
 Open access Proceedings Article DOI:10.1145/967900.968126

Caching in Web memory hierarchies — Source link

Dimitrios Katsaros, Yannis Manolopoulos

Published on: 14 Mar 2004 - ACM Symposium on Applied Computing

Topics: Web cache and Locality of reference

Related papers:

 A data mining algorithm for generalized Web prefetching

 Content delivery networks: status and trends

 Hinted caching in the web

 A Novel Cache Replacement Policy for Web Proxy Caching System Using Web Usage Mining

 On filter effects in web caching hierarchies

Share this paper:

View more about this paper here: https://typeset.io/papers/caching-in-web-memory-hierarchies-
45x9cgfhjl

https://typeset.io/
https://www.doi.org/10.1145/967900.968126
https://typeset.io/papers/caching-in-web-memory-hierarchies-45x9cgfhjl
https://typeset.io/authors/dimitrios-katsaros-4tfq00khdt
https://typeset.io/authors/yannis-manolopoulos-1ai8sq1wqk
https://typeset.io/conferences/acm-symposium-on-applied-computing-2lkuiyug
https://typeset.io/topics/web-cache-33c3g0ma
https://typeset.io/topics/locality-of-reference-qe0l4mf8
https://typeset.io/papers/a-data-mining-algorithm-for-generalized-web-prefetching-3dalhn8vyu
https://typeset.io/papers/content-delivery-networks-status-and-trends-1c8q1a0xgy
https://typeset.io/papers/hinted-caching-in-the-web-2up9sf0dxp
https://typeset.io/papers/a-novel-cache-replacement-policy-for-web-proxy-caching-1dxuaj9ha3
https://typeset.io/papers/on-filter-effects-in-web-caching-hierarchies-2zpy5i942z
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/caching-in-web-memory-hierarchies-45x9cgfhjl
https://twitter.com/intent/tweet?text=Caching%20in%20Web%20memory%20hierarchies&url=https://typeset.io/papers/caching-in-web-memory-hierarchies-45x9cgfhjl
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/caching-in-web-memory-hierarchies-45x9cgfhjl
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/caching-in-web-memory-hierarchies-45x9cgfhjl
https://typeset.io/papers/caching-in-web-memory-hierarchies-45x9cgfhjl

Caching in Web memory hierarchies

Dimitrios Katsaros
Department of Informatics, Aristotle University

Thessaloniki, 54124, Greece

dkatsaro@csd.auth.gr

Yannis Manolopoulos
Department of Informatics, Aristotle University

Thessaloniki, 54124, Greece

manolopo@skyblue.csd.auth.gr

ABSTRACT

Web cache replacement algorithms have received a lot of at-
tention during the past years. Though none of the proposed
algorithms deals efficiently with all the particularities of the
Web environment, namely, relatively weak temporal locality
(due to filtering effects of caching hierarchies), heterogene-
ity in size and origin of request streams. In this paper, we
present the CRF replacement policy, whose development is
mainly motivated by two factors. The first is the filtering
effects of Web caching hierarchies and the second is the in-
tention of achieving a balance between hit and byte hit rates.
CRF’s decisions for replacement are based on a combination
of the recency and frequency criteria in a way that requires
no tunable parameters.

Categories and Subject Descriptors

H.3.4 [Information Storage and Retrieval]: Systems
and Software—World Wide Web (WWW) Performance Eval-
uation; C.4 [Performance of Systems]: Measurement
Techniques, Modelling Techniques, Performance Attributes.

Keywords

Caching, Latency, Proxy, Replacement policy, Temporal lo-
cality, World Wide Web.

1. INTRODUCTION
The growth of the Web resulted in a performance penalty

for both the Web servers and its infrastructure, the Internet.
Several solutions are investigated in order to cure this situ-
ation. The most extensively investigated solution is content
caching (e.g., [9, 3, 1]). Other solutions include the tech-
nique of prefetching [11] and the cooperating caches.

A cache replacement policy assigns a value to every cached
object, usually called utility value UV , and evicts from cache
the object with the least utility value. The aim of the re-
placement policy is to improve the cache’s effectiveness by
optimizing two performance measures, the hit ratio and cost

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC ’04, March 1417, 2004, Nicosia, Cyprus.
Copyright 2004 ACM 1581138121/03/2004 ...$5.00.

savings ratio. The former is defined as: HR =
P

hiP
ri

and the

later as: CSR =
P

ci∗hiP
ci∗ri

, where hi is the number of refer-

ences to object i satisfied by the cache out of the ri total
references to i and ci is the cost of fetching object i in cache.
The cost can be defined either as the object’s size si or as
the downloading latency ci. In the former case, the CSR
coincides with the byte hit ratio (BHR) and in the latter
case with the delay savings ratio (DSR).

1.1 The challenge of designing a replacement
policy for the Web

There are several factors that distinguish Web caching
from caching in traditional computer architectures. These
include [9, 3]: (a) the heterogeneity in objects’ sizes, (b)
the heterogeneity in objects’ fetching costs, (c) the depth of
the Web caching hierarchy and (d) the origin of the request
streams, which are not generated by a few programmed pro-
cesses, but mainly originate from large human populations
with diverse and varying interests.

