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Wireless video is themain driver for rapid growth in cellular data tra	c. Traditional methods for network capacity increase are very
costly and do not exploit the unique features of video, especially asynchronous content reuse. In this paper we give an overview of
our work that proposed and detailed a new transmission paradigm exploiting content reuse and the widespread availability of low-
cost storage. Our network structure uses caching in helper stations (femtocaching) and/or devices, combined with highly spectrally
e	cient short-range communications to deliver video 
les. For femtocaching, we develop optimum storage schemes and dynamic
streaming policies that optimize video quality. For caching on devices, combined with device-to-device (D2D) communications,
we show that communications within clusters of mobile stations should be used; the cluster size can be adjusted to optimize the
tradeo� between frequency reuse and the probability that a device 
nds a desired 
le cached by another device in the same cluster.
In many situations the network throughput increases linearly with the number of users, and the tradeo� between throughput and
outage is better than in traditional base-station centric systems. Simulation results with realistic numbers of users and channel
conditions show that network throughput can be increased by two orders of magnitude compared to conventional schemes.

1. Introduction

Demand for video content over wireless networks has grown
signi
cantly in recent years and shows no sign of letting
up. According to the Cisco Visual Networking Index mobile
forecast for 2012–2017, mobile video data is expected to grow
at a compound annual growth rate of 75 percent to 7.4 exabyes
(onemillion gigabytes) by 2017 [1]. By this time, it is expected
to be 66.5 percent of global mobile tra	c data (11.2 exabytes),
up from 51 percent in 2012. We expect both broadcast
and on-demand services will continue to expand, including
traditional services like streaming TV content (e.g., sporting
events) and newer services like video Twitter, video blogging,
cloud-based live video broadcasting, and mobile-to-mobile
video conferencing and sharing. Meanwhile, hardware plat-
forms (smart phones, tablets, notebooks, television/set-top
boxes, and in-vehicle infotainment systems) continue to push

the envelope in performance and graphical quality. More
capable processors, better performing graphics, increased
storage capacities, and larger displays make devices more
powerful and intelligent than ever before. With this increase
in device capability comes a corresponding increase in
demand for high-quality video data, for example, increasing
demand for high-de
nition (HD) and 3D data types.

As demand for video tra	c continues to grow, the
quality of experience (QoE) delivered for this tra	c becomes
increasingly important. From a 2013 report by Conviva [2],
39.3% of video views experienced bu�ering, 4% of views
failed to start, and 63% of the views experienced low res-
olution. In addition, other reports [3, 4] have shown that
these poor QoE events directly impact a user’s engagement in
viewing the video and hence potential revenue from videos.

�e implications of these trends for future wireless
networks are signi
cant. While continued evolution in
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spectral e	ciency is to be expected, the maturity of
MIMO, air interfaces using OFDM/OFDMA, and Shan-
non capacity-approaching codes mean that such spectral-
e	ciency improvements will not deliver the increased capac-
ity needed to support future demand for video data. Addi-
tional measures like the brute force expansion of wireless
infrastructure (number of cells) and the licensing of more
spectrum, while clearly addressing the problem of network
capacity, may be prohibitively expensive, require signi
cant
time to implement, or be infeasible due to prior spectrum
allocations which are not easily modi
ed.

Recognizing these challenges, Intel and several industry
partners jointly developed a program to explore nonincre-
mental, systems-level solutions through university research.
Known as video aware wireless networks or simply VAWN,
the program considers various approaches to enabling a
higher capacity in future wireless networks and to enabling
a higher quality of user experience for video and video-
based services delivered over wireless networks to intelligent
mobile devices. Broad strategies explored in the program
include unconventional optimizations in video transport
within the network, optimizations in video processing to
reduce network transmission requirements and improve user
experience, and novel network architectures better suited
to address future capacity and quality of service challenges
speci
c to video.

�e approach taken by the group at the University
of Southern California (including several of the authors)
exploits a unique feature of wireless video, namely, the high
degree of (asynchronous) content reuse. Based on the fact that
storage is cheap and ubiquitous in today’s wireless devices,
this group developed a newnetwork structure that is based on
replacing backhaul by caching. �is approach, 
rst proposed
by the USC group in 2010 [5] and expounded and re
ned in a
series of papers [6–15], is at the center of the present overview.

A 
rst approach for exploiting asynchronous content
reuse, termed Femtocaching, uses dedicated “helper nodes”
that can cache popular 
les and serve requests from wireless
users by enabling localized wireless communication. Such
helper nodes are similar to femto-BSs, but they have two
key di�erences: they have added a large storage. while they
do not have or need a high-speed backhaul (Note that
storage space has become exceedingly cheap: 2 TByte of
data storage capacity, enough to store 1000 movies, cost
only about $100.). An even higher density of caching can
be achieved by using devices themselves as video caches, in
other words, using devices such as tablets and laptops (which
nowadays have ample storage) as mobile helper stations [7].
�e simplest way of using this storage would have each
user cache the most popular 
les. However, this approach
is not e	cient because many users are interested in similar

les, and thus the same videos will be duplicated on a large
number of devices. On the other hand, the cache on each
device is too small to cache a reasonably large number
of 
les. �us, it is preferable that the devices “pool” their
caching resources, so that di�erent devices cache di�erent

les and then exchange them, when the occasion arises,
through short-range, highly spectrally e	cient, device-to-
device (D2D) communications. If a requesting device does

not 
nd the 
le in its neighborhood (or in its own cache),
it obtains the 
le in the traditional manner from the base
station (the base station can also control any occuring D2D
communications).

�e remainder of the paper is organized as follows: in
Section 2, we describe video coding and video streaming
techniques, as well as content reuse and viewing habits.
�e principle of the new network structure is described
in Section 3. �e placement of 
les in helper nodes and
devices is discussed in Section 4. Fundamental results about
throughput and outage in networks with helper stations and
D2D communications are described in Sections 5 and 6,
respectively. Conclusions in Section 7 round o� the paper.

