can make
room for new objects and CRs. Cache replacement policy for both operations is
crucial for ensuring the overall cache performance. In order to prioritize object
replacement and CR coalescence which are totally different in nature, we use a
replacement score based on the expected reloading cost of objects or CRs. Let
sizeo and sizer denote the object size and the CR size respectively, and ρ denote
the access probability of an entity (either an object or a CR). In this work, we
consider access probability based on LRU and FAR. The communication cost
of reloading an object from the server is ρ × sizeo and that of reloading CRs is
ρ × m × sizer, where m is the number of CRs involved in the CR coalescence.
Taking the reloading cost as a replacement score, we describe our cache replace-
ment operation as follows. We maintain a priority queue of existing table entries.
The queue always returns one entry with the least reloading cost. If a table en-
try is retrieved from the queue, it is freed to accommodate the new object and
the newly formed CR (resulted from conversion of object or CR coalescence)
is inserted back to an appropriate CR entry. Similarly, CRs downloaded from
the server are inserted to CR entries. It may be the case that a CR entry over-
flows and additional entry space is required. Then, an additional entry space
is reclaimed as that for a new incoming object. It might be possible that the
newly formed CR entry whose reloading cost is less than those in the queue.
In this case, CR coalescence is immediately performed and the coalescing CR is
re-inserted to the cache.

6 Performance Evaluation

We conduct a performance evaluation on our proposal based on a simulation
developed in C++. In the simulation, there are only one client and one server
communicating via a point-to-point wireless channel with bandwidth of 384Kbps,
the typical capacity of 3G network. The server maintains a synthetic dataset with
100,000 point objects uniformly distributed in a unit square of [1, 1] and indexed
with a R*tree [10] which has a node page size of 1Kbytes and its maximum
fanout is 50. The size of each object is ranged from 64, 128, 256 to 512 bytes.
The client has 128 Kbyte cache memory. In the experiments, client movement
patterns are generated based on two well known mobility models, Manhattan
Grid model and Random Waypoint, using BonnMotion [11]. For Manhattan
Grid model, we set the mean speed to 1 × 10−3/sec and standard deviation to
0.2×10−3/sec. For Random Waypoint model, we set the speed ranging between
0.5×10−3/sec to 1.5×10−3/sec. The maximum think times (i.e., time duration
that the client remains stationary during moving path change) for both models
are set to 60 seconds. Meanwhile, we generate a query workload with query

1034 K.C.K. Lee et al.

inter-arrival time following the exponential distribution with mean varying from
10 to 30 at step of 10 (seconds). We assume that the client issues queries along
her journey. We examine three types of queries: 1) range queries (with radius of
5 × 10−3 to 10 × 10−3), 2) window queries (with window size of (10 × 10−3)2 to
(20×10−3)2), and 3) kNN (with k ∈ [10, 20]). Each type of queries has the same
weight in our experiments. The simulation runs for 10,000 seconds.

The performance metrics used in our evaluation include response time, band-
width consumption, cache hit ratio and answerability while the answerability mea-
sures how many queries can be completely answered by the client cache without
the server help. In addition to our proposed CS caching scheme, we implement
Chunk-based caching [7], Semantic caching [2, 12], and Proactive caching [8] for
comparison. Note that the chunk-based caching only supports window queries.
Semantic caching supports window and kNN queries by caching two types of se-
mantic regions. However, each type of semantic regions can only support queries
of the same type. Proactive caching keeping a portion of R-tree index can support
all queries we considered. When a client receives a query that is not supported,
it requests the server to process it and results of these queries are not cached.

6.1 Evaluation 1. Performance of Caching Schemes

We first examine the performance of different caching schemes, namely, Semantic,
Chunk-based, Proactive and CSC in terms of response time, bandwidth (both upload
and download) and cache hit ratio. For CSC, remainder queries are expressed as
Query + CRs, with CR partitioning and both request and reply CR coalescence.
The Manhattan Gird model is adopted. The result is depicted in Fig. 7 (where
the cache size and object size are fixed at 128KByte and 256 bytes, respectively).