The majority of the replacement policies proposed so far [3,
14, 5, 2, 1] focus on the first two factors. The main drawback
in the design of these policies is that they fail to achieve a
balance between HR and CSR. Some of them, the recency-
based policies, favor the HR, e.g., the family of GreedyDu-
alSize algorithms [3, 7], whereas some others, the frequency-
based policies, favor the CSR (BHR or DSR), e.g., LFU-
DA [5]. Notable exceptions are the LUV [2] and GD⋆ [7],
which try to combine recency and frequency. The drawback
of LUV though, is the existence of a manually tunable pa-
rameter λ, which is used to “select” the recency-based or
frequency-based behavior of the algorithm. A similar draw-
back has GD⋆ as well, since it requires manual tuning of the
parameter β.

Regarding the depth of the caching hierarchy, only re-
cently, Williamson [16] studied the effects of caching hierar-
chies. Its study revealed an alteration in the access pattern,
which is characterized by weaker temporal locality. To deal
with this Williamson proposed the use of different replace-
ment policies (LRU, LFU, GD-Size) in different levels of the
caching hierarchies. This solution though is not feasible,
because in many cases the caches are administratively in-
dependent. Moreover, the adoption of a replacement policy
(e.g., LFU) in a level of the hierarchy favors one performance
metric (CSR) over the other (HR) as we explained earlier,
and we are not willing to accept this bias.

The last factor has received little attention. This factor
(in combination with the caching hierarchy depth) is respon-
sible for the large number of one timers – objects requested

1109

2004 ACM Symposium on Applied Computing

only once – at the request streams. Many studies ([16]) de-
scribe the large number of one-timers seen in Web request
streams. Only SLRU [1] deals explicitly with this factor
and proposed the use of a small auxiliary cache to maintain
metadata for past evicted objects. This approach though
needs to heuristically determine the size of the auxiliary
cache. The most important drawback though, is that the
preclusion of some objects from entering into the cache can
result in slow adaptation of the cache in a changing request
pattern.

1.2 Motivation for a new replacement policy
From the discussion in subsection 1.1, we make two ob-

servations. The first regards the heterogeneity in size (cost).
This heterogeneity forced the replacement policies proposed
so far to favor either the hit or the cost savings ratio. Our
position is that we should achieve a balance between the two,
since both are equally important. Achieving high hit rate
reduces the average latency that the user sees. On the other
hand, the high byte hit rate has beneficial results on the
Internet performance, i.e., low congestion, low TCP packet
miss rate, bandwidth savings, etc.

The second observation concerns the weak temporal local-
ity in Web request streams. The replacement policy should
take into account both the short-term locality and the fre-
quency of reference. Recently, a couple of efforts are re-
ported in [6, 10] for the design of replacement policies in en-
vironments with low or moderate temporal locality in oper-
ating and database systems. The proposed solutions though
are not applicable in the Web environment.

In addition, we state one more requirement for any Web
cache replacement policy. We wish the lack of any “admin-
istratively” tunable parameters. The existence of parame-
ters whose value is derived from statistical information ex-
tracted from Web traces (e.g., LNC-R-W3 [14] or LRV [12])
is not desirable due to the difficulty (and feasibility) of tun-
ing these parameters.

Our motivation can be summarized into the following re-
quirements/constraints. The new policy should: (a) Deal
with the weak temporal locality in Web request streams; (b)
Achieve a balance between hit rates and cost saving rates;
(c) Lack any administratively tunable parameters. The ma-
jor contributions of this work are summarized as follows:

• We identify the paradox of attempting to optimize only
one of the two performance measures in a heteroge-
neous caching environment, like the Web. We claim
that both metrics are equally important. The HR in-
creases user satisfaction, whereas the BHR increases
network performance.

• We isolate a number of qualitative characteristics of
Web request streams that can help us in designing a
new replacement policy. We propose a novel Web re-
placement policy, namely the CRF (standing for Com-
bined Recency and Frequency) replacement policy.

This study is the first effort to deal with all the particu-
larities of the Web environment. The rest of this paper is
organized as follows. In section 2, we proceed step-by-step
in the design of CRF, explaining its features. In section 3
we present the results of the performance evaluation of the
examined policies. Finally, section 4 summarizes the major
findings of this work.

2. THE CRF REPLACEMENT POLICY

2.1 Design principles
Choosing the cost savings metric. In section 1 we saw

that the cost savings ratio can be expressed either as delay
savings ratio or byte hit ratio. The question is which of the
two metrics should we choose to optimize? The drawback
of choosing the delay savings ratio is that we can not have
a relatively accurate estimation for the downloading delay
of an object. The transient network and Web server condi-
tions affect it very much. Two more reasons discourage us
from adopting the fetching delay as a measure of cost. The
first reason is the persistent HTTP connections, which avoid
reconnection costs and the second is connection caching [4],
which reduces connection costs. These two reasons bring
about significant variation in the connection time for iden-
tical connections. Hence, we favor the size instead of the
latency of fetching an object as a measure of the cost.