2. Dynamically Managing Video
Quality of Experience

2.1. Video Streaming and Quality Management. Wireless
channels are inherently dynamic and time-varying depend-
ing on a number of factors: (i) movement of device (walking,
driving), (ii) changes in the re�ectors in the environment
(people moving, objects moving), (iii) changes in location
(indoors, outdoors), (iv) changes in selected wireless network
(WiFi, cellular), and (v) changes in the amount of tra	c
using the network (i.e., congestion). For data and web-
based applications, some latency due to changes in available
network capacity, while annoying, can be tolerated. However,
for video-based applications (especially interactive video
conferencing, but also—depending on bu�ering capability—
for video playback), simply treating data communications
as latency tolerant is not su	cient. In order to improve the
end user quality of experience (QoE), it is o�en desirable to
adapt the rate of the streamed video using techniques that
take into account such factors as the type of video being
streamed (fast motion, complex scenes, and interactive), the
available capacity of the network, time variations in network
and channel state, client device information (screen size, etc.),
and playback bu�er state. �is section will describe some
mechanisms for achieving this dynamic adaptation and the
role of emerging standards.

Figure 1 illustrates the potential opportunities for man-
aging streaming video tra	c in intelligent ways. �e 
gure
shows a simpli
ed view of an end-to-end system, including
a video server (le�), an end rendering device (right), and
the network lying in between. Note that opportunities exist
in all three domains of the end-to-end system. For exam-
ple, the video server may accommodate di�erent devices
by supporting multiple streaming rates, or multiple copies
(formats, bitrates) of the video content. Alternatively, a server
may choose to transcode streamed video on the �y. �e
decision of whether to transcode or storemultiple copiesmay
depend on cost, complexity, and performance considerations.
Video management opportunities in the network include,
for example, support for content caching. How much and
how o�en may depend on the popularity of the content, and
whether the details of a particular network architecture make
storing content feasible and inexpensive. At the rendering
device, opportunities exist for choosing among multiple
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Figure 1: Simpli
ed end-to-end system for video streaming.

video streaming rates given user preferences and making
dynamic adjustments during a playback session in response
to changes in wireless channel state. Such adjustments may
select among the bitrates available from a video source and/or
make changes to the display application’s bu�ering strategy.

To better improve user playback experience and to
improve the e	ciency of data storage and transport, we
believe quality of experience (QoE) will be a key metric in
future video streaming management. Measures of QoE may
take into account the quality of the displayed video (res-
olution, compression artifacts), rebu�ering events, and lost
packets. QoE metrics provide an alternative to throughput-
based approaches which rely on the o�en mistaken assump-
tion that higher bitrates invariably mean higher playback
quality. A key challenge here, however, is e�ectively esti-
mating video quality independent of bitrate. Fortunately, a
great deal of progress has been made recently by researchers
estimating video quality based on both device and con-
tent characteristics (see [16–18]). For instance, no-reference
approaches to video quality assessment (VQA) can exploit
natural video statistics (e.g., DCT) and movement coherency
to predict perceived distortions [19]. �is information, along
with information on channel state, can be used to make
automated adjustments in video bitrate at the server or
bu�ering at the display device [17]. In general, QoE metrics
enable new opportunities for tighter collaboration between
each part of the end-to-end system shown in Figure 1 and for
more intelligent control algorithms.

Enhancements to emerging standards are helping to
promote QoE-based optimization within end-to-end sys-
tems. In particular, standards supporting Dynamic Adaptive
Streaming over HTTP (DASH) are being developed by the
MPEG and 3GPP standards bodies (see [20–31]). Two recent
additions to these standards are (1) the inclusion of QoE
feedback metrics from the device to the network and (2)
support for providing QoE metrics along with video content
that is sent to a device. (In some cases, video QoE metrics

can also be computed directly by the end device.) �ese
additions are important because they enable better system-
wide optimization of video transport based on the end
user QoE. For example, the device can decide which future
segments to request based on the current status of its playback
bu�er and known quality levels of upcoming segments. �is
supports a more intelligent balancing of playback quality and
rebu�ering risk. �e network can also make more informed
decisions on how to allocate available bandwidth across
multiple competing video �ows by optimizing the quality
jointly across all of them. Using rate-distortion information

(a measure of video quality) and playback bu�er state for
each �ow, for instance, a network scheduler can implement
QoE-based resource allocation as an alternative to standard
proportionally fair throughput schemes.

2.2. Content Reuse. Wireless video distinguishes itself from
other wireless content through its strong content reuse; that
is, the same content is seen by a large number of people.
However, in contrast to TV, the bulk of wireless video tra	c
is due to asynchronous video on demand, where users request
video 
les from some cloud-based server at arbitrary times.
As indicated in Section 1, caching can exploit content overlap,
even in the presence of asynchronous requests. In other words,
a few popular videos (YouTube clips, sports highlights, and
movies) account for a considerable percentage of video tra	c
on the Internet, even though they are viewed at di�erent
times by di�erent people. Numerous experimental studies
have indicated that Zipf distributions are good models for
the measured popularity of video 
les [32–34]. Under this
model, the frequency of the �th popular 
le, denoted by��(�),
is inversely proportional to its rank:

�� (�) = 1/���
∑��=1 (1/���) , 1 ≤ � ≤ 
. (1)
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Figure 2: A sample network scenario with multiple helpers and
users and a mobile user (green path).

�e Zipf exponent �� characterizes the distribution by con-
trolling the relative popularity of 
les. Larger �� exponents
correspond to higher content reuse; that is, the 
rst few
popular 
les account for the majority of requests. Here, 

is the size of the library of 
les that are of interest to the
set of considered users (note that the library size can be a
function of the number of considered users �; we assume in
the following that
 increases like ��, where  ≥ 0).

A further important property of the library is that it
changes only on a fairly slow timescale (several days or
weeks); it can furthermore be shaped by content providers,
for example, through pricing policies, or other means.

Note, however, some caveats concerning the general
applicability of the work in the remainder of the paper. It
applies principally to a setting where a content library of
relatively large 
les (e.g., movies and TV shows) is refreshed
relatively slowly (e.g., on a daily basis) and where the number
of users consuming such a library is signi
cantly larger
than the number of items in the library. �is may apply to
a possible future implementation of movie services, while
collections of short videos (like YouTube) show wider ranges
of interests. In short, this paper re�ects a set of results and
approaches that are relevant in the case where the caching
phase (placement of content in the caches) occurs with a clear
time-scale separation with respect to the delivery phase (the
process of delivering video packets for streaming to the users)
and where the size of the content library is moderate with
respect to the users’ population.