From the plots, we can see that CSC outperforms the rest in all metrics for its
effectiveness in supporting different queries, the efficient use of cache memory,
and the low overhead in data transmission. Semantic is the weakest among all
because it maintains two types of semantic regions that may result in an overlap
of cached objects, in turn degrading the effective use of cache (as indicated by
its low cache hit ratio). Chunk-based performs better since chunks contain extra
objects that can be used to answer later window queries, thus outweighing some
loss in processing kNN and range queries. Proactive performs worse than Chunk
because the cached partial server index reduces the availability of cache memory
for data objects. This evaluation validates CSC for location-based services.

Response time (sec)

0.5

1.0

1.5

2.0

2.5

10 20 30

Semantic
Chunk-based
Proactive
Q+CRs (p+c)

Query interval

Total bandwidth (bytes)

2000

4000

6000

8000

10000

12000

10 20 30

Semantic
Chunk-based
Proactive
CSC

Query interval

Cache hit ratio

10%

20%

30%

40%

50%

60%

70%

10 20 30

Semantic
Chunk-based
Proactive
CSC

Query interval(a) (b) (c)

Fig. 7. Performance of caching schemes on query interval

Caching Complementary Space for Location-Based Services 1035

Response time (sec)

0.0

0.5

1.0

1.5

2.0

64K 128K 256K 512K

Semantic Chunk
Proactive CSC

Cache size

2000.0

4000.0

6000.0

8000.0

10000.0

12000.0

64K 128K 256K 512K

Semantic
Chunk
Proactive
CSC

Total Bandwidth (bytes)

10%

20%

30%

40%

50%

60%

70%

64K 128K 256K 512K

Semantic
Chunk-based
Proactive
CSC

Cache size Cache size

Cache hit ratio

(a) (b) (c)

Fig. 8. Performance of caching schemes on cache size

Response time (sec)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

128 256 512

Semantic
Chunk-based
Proactive
CSC

Object size

0.0

5000.0

10000.0

15000.0

20000.0

128 256 512

Semantic
Chunk-based
Proactive
CSC

Total Bandwidth (bytes)

Object size

10%

20%

30%

40%

50%

60%

70%

128 256 512

Semantic
Chunk-based
Proactive
CSC

Cache hit ratio

Object size(a) (b) (c)

Fig. 9. Performance of caching schemes on object size

In addition, we study the impact of cache size on caching schemes. In Fig. 8
(where the object size is fixed at 256 bytes and the mean query inter-arrival
time is 20 seconds), the response time of Semantic and Chunk-based is shown to be
more or less invariant since they use cache space to maintain the query results
they support. In effect, they may not fully utilize the space. For CSC, response
time is a bit higher when cache size is 64K. For Proactive, response time drops
when more space is available to store the index nodes.

In Fig. 9 (where the cache size is 128K and mean query inter-arrival time is 20
seconds), all caching schemes show that the larger the object size, the longer the
expected response time. As the object size is increased, the cache hit is reduced
accordingly because less objects are cached. The download cost, a major time
consuming component, also increases when larger objects are experimented. For
the same reasons discussed in above two settings, CSC is shown superior to others.

6.2 Evaluation 2. Performance of Remainder Query Expressions

Here we evaluate three different forms of remainder queries, i.e., original query
plus CRs (denoted as Q+CRs), Q+CRs with partitioning (denoted as Q+CRs (p)),
and Q+CRs with both partitioning and client request CR coalescence (denoted
as Q+CRs (p+c)). These three forms of remainder queries have the same cache hit
(so the plot is not shown to save space). Also, we have evaluated the remainder
query with CRs only but its performance is much worse. The plot is not shown
for space saving. The difference in their performance is due to the compression
and improved precision of CRs. Using partitioning (i.e., Q+CRs (p) and Q+CRs
(p+c)), the client avoids downloading extra CRs (see Fig. 10(c)). The response