3. Network Structure

3.1. Helper Stations and File Requests. We 
rst consider the
network structure with helper stations. �e wireless network
consists of multiple helper stations H, talking to multiple
users U; a central base station may be present to serve users
that cannot 
nd the 
les they want in the helper stations.
An example network is shown in Figure 2, which describes

Figure 3: An illustration of D2D caching networks, where each user
(device) can cache� 
les and we let users be served through high
spectral-e	ciency D2D links denoted by solid lines in the 
gure.
�e dotted lines denote the controlling signal from the base station
to the devices.

a sample network scenario with multiple helpers and users.
Each user requests a video 
le from a library F of possible

les. We denote the set of helpers in the vicinity of user � as
N(�). Similarly,N(ℎ) denotes the set of users in the vicinity
of helper ℎ. �e helpers may not have access to the whole
video library, because of backhaul constraints and/or caching
constraints. In general, we denote byH(�) the set of helpers
that contain 
le � ∈ F. Hence, user � requesting 
le �� can
only download video chunks from helpers in the setN(�) ∩
H(��). In Section 5, we consider the problem of devising a
dynamic scheduling scheme such that helpers feed the video

les sequentially (chunk by chunk) to the requesting users.
Given the high density of helpers, any user is typically in the
range of multiple helpers. Hence, in order to cope with user-
helper association, load balancing, and intercell interference,
an e	cient video streaming policy is described in Section 5
which allows the users to dynamically select the helper node
to download from and determine adaptively the video quality
level of the download.

3.2. Device-to-Device (D2D) Caching Networks. When users
also have the ability of prefetching (video) 
les, instead of
requesting the 
les from the base station or the helpers, we
allow users to make requests from other users and get served
via high-spectral-e	ciency D2D links (see Figure 3). If the
D2D links are not available for some users (see Section 6.2),
then these unserved users are treated as in outage and in
practice; they can be simply served by the base station or the
helpers. To make the network model tractable, we consider
the download of the video 
les instead of streaming and
neglect the issue of rate adaptation. In addition, we consider
a simple grid structure, which is formed by � user nodesU ={1, . . . , �} placed on a regular grid on the unit square, with
minimum distance 1/√�. (See Figure 4(a); we will replace
this grid structure by the random uniform distribution of
the nodes when mentioned speci
cally.) Let each user � ∈ U
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Figure 4: (a) Grid network with � = 49 nodes (black circles) withminimum separation � = 1/√�. (b) An example of single-cell layout and the
interference avoidance TDMA scheme. In this 
gure, each square represents a cluster.�e gray squares represent the concurrent transmitting
clusters. �e red area is the disk where the protocol model imposes no other concurrent transmissions. � is the worst case transmission range
and Δ is the interference parameter. We assume a common � for all the transmitter-receiver pairs. In this particular example, the TDMA
parameter is � = 9.

request a 
le � ∈ F = {1, . . . , 
} in an i.i.d. manner,
according to a given request probability mass function ��(�),
which is assumed to be a Zipf distribution given by (1) with
parameter 0 < �� < 1 [35]. Moreover, we let each user
cache � 
les. �e BS keeps track of which devices can
communicate with each other and which 
les are cached
on each device. Such BS-controlled D2D communication is
more e	cient (andmore acceptable to spectrumowners if the
communications occur in a licensed band) than traditional
uncoordinated peer-to-peer communications.

Communications between nodes follow the protocol
model [36] (In the simulations of Section 6.4, we relax
the protocol model constraint and take interference into
consideration by treating it like noise). Namely, transmission
between user nodes � and V is possible if their distance �(�, V)
is less than or equal to some 
xed transmission range � and
if there is no other active transmitter within distance (1 +Δ)� from destination V, where Δ > 0 is the interference
control parameter. Successful transmissions can take place
at rate �� bit/s/Hz, which is a nonincreasing function of the
transmission range � [9]. In this model, we do not consider
power control (which would allow di�erent transmit powers
and thus transmission ranges), for each user. Moreover, we
treat � as a design parameter that can be set as a function of

and � (Since the number of possibly requested 
les
 typically
varieswith the number of users in the system �, and � can vary
with �, � can also be a function of
). All communications are
assumed to be single-hop (see also Section 6). �ese model
assumptions allow for a sharp analytical characterization of
the throughput scaling law including the leading constants.
In Section 6, we will see that the schemes designed by this
simple model yield promising performance also in realistic
channel propagation and interference conditions.

For many of our derivations, we furthermore subdivide
the cell into equal-sized, disjoint groups of users that we call

“clusters” of size (radius) �, with �� nodes in it. To further
simplify the mathematical model, we assume that only nodes
that are part of the same cluster can communicate with each
other. If a user can 
nd the requested 
le inside the cluster, we
say there is one potential link in this cluster; when at least one
link is scheduled, we say that the cluster is “active.” We use an
interference avoidance scheme, such that at most one link can
be active in each cluster on one time-frequency resource.

4. File Placement

�e proposed system operates in two steps: (i) 
le placement
(caching) and (ii) delivery. �ese two processes happen on
di�erent timescales: the cache content needs to change only
on a timescale of days, weeks, or months, that is, much slower
than the actual delivery to the users. �us, caches could be

lled either through a very slow backhaul or through cellular
connection at night time, when the spectral resources are not
required for other purposes.

4.1. File Placement in Helper Stations. We start out with the
case where complete 
les are stored in the helper stations.
If the distance between helpers is large and each MS can
connect only to a single helper, each helper should cache
the most popular 
les, in sequence of popularity, until its
cache is full. However, when each MS can communicate with
multiple helpers, the question on how to best assign 
les to
di�erent helpers becomes more complicated. Consider the
case in Figure 5, users �1 and �2 would prefer helper �1 to
cache the � most popular 
les since this minimizes their
expected downloading time. Similarly, user �4 would prefer
that helper�2 also caches the�most popular 
les. However�3 would prefer�1 to cache the�most popular 
les and�2
the second � most popular (or the opposite), thus creating
a distributed cache of size 2� for user �3. �us we can
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Figure 5: Example for caching when users have access to multiple
helpers.

see that in the distributed caching problem, the individual
objectives of di�erent users may be in con�ict, and we need
sophisticated algorithms to 
nd an optimum assignment.

Let us assume for the moment that (1) the network
topology is known; (2) the long-term average link rates are
known; (3) the user demand distribution (
le popularity)
is known. However, the actual demands are not known
beforehand, so that caching placement must be done only
based on the statistics of the user requests. Our goal is to
minimize the average download time.We distinguish further
between uncoded and coded caching. In the uncoded case,
video-encoded 
les are cached directly (with the possibility of
storing the same 
le in multiple locations). In the coded case,
we consider placing coded chunks of the 
les on di�erent
helper stations, such that obtaining any su	ciently large
number of these chunks allows reconstruction of the original
video 
le (e.g., using the scheme in [37]).

In [9] we showed that the uncoded-placement problem
is NP-complete. However, it can be formulated as the maxi-
mization of a monotone submodular function over matroid
constraints, for which a simple greedy strategy achieves at
least 1/2 of the optimum value. For the coded case, the
optimum cache placement can be formulated as a convex
optimization problem, for which optimum solutions can be
found through e	cient algorithms. In general, the optimum
value of delay obtained with the coded optimization is
better than the uncoded optimization because any placement
matrix with integer entries is a feasible solution to the coded
problem. In this sense, the coded optimization is a convex
relaxation of the uncoded problem.

We conclude this section by mentioning that the condi-
tions under which we derived the optimum caching are rarely
ful
lled in practice. While the user demand distribution��(�) may be well estimated and predicted, the network
topology is typically time-varying with dynamics comparable
or faster than the 
le transmission; therefore recon
guring
the caches at this time scale is de
nitely not practical.
However, further computer experiments have also shown that
the cache distribution obtained when the mobile stations are
in “typical” distances from the helpers also provides good
performance for various other realizations of random place-
ment of nodes. Furthermore, distributed random caching
turns out to be “good enough” as we shall see in Section 6.

Hence, comparing optimal placement with random caching
yields useful insight on the potential performance gap lost
by a decentralized approach. Interestingly, in any reasonable
network con
guration it turns out that such a gap is very
small.

4.2. File Placement for D2D Communications. Also for D2D
communications, the question of which 
les should be
cached by which user are essential. Building on the protocol
model explained in Section 3.2, a critical question for each
user is whether the 
le it is interested in can be found within
the communication radius � from its current location. In
other words, in order to enable D2D communication it is
not su	cient that the distance between two users be less
than �; users should also 
nd their desired 
les in the cache
of another device with which they can communicate. �e
decision of what to store can be taken in a centralized or
distributed way, called deterministic and random

In deterministic caching a central control (typically the
BS) orders the devices to cache speci
c 
les. Similar to the
situation in femtocaching, we assume that the location of
the caching nodes, and the demand distribution, is known.
Finding the optimal deterministic 
le assignment for the
general case follows the same principles as for femtocaching
outlined above. A simpli
cation occurs when the devices
are grouped into clusters such that only communication
within the cluster is possible (for more details see Section 6).
In this case the deterministic caching algorithm is greatly
simpli
ed: the devices in the cluster should simply cache
the most popular 
les in a disjoint manner; that is, no 
le
should be cached twice in the cluster. Deterministic caching
is only feasible, if the location of the nodes and the channel
state information (CSI) are known a priori, and remains
constant between the 
lling of the cache and the actual

le transmission; thus it applies only if the caching nodes
are 
xed wireless devices. It is also useful for providing
upper performance bounds for other caching strategies. In
random caching, each device randomly and independently
caches a set of 
les according to a common probability
mass function. In our earlier papers, we assumed that the
caching distribution is also a Zipf distribution, though with
a parameter �� that is di�erent from �� and which has to be
optimized for a particular �� and �. Since the Zipf distribution
is characterized by a single parameter, this description gives
important intuitive insights about how concentrated the
caching distribution should be.

In [14], we found that the optimal caching distribution�∗� that maximizes the probability that any user 
nds its
requested 
le inside its own cluster is given (for a node
arrangement on a rectangular grid as described above) by

�∗� (�) = [1 − ]�
]
+ , � = 1, . . . , 
, (2)

where ] = (
∗ − 1)/∑�∗
=1(1/�
), �
 = ��(�)1/(�(��−1)−1),
∗ = Θ(min{(�/��)��, 
}), and [Λ]+ = max[Λ, 0].
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5. Adaptive Streaming from Helper Stations

We now turn to the delivery phase, in particular for the
femtocaching (helper station). We furthermore concentrate
on the case that the video 
les are streamed, that is, replay
at the receiver starts before the complete 
le has been
transmitted. Such streaming is widely used for standard
video-on-demand systems, using protocols such asMicroso�
Smooth Streaming (Silverlight), AppleHTTPLive Streaming,
and 3GPPDynamicAdaptive Streaming overHTTP (DASH).
We have adapted such on-demand streaming to our caching
architectures, in particular the network setup with helper
stations. Dividing each video stream into chunks, we solve
the problem of “which user should get a video ‘chunk’, at what
quality, from which helper station.”

5.1. Problem Formulation. We represent a video 
le as a
sequence of chunks of equal duration. Each chunk may
contain a di�erent number of source-encoded bits, due to
variable bit-rate (VBR) coding (see Section 2), and the same
video 
le is encoded at di�erent quality levels, such that
lower quality levels correspond to fewer encoded bits. �ese
quantities can vary across video 
les, and even for the same
video they can vary across both chunks and quality levels. For
example, the same compression level may produce a di�erent
user quality index as well as a di�erent bit requirement from
one chunk to the next, depending on if the video chunk is
showing a constant blue sky or a busy city street.

In our system, the requested chunks are queued at the
helpers, and each helper ℎmaintains a queue#ℎ� pointing at
each of the users � in its vicinity. We pose the network utility
maximization (NUM) problem of maximizing a concave
and component-wise nondecreasing network utility function$�(⋅) of the users’ long-term average quality indices &�,
subject to stability of the queues #ℎ� at all the helpers.
�e concavity of the network utility function imposes some
desired notion of fairness between the users. �e problem
formulation is given as follows:

maximize ∑
�
$� (&�)

subject to #ℎ� < ∞ ∀ (ℎ, �) .
(3)

We solve this problem in [11] using the Lyapunov Dri�
Plus Penalty approach and obtain a policy that decomposes
naturally into two distinct operations that can be imple-
mented in a decentralized fashion: (1) congestion control; (2)
transmission scheduling.