1036 K.C.K. Lee et al.

Upload bandwidth

0

50

100

150

200

250

10 20 30

Q+CRs
Q+CRs (p)
Q+CRs (p+c)

2000

4000

6000

8000

10000

10 20 30

Q+CRs
Q+CRs (p)
Q+CRs (p+c)

Response time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

10 20 30

Q+CRs
Q+CRs (p)
Q+CRs (p+c)

Answerability

0%

10%

20%

30%

40%

50%

10 20 30

Q+CRs
Q+CRs (p)
Q+CRs (p+c)

Download bandwidth

Query interval Query interval Query interval Query interval(a) (b) (c) (d)

Fig. 10. Performance of using all remainder query expressions

time is also shortened in Fig. 10(a). However, the answerability is much lower
than the basic Q+CRs because the CRs partitioned by the client are less precise
(see Fig. 10(d)). Both of Q+CRs (p) and Q+CRs (p+c) can only answer 10% of
queries without the server help while the Q+CRs needs to do that for 33% of
time. Finally, the CR coalescence Q+CRs (p+c) is shown to be very effective
in reducing the uplink bandwidth (see Fig. 10(b)). It saves almost 50% uplink
bandwidth compared with Q+CRs (p). This saving is important because mobile
clients consume more energy in sending packets than receiving packets.

6.3 Evaluation 3. Performance of Server Reply CR Coalescence

We study three heuristics, Area, Distance, and Area By Distance, used in coalescing
CRs in server replies (see Fig. 11). We assume that remainder queries are sent in
form of Q+CRs. We vary the percentage of CRs coalesced (where 0% means no
coalescence) to observe its impact on response time and total bandwidth. Area is
generally not a good heuristic because CRs close to the query are often of smaller
area. Forming coarse CRs with those close CRs will degrade the cache perfor-
mance since those close CRs are likely to be accessed. However, Area By Distance
can provide very good performance (even better than Distance). Balancing on
client location and CR size renders an appropriate granularity for returned CRs.

6.4 Evaluation 4. Performance of Cache Management

Finally, we study the two space allocation strategies, i.e., static allocation (Static)
and dynamic allocation (Dynamic). For Static, we allocate x percent of cache
storage for CRs. As shown in Fig. 12(a), Dynamic generally performs the best in
term of response time. For Static, we can see that increasing cache space for CRs
from 10% to 20% improves the response time but not when it is increased 25% as
reflected by their corresponding cache hit ratios (shown in Fig. 12(a)). The more
cache space allocated to CRs, the less cache space is available for objects, so the
cache hit ratio drops when the CR portion of cache expands. Though Static 10%
and Static 20% by allocating less space to CRs have higher cache hit ratios than
Dynamic, they hold overly coarse CRs and result in a high false miss rate, which
in turn increases the response time. For cache management, we also tested cache
replacement using FAR and LRU policies upon different moving model. FAR
generally outperforms LRU. The results are not shown due to limited space.

Caching Complementary Space for Location-Based Services 1037

3000

4000

5000

6000

7000

0 40 80

Distance
Area
Area/Distance

Response time (sec)

0.0

0.5

1.0

1.5

0 40 80

Distance

Area

Area/Distance

%reply CRs coalesced %reply CRs coalesced(a) (b)

Download Bandwidth (bytes)

Fig. 11. Performance of heuristics in server reply CR coalescence

Response time (second)

0.5

1.0

1.5

2.0

10 20 30

Static 10%
Static 15%
Static 20%
Static 25%
Dynamic

Query interval

Cache hit ratio

30%
35%
40%
45%
50%
55%
60%
65%

10 20 30

Static 10%
Static 15%
Static 20%
Static 25%
Dynamic

Query interval

Fig. 12. Performance of cache allocation strategies

7 Future Works

As for the next steps of this research, we plan to study the issues of cache coher-
ence caused by updates. We also plan to perform a more extensive performance
evaluation to bring out more insights. Finally, we plan to prototype the system
and to perform the feasibility test in a realistic mobile computing environment.