5.2. Congestion Control. Congestion control decisions are
made at each streaming user, which decides from which
helper to request the next chunk and at which quality index
this shall be downloaded. For every time slot 7, each � ∈ U

chooses the helper in its neighborhood having the shortest
queue; that is,

ℎ∗� (7) = argmin {#ℎ� (7) : ℎ ∈ N (�) ∩H (��)} . (4)

�en, it determines the quality level 
�(7) of the requested
chunk at time 7 as follows:

� (7) = argmin {#ℎ∗� (�)� (7) ?
� (
, 7) − Θ� (7) &
� (
, 7)} ,

(5)

where ?
�(
, 7) and &
�(
, 7) are the size in bits and the
quality index (could be some subjective measure of video
quality, for example, SSIM (structural similarity index)),
respectively, of chunk 7 at quality level 
. Θ�(7) is a virtual
queue introduced to solve the NUM problem. Notice that the
streaming of the video 
le �� may be handled by di�erent
helpers across the streaming session, but each individual
chunk is entirely downloaded from a single helper. Notice
also that in order to compute the above quantities, each
user needs to know only local information formed by the
queue backlog#ℎ�(7) and the locally computed virtual queue
value Θ�(7). �is scheme is reminiscent of the current
adaptive streaming technology for video on demand systems,
referred to as DASH (Dynamic Adaptive Streaming over
HTTP) [26, 38], where the client (user) progressively fetches
a video 
le by downloading successive chunks and makes
adaptive decisions on the quality level based on its current
knowledge of the congestion of the underlying server-client
connection. Our policy generalizes DASH by allowing the
client to dynamically select the least backlogged server, for
each chunk.

5.3. Transmission Scheduling. At time slot 7, the general
transmission scheduling consists ofmaximizing the weighted
sum rate of the transmission rates achievable at scheduling
slot 7. Namely, the network of helpers must solve the max-
weighted sum rate (MWSR) problem:

maximize ∑
ℎ∈H

∑
�∈N(ℎ)

#ℎ� (7) Aℎ� (7)
subject to � (7) ∈ R (7) ,

(6)

whereR(7) is the region of achievable rates supported by the
network at time 7 and Aℎ�(7) is the scheduled rate from helperℎ to user � in time slot 7. We particularize the above general
MWSR problem to a simple physical layer system.

Macrodiversity. In this physical layer system, referred to as
“macrodiversity,” the users can decode multiple data streams
frommultiple helpers if they are scheduled with nonzero rate
on the same slot. In this case, the rate region R(7) is given
by the Cartesian product of the following orthogonal access
regions:

∑
�∈N(ℎ)

Aℎ� (7)�ℎ� (7) ≤ 1, ∀ℎ ∈ H, (7)

where �ℎ�(7) is the peak rate from helper ℎ to user � in
time slot 7. In the macrodiversity system, the general MWSR
problem (6) decomposes into individual problems, to be
solved in a decentralized way at each helper node. �e
solution is given by each helper ℎ independently choosing the
user �∗ℎ (7) given by

�∗ℎ (7) = argmax {#ℎ� (7) �ℎ� (7) : � ∈ N (ℎ)} , (8)
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with rate vector given by Aℎ�∗ℎ (�)(7) = �ℎ�∗ℎ (�)(7) and Aℎ�(7) = 0
for all� ̸= �∗ℎ (7). Notice that here, unlike conventional cellular
systems, we do not assign a 
xed set of users to each helper.
In contrast, the helper-user association is dynamic and results
from the transmission scheduling decision. Notice also that
despite the fact that eachhelperℎ is allowed to serve its queues
with rates Aℎ�(7) satisfying (7), the proposed policy allocates
thewhole 7th downlink slot to a single user�∗ ∈ N(ℎ), served
at its own peak-rate �ℎ�∗(7).
5.4. Algorithm Performance. It can be shown that the time
average utility achieved by the proposed policy comes withinC(1/D) of the utility of a genie-aided T-slot look ahead
policy for any arbitrary sample path with a C(D) tradeo� in
time averaged backlog. �us, the scheme provably achieves
optimality of the network utility function under dynamic and
arbitrarily changing network conditions; details of the proof
can be found in [11].

5.5. Prebu�ering and Rebu�ering Chunks. �eNUMproblem
formulation (3) does not take into account the possibility
of stall events, that is, chunks that are not delivered within
their playback deadline.�is simpli
cation has the advantage
of yielding the simple and decentralized scheduling policy
described in the previous sections. However, in order tomake
such a policy useful in practice we have to force the system
to work in the smooth streaming regime, that is, in the regime
where the stall events have small probability.�is can be done
by adaptively determining the prebu�ering time E� for each
user � on the basis of an estimate of the largest delay of queues{#ℎ� : ℎ ∈ N(�)}.

We de
ne the size of the playback bu�erΨ� as the number
of playable chunks in the bu�er not yet played. Without loss
of generality, assume that the streaming session starts at 7 = 1.
�en,Ψ� is recursively given by the updating equation: (1{K}
denotes the indicator function of a condition or eventK.)

Ψ� = max {Ψ�−1 − 1 {7 > E�} , 0} + HHHHI�HHHH , (9)

where |I�| is the number of chunks that are completely
downloaded in slot 7. Let J� denote the time slot in which
chunk K arrives at the user and letL� denote the delay with
which chunk K is delivered. Note that the longest period
during whichΨ� is not incremented is given by themaximum
delay to deliver chunks.�us, each user � needs to adaptively
estimateL� in order to choose E�. In the proposed method,
at each time 7 = 1, 2, . . ., user � calculates the maximum
observed delay M� in a sliding window of size Δ, by letting

M� = max {L� : 7 − Δ + 1 ≤ J� ≤ 7} . (10)

Finally, user� starts its playbackwhenΨ� crosses the level NM�,
that is, E� = min{7 : Ψ� ≥ NM�}, where N is a tuning parameter.
If a stall event occurs at time 7, that is, Ψ� = 0 for 7 > E�,
the algorithm enters a rebu�ering phase in which the same
algorithm presented above is employed again to determine
the new instant 7 + E� + 1 at which playback is restarted.

5.6. Extensions. In [12], we consider extensions and improve-
ments of our work. In Sections 5.3 and 5.2, we treated

the case of single-antenna base stations and, starting from
a network utility maximization (NUM) formulation, we
devised a “push” scheduling policy, where users place requests
to sequential video chunks to possibly di�erent base stations
with adaptive video quality, and base stations schedule their
downlink transmissions in order to stabilize their transmis-
sion queues. In [12], we consider a “pull” strategy, where every
user maintains a request queue, such that users keep track
of the video chunks that are e�ectively delivered. �e pull
scheme allows to download the chunks in the playback order
without skipping or missing them. In addition, motivated
by the recent/forthcoming progress in small cell networks
(e.g., in wave-2 of the recent IEEE 802.11ac standard), we
extend our dynamic streaming approach to the case of
base stations capable of multiuser MIMO downlink, that is,
serving multiple users on the same time-frequency slot by
spatial multiplexing. By exploiting the “channel hardening”
e�ect of high dimensional MIMO channels, we devise a low
complexity user selection scheme to solve the underlying
max-weighted rate scheduling (6), which can be easily imple-
mented and runs independently at each base station.

5.7. Preliminary Implementation. As observed in Sections 5.3
and 5.2, users send their chunk requests to the helpers having
the shortest queue pointing at them. �en, transmission
scheduling decisions are made by each helper, which maxi-
mizes at each scheduling decision time its downlink weighted
sum ratewhere theweights are provided by the queue lengths.
�e scheme can be implemented in a decentralized manner,
as long as each user knows the lengths of the queues of
its serving helpers, and each helper knows the individual
downlink rate supported to each served user. Queue lengths
and link rates represent rather standard protocol overhead
information in any suitable wireless scheduling scheme. We
have also implemented a version of such scheme on a testbed
formed by Android smartphones and tablets, using standard
WiFi MAC/PHY [10].

6. Performance of D2D Caching Networks

We now turn to D2D networks, that is, architectures where
the devices themselves act as caches. In contrast to our
analysis of femtocaching,we consider here only the download
of video les (i.e., no streaming) and also neglect the issue of
video rate adaptation (these are topics of ongoing research).
In this section, we 
rst outline the principle and intuitive
insights. We then discuss the fundamental scaling laws, both
for the sum throughput in the cell (disregarding any fairness
considerations) and for the tradeo� between throughput
and outage. Combining D2D transmission with coding and
multicasting is also discussed.

6.1. Principle and Mathematical Model. As outlined in
Section 3.2, we consider a network where each device can
cache a 
xed number � video 
les and send them, upon
request, to other devices nearby. If a device cannot obtain
a 
le through D2D communications, it can obtain it from
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a macrocellular base station (BS) through conventional cel-
lular transmission.

Consider a setup in which clustering is used (see
Section 3.2) and assume furthermore deterministic caching.
�e main performance factor that can be in�uenced by the
system designer is the cluster size; this is regulated through
the transmit power (we assume that it is the same for all
users in a cell but can be optimized as a function of user
density, library size, and size of the caches). Increasing cluster
size increases the probability for 
nding the desired 
le in
the cluster, while it decreases the (spatial) reuse of time-
frequency transmission resources.

�ere are a number of di�erent criteria for optimizing the
system parameters. One obvious candidate is the total net-
work throughput. It is maximized bymaximizing the number
of active clusters. In [39], we showed that, for deterministic
caching, the expected throughput can be computed as

M {E} = 1�2
�∑
�=0

(1 − �∏
�=1

(1 − (�CVC (K) − �r (��))))
× Pr [� = K] ,

(11)

where �CVC(K) is the probability that the requested 
le is in
the Common Virtual Cache (the union of all caches in the
cluster), that is, among the K most popular 
les. Pr[� =K], the probability that there are K users in a cluster, is
deterministic for the rectangular grid arrangement, and

Pr [� = K] = (�K) (�2)� (1 − �2)�−� , (12)

for random node placement.

6.2. �eoretical Scaling Laws Analysis. We now turn to
scaling laws, that is, determine how the capacity scales up
as more and more users are introduced into the network.
We are dealing with “dense” networks, such that the user
density increases, while the area covered by a cell remains
the same. As mentioned in Section 4.2, for the achievable
caching scheme, we consider a simple “decentralized” ran-
dom caching strategy, where each user caches� 
les chosen
independently on the libraryF with probability �∗� (�) given
by (2).

We furthermore deal again with the “clustered” case; that
is, the network is divided into clusters of equal size ��(
). A
system admission control scheme decides whether to serve
potential links or ignore them. �e served potential links in
the same cluster are scheduled with equal probability (or,
equivalently, in round robin), such that all admitted user

requests have the same average throughputE[E�] = Emin (see
[14] for formal de
nitions), for all users �, where expectation
is with respect to the random user requests, random caching,
and the link scheduling policy (which may be randomized
or deterministic, as a special case). To avoid interference
between clusters, we use a time-frequency reuse scheme
[40, Ch. 17] with parameter � as shown in Figure 4(b). In

particular, we can pick� = (⌈√2(1+Δ)⌉+1)2, where Δ is the
interference parameter de
ned in the protocol model.

In [8] we established lower and upper bounds for the
throughput of D2D communications (this was done under
the assumption of random node distribution and caching
according to a Zipf distribution). �e main conclusion from
the scaling law is that for highly concentrated demand
distribution, �� > 1, the throughput scales linearly with the
number of users, or equivalently the per-user throughput
remains constant as the user density increases; the number of
users in a cluster also stays constant. For heavy-tailed demand
distributions, the throughput of the system increases only
sublinearly, as the clusters have to become larger (in terms of
number of nodes in the cluster), to be able to 
nd requested

les within the caches of the cluster members.

In [14] we tightened the bounds and extended them to the
case of throughput-outage tradeo�. Qualitatively (for formal
de
nition see [14]), we say that a user is in outage if the user
cannot be served in the D2D network. �is can be caused by
the fact that (i) the 
le requested by the user cannot be found
in the user’s own cluster and (ii) that the system admission
control decides to ignore the request. We de
ne the outage
probability V� as the average fraction of users in outage. At
this point, we can de
ne the throughput-outage tradeo� as
follows.

Denition 1 (throughput-outage tradeo�). For a given net-
work and request probability mass function {��(�) : � ∈
F}, an outage-throughput pair (V, 7) is achievable if there
exists a cache placement scheme and an admission control
and transmission scheduling policy with outage probabilityV� ≤ V and minimum per-user average throughput Emin ≥ 7.
�e outage-throughput achievable region T(��, �, 
) is the
closure of all achievable outage-throughput pairs (V, 7). In
particular, we let E∗(V) = sup{7 : (V, 7) ∈ T(��, �, 
)}.

Notice that E∗(V) is the result of the optimization prob-
lem:

maximize Emin

subject to V� ≤ V, (13)

where the maximization is with respect to the cache place-
ment and transmission policies. Hence, it is immediate to see
that E∗(V) is nondecreasing in V.