Acknowledgements

In this research, Wang-Chien Lee and Ken C.K. Lee were supported in part by
US National Science Foundation grant IIS-0328881. Baihua Zheng’s work was
partially supported by the Office of Research, Singapore Management University.
Jianliang Xu’s work was partially supported by grants from the Research Grants
Council, HKSAR, China (Project Nos. HKBU 2115/05E and FRG/04-05/II-26).

References

1. Schiller, J.H., Voisard, A., eds.: Location-Based Services. Morgan Kaufmann (2004)
2. Dar, S., Franklin, M.J., Jónsson, B.T., Srivastava, D., Tan, M.: Semantic data

caching and replacement. In: Proc. of 22th International Conference on Very Large
Data Bases (VLDB), Bombay, India, Sep 3-6. (1996) 330–341

3. Lee, K.C., Leong, H.V., Si, A.: Semantic query caching in a mobile environment.
ACM Mobile Computing and Communication Review (MC2R) 3 (1999) 28–36

4. Ren, Q., Dunham, M.H., Kumar, V.: Semantic Caching and Query Processing.
IEEE Trans. on Knowledge and Data Engineering (TKDE) 15 (2003) 192–210

1038 K.C.K. Lee et al.

5. Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In: Proc.
of the ACM SIGMOD International Conference on Management of Data, Boston,
MA, Jun 18-21. (1984) 47–57

6. Roussopoulos, N., Kelly, S., Vincent, F.: Nearest Neighbor Queries. In: Proc. of
the 1995 ACM SIGMOD International Conference on Management of Data, San
Jose, CA, USA, May 22-25. (1995) 71–79

7. Deshpande, P.M., Ramasamy, K., Shukla, A., Naughton, J.F.: Caching Multi-
dimensional Queries Using Chunks. In: Proc. of the ACM SIGMOD Interna-
tional Conference on Management of Data, San Diego, CA, USA, Jun 9-12. (1998)
259–270

8. Hu, H., Xu, J., Wong, W.S., Zheng, B., Lee, D.L., Lee, W.C.: Proactive Caching
for Spatial Queries in Mobile Environments. In: Proc. of the 21st International
Conference on Data Engineering (ICDE), Tokyo, Japan, Apr 5-8. (2005) 403–414

9. Ren, Q., Dunham, M.H.: Using Semantic Caching to Manage Location Dependent
Data in Mobile Computing. In: Proc. of the International Conference on Mo-
bile Computing and Networking (Mobicom), Boston, MA, USA, Aug 6-11. (2000)
210–221

10. Backmann, N., Kriegel, H.P., Schneider, R., Seegar, B.: The R*-Tree: An Efficient
and Robust Access Method for Points and Rectangles. In: Proc. of the ACM
SIGMOD International Conference on Management of Data, Atlantic City, NJ,
USA, May 23-25. (1990) 322–331

11. BonnMotion: A mobility scenario generation and analysis tool. (website:
http://web.informatik.uni-bonn.de/IV/Mitarbeiter/dewaal/BonnMotion/)

12. Zheng, B., Lee, W.C., Lee, D.L.: On Semantic Caching and Query Scheduling for
Mobile Nearest-Neighbor Search. Wireless Networks 10 (2004) 653–664

	Introduction
	Complementary Space Caching
	Preliminaries
	Complementary Space Caching Model
	Related Work

	Location-Based Query Processing
	Cache Probing
	Remainder Query Processing

	CR Coalescence
	Generic CR Coalescence Algorithm
	Client Request CR Coalescence
	Server Reply CR Coalescence

	Cache Management
	Cache Organization
	Cache CR Coalescence
	Cache Replacement

	Performance Evaluation
	Evaluation 1. Performance of Caching Schemes
	Evaluation 2. Performance of Remainder Query Expressions
	Evaluation 3. Performance of Server Reply CR Coalescence
	Evaluation 4. Performance of Cache Management

	Future Works