�e following results are proved in [14] and yield scaling
law of the optimal throughput-outage tradeo� under the
clustering transmission scheme de
ned above.

Although the results of [14] are more general, here
we focus on the most relevant regime of the scaling of
the 
le library size with the number of users, referred to
as “small library size” in [14]. Namely, we assume that
lim�→∞(
�/�) = 0, where  = (1 − ��)/(2 − ��). Since �� ∈(0, 1), we have  < 1/2.�is means that the library size
 can
grow even faster than quadratically with the number of users�. In practice, however, the most interesting case is where
 is sublinear with respect to � (see [14] for justi
cations.).
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Remarkably, any scaling of 
 versus � slower than �1/� is
captured by the following result.

�eorem 2. Assume lim�→∞(
�/�) = 0. �en, the through-
put-outage tradeo� achievable by one-hop D2D network with
random caching and clustering behaves as follows:

E∗ (V) ≥

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

��� �\1
 + ^1 (
) ,
V = (1 − ��) _��−�1 ,

��J� �

(1 − V)1/(1−��) + ^2 (
) ,

V = 1 − ���� (���
 )1−�� ,
��?� 
−� + ^3 (
) ,
1 − �����1−��\1−��2 
−�
≤ V ≤ 1 − I (��)
−�,

��&� 
−� + ^4 (
) ,
V ≥ 1 − I (��)
−�,

(14)

where I(��), J, ?, and & are constants depending on �� and�, which can be found in [14] and where \1 and \2 are
positive parameters satisfying \1 ≥ �� and \2 ≥ ((1 −��)/�����1−��)1/(2−��). �e cluster size �� is any function of 

satisfying �� = b(
�) and �� ≤ ��
/�. �e functions ^�(
),� = 1, 2, 3, 4 are vanishing for 
 → ∞ with the following

orders ^1(
) = d(�/
), ^2(
) = d(�/
(1 − V)1/(1−��)), and^3(
), ^4(
) = d(
−�).
�e dominant term in (14) can accurately capture the

system performance even in the 
nite-dimensional case
shown by simulations in Figure 6. Further, also in [14], we can
show that the achievable throughput-outage tradeo� given
by (14) is order optimal. When �� ≥ 
 (the whole library
can be cached in the network), for arbitrarily small outage
probability, by using (14), the per-user throughput scales asE∗(V) = Θ(�/
). �is means that the per-user throughput
is independent of the number of users (or in other words,
the network throughput increases linearly with the number
of users, as already indicated above). Furthermore, the
throughput grows linearly with�.�is can be very attractive
since, for example, in order to double the throughput, instead
of increasing the bandwidth or power, we can just double the
(cheap) storage capacity per user.

Interestingly, our result shown by (14) coincides with the
achievable throughput by using the subpacketized caching
and coded multicasting algorithms in [13, 41]. However,
in realistic channel assumptions, the result is shown in
Section 6.4.

6.3. Coded Caching and Multicasting. From the previous
analysis of theD2D caching network, one important property
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Figure 6: Comparison between the normalized theoretical result
(solid lines) and normalized simulated result (dashed lines) in terms
of the minimum throughput per user versus outage probability. �e
throughput is normalized by ��, so that it is independent of the link
rate. We assume 
 = 1000, � = 10000, � = 1, and reuse factor� = 4. �e parameter �� for the Zipf distribution varies from 0.1 to0.6, which are shown from the right (blue) to the le� (cyan). �e
theoretical curves show the plots of the dominating term in (14)
divided by �� [14].

Wants A Achievable scheme Wants B

User 1 User 2

Wants C

User 3

A1, A2, A3, A4 ,
B1, B2, B3, B4 ,
C1, C2, C3, C4 ,

A1, A2, A5, A6 ,
B1, B2, B5, B6 ,
C1, C2, C5, C6 ,

A3, A4, A5, A6 ,
B3, B4, B5, B6 ,
C3, C4, C5, C6 ,

B3 ⊕ C1 A5 ⊕ C2

A6 ⊕ B4

Figure 7: Illustration of the example of 3 users, 3 
les, and � =2, achieving 1/2 transmissions in terms of 
le. We divide each 
le
into 6 packets (e.g., J is divided into J1, . . . , J6.) User 1 requestsJ; user 2 requests ?; and user 3 requests �. �e cached packets are
shown in the rectangles under each user. For the delivery phase, user1 transmits ?3 ⊕ �1; user 2 transmits J5 ⊕ �2; and user 3 transmitsJ6 ⊕?4. �e normalized number of transmissions is 3 ⋅ (1/6) = 1/2,
which is also information theoretically optimal for this network [13].

of the proposed scheme is that in both the caching phase
and the delivery phase, an uncoded approach is applied.
�e gain of the throughput is mainly obtained by spatial
reuse (TDMA). At this point, a natural question to ask
is whether coded multicasting for D2D transmissions can
provide an additional gain or whether the coding gain and
the spatial reuse gain can accumulate. In [13], we designed a
subpacketized caching and a network-coded delivery scheme
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for the D2D caching networks. �e schemes are best to
be explained by the example shown in Figure 7, where we
assume no spatial reuse can be used, or only one transmission
per time-frequency slot is allowed but the transmission range
can cover the whole network.�is scheme can be generalized
to any �, 
,�. Without using spatial reuse, for zero outage,
the achievable normalized number of transmissions such
that every user can successfully decode is (
/�)(1 − �/
)
(We normalize the number of transmissions by the 
le size,
which is assumed to be the same for all the 
les). Which
is surprisingly almost the same as the result shown in [41],
where instead of D2D communications, one central server
(base station)which has access to all the 
lesmulticasts coded
packets. In addition, it also has the same scaling law as the
throughput by using our previously proposed decentralized
caching and uncoded delivery scheme. (Notice that the
reciprocal of the number of transmissions is proportional
to the throughput under our protocol model assumption.)
Moreover, it can be shown that there is no further gain when
spatial reuse is also exploited. In other words, the gains of
spatial reuse and coding cannot accumulate. Intuitively, if
spatial reuse is not allowed, a complicated caching scheme
can be designed such that one transmission can be useful for
as many users as possible. While if we reduce transmission
range and perform our scheme in one cluster as shown
in Figure 4(b), then the number of users bene
tted by one
transmission is reduced but the D2D transmissions can
operate simultaneously at a higher rate. Moreover, the com-
plexity of caching subpacketization and coding can also be
reduced. Hence, the bene
t of coding depends on the actual
physical layer throughput (bits/s/Hz) and the caching/coding
complexity rather than throughput scaling laws.

6.4. Simulation Results. To see the di�erence between the
performance of the proposed D2D caching network and the
state-of-the-art schemes for video streaming, we need to
consider the realistic propagation and interference channel
model instead of the protocol model. One reason is that as
mentioned in Section 6.2, for small outage probability, the
throughput of the proposedD2D schemehas the same scaling
laws as the coded multicasting scheme in [41]. �e state-of-
the-art schemes that will be compared with are conventional
unicasting, harmonic broadcasting, and coded multicasting,
whose details can be found in [15]. In the following, for
practical considerations, the proposed uncoded D2D scheme
discussed in Section 6.2 is used for simulations.

For simulations, we considered a network of size 600m×600m, where we relax the grid structure of the users’
distribution and let � = 10000 users distributed uniformly.
�e 
le library has size 
 = 300 (e.g., 300 popular movies
and TV shows to be refreshed on a daily basis at o�-
peak times by the cellular network). �e storage capacity
in each user is � = 20 and the parameter for the Zipf
distribution is �� = 0.4 [35]. We considered a regular pattern
of buildings of size 50m × 50m, separated by streets of
widths 10m [15], with indoor, outdoor, indoor-to-outdoor,
and outdoor-to-indoor pathloss and shadowingmodels taken
from [42], assuming that D2D links operate at 2.4GHz (WiFi
Direct). We assumed a channel bandwidth of 20MHz in
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order to provide throughput in bit/s. All the details of the
simulation parameters, including the pathloss and shadowing
models, can be found in [15]. �e simulation results of the
throughput-outage tradeo� for di�erent schemes are given
in Figure 8. We observe that in this realistic propagation sce-
nario the D2D single-hop caching network can provide both
large throughput, su	cient for streaming video at standard
de
nition quality, and low outage probability. Also, the D2D
caching scheme signi
cantly outperforms the other schemes
in the regime of low outage probability. �is performance
gain is particularly impressive with respect to conventional
unicasting and harmonic broadcasting from the base station,
which are representative of the current technology. We also
note the distinct performance advantages compared to coded
multicasting, despite the fact that the two schemes have the
same scaling laws. �e main reason for this development is
that the capacity of multicasting is limited by the “weakest
link” between BS and the various MSs, while, for the D2D
transmission scheme, short distance transmission (which
usually has high SNR, shallow fading, and thus high capacity)
determines the overall performance.

It is also worthwhile to notice that the scheduling scheme
used in the simulations is based on the clustering struc-
ture and the interference avoidance (TDMA) discussed in
Section 6.2 without using any advanced interferencemanage-
ment scheme such as FlashLinQ [43] and ITLinQ [44], which
may provide an even higher gain in terms of throughput for
the D2D caching networks.

7. Conclusions

As user demand for video data continues to increase sharply
in cellular networks, new approaches are needed to dra-
matically expand network capacity. �is paper has provided
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an overview of an approach explored by the University
of Southern California as part of the industry-sponsored
research program, video aware wireless networks (VAWN).
�e approach exploits a key feature of wireless video, namely,
the high degree of (asynchronous) content reuse across users.
To exploit this feature, we propose replacing expensive back-
haul infrastructure with inexpensive caching capabilities.
�is can be realized in two ways: the use of femtocaching
or dedicated helper nodes that cache popular 
les and serve
nearby user requests, and the use of user devices themselves
to cache and exchange 
les using device-to-device (D2D)
communications. Simulations with realistic settings show
that even for relatively low-density deployment of helper
stations, throughput can be increased by a factor of 
ve. D2D
networks allow in many situations a throughput increase that
is linear with the number of users (thus making the per-user
throughput independent of the number of users). Simulations
in realistic propagation channels, storage capacity settings,
video popularity distributions, and user densities show that
(for constant outage) the throughput can be two orders of
magnitude or more higher than the state-of-the-art multicast
systems.

A key issue in our caching approach is that of 
le
placement. In the helper node approach, we show that the
problem of minimizing average 
le downloading time in
the uncoded-placement case (video-encoded 
les are cached
directly on help nodes) is NP-complete but can be reformu-
lated and is solvable as a monotone submodular function
over matroid constraints. For the coded case (coded chunks
of 
les are placed on di�erent helper stations), optimum
cache placement can be formulated and is solvable as a
convex optimization problem. Also for the D2D approach,
the question of which 
les to cache is key. Two approaches
are deterministic caching in which a BS instructs devices
which 
les to cache (i.e., the most popular and in a disjoint
manner) and random caching inwhich each device randomly
caches a set of 
les according to a probability mass function.
It is remarkable that the simple random caching is not
only optimum from a scaling law point of view, but also in
numerical simulations provides throughputs that are close
to the deterministic caching (which is ideal but di	cult to
realize for time-varying topologies).

An important area of future work is that of predicting
user requests. �e e�ectiveness of caching schemes depends
not only on the degree of content reuse, but also on our
ability to understand and predict request behavior across
clusters of users. Furthermore, the approach is predicated on
a “time-scale decomposition,” namely, that request distribu-
tions changemuchmore slowly (over days or weeks) than the
time it takes to stream a video (minutes to a couple of hours).
For femtocaching, it is noteworthy that the type of users (and
thus the requests) within range of a helper station might
change over the course of a day; more research on how such
spatiotemporal aspects can be predicted and accommodated
is required. Similarly, the impact of social networks on user
preferences could be exploited. It is noteworthy that not
exploiting the space-time correlation of the demands yields
only loss of potential further performance gains over those
already demonstrated here. In short, if we have a correlated

demand process with Zipf 
rst-order statistics, we could
further gain by taking into account the correlation structure.

In theD2D sphere, research on new approaches for incen-
tivizing users to participate in cooperative caching schemes
is needed. Both femtocaching and D2D caching schemes
would bene
t from research into multihop cache retrieval
schemes and PHY schemes that better exploit advances in
wireless communication technology (e.g., multiuserMIMO).
In the D2D area, we are/will be investigating how to optimize
neighbor discovery, estimating channel conditions and then
using the information tomake scheduling optimizations, and
transmission schemes closely tuned to existing communica-
tions standards like WiFi Direct.
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