Dealing with the one-timers. To “isolate” these ob-
jects we partition the cache space. Cache partitioning has
been followed by some prior algorithms, e.g., FBR [13], but
not for the purpose of the isolation of one-timers. The only
policy that adopted the partitioning for the purpose of iso-
lating the one-timers is the Segmented LRU [8]. This policy
though was designed for disk systems and its replacement
decisions are not appropriate for the Web. After testing it,
we find out that it suffers from cache pollution. We de-
cide our cache to have two segments, the R-segment and
the I-segment. The cache segments are allowed to grow
and shrink deliberately depending on the characteristics of
the request stream. The one-timers are accommodated into
the R-segment. The choice of further partitioning the I-
segment (having many segments like [1, 12]) is not a wise
decision, since it makes very difficult to decide the segment
from which the victim will be selected and it incurs main-
tenance cost for moving the objects from one segment to
the other. For the determination of one-timers we follow a
simple strategy; any object requested only once while being
in the cache, is considered to be an one-timer.

Ranking of objects within the segments. The two-
segment cache requires a couple of decisions to be made,
which regard the ranking of objects within each segment and
the selection of replacement victims. These decisions must
assure three constraints/targets: (a) the balance between
hit and byte hit ratio, (b) the protection of the cache from
one-timers, but without preventing the cache from adapting
to a changing access pattern and finally (c) the exploitation
of the weak temporal locality.

Our aim for the R-segment is to accommodate as many
objects as we can and at the same time to exploit any short-
term temporal locality existing in the request stream. Thus,
we rank the objects into the R-segment according to the
ratio of their entry time to their size.

The I-segment comprises the heart of the cache and the
replacement policy adopted for it must provide a balance
between HR and BHR and also deal with the weak tempo-
ral locality. Thus, the replacement policy of the I-segment
must: a) avoid weighting by the object’s size, and b) encom-
pass frequency-based replacement criteria.

Now, arises the question of how to quantify the frequency
of reference to an object. Frequency-based policies like LFU,
FBR, GDSF and LFU-DA, suffer from the large reference
counts accumulated by the objects. The (dynamic) aging

1110

mechanisms introduce an undesirable parameter, the cache
age factor. Thus, we select to describe the frequency of
reference to an object by the time interval between the ulti-
mate and penultimate reference to it. Let us call this time
interval the last inter-reference time.

To achieve the amalgam of a recency and frequency-based
policy, the ranking function for the I-segment is the product
of the last inter-reference time of an object times the recency
of the object. The recency describes a transient preference
to an object, whereas the inter-reference time describes the
steady-state popularity of an object.

Selection of the replacement victim. We are faced
with the problem of selecting the replacement victim. If
we always choose to purge from the cache the victim of the
R-segment, then the cache cannot discriminate between the
objects that are hot and become colder and the objects that
are cold and become hotter. If we always choose to purge
from the cache the victim of the I-segment, then the policy
becomes vulnerable to the one-timers.

For our convenience, let us call the candidate victim orig-
inating from the R-segment, the R-victim and the candidate
victim originating from the I-segment, the I-victim. Let tc

be the current time and R1 be the reference time of the R-
victim. Let I1 be the time of the penultimate reference to
the I-victim and I2 be the time of the last reference to it. Let
also δ1 (= tc − I2) be the reference recency of the I-victim,
δ2 (= tc −R1) be the reference recency of the R-victim, and
δ3 (= I2−I1) be the last inter-reference time of the I-victim.

We must estimate whether or not the I-victim gradually
loses its popularity and at the same time estimate the po-
tential of the R-victim to get a second reference. The esti-
mation of these possibilities will be based on the comparison
between the intervals δ1 and δ3 and between δ1 and δ2. We
implicitly assume that at time tc we have two concurrent ref-
erences for the I-victim and R-victim. In order to select the
final victim among the R-victim and the I-victim, we have
to take into account both the recency and the frequency of
reference (inter-arrival interval). We favor the I-victim in
all the cases where δ1 < δ3. When δ1 > δ3, the only case in
which we favor the I-victim is when δ1 < δ2. In this case we
care to protect the cache from one-timers.

2.2 The implementation of CRF

For each cached object oi we need to keep its size si, the
time tl of the last reference to it and the time tp of the
penultimate reference to it. The inter-access time is mea-
sured using virtual time – the virtual time clock advances
at one unit after every request. This information comprises
all the metadata we need for each cached object (O(1) space
complexity per object).

The records for the objects are kept in two separate heaps.
The first heap, called the R-heap, stores the records (entries)
for the objects of the R-segment. The second heap, called
the I-heap stores the entries for the objects of the I-segment.
Both heaps are max-heaps. The sorting key of the R-heap
is the ratio UV R−heap = −tl

si
, whereas the sorting key of the

I-heap is the ratio UV I−heap = −1
(tc−tl)∗(tl−tp)

. The depen-

dence of the UV I−heap on the current time introduces a com-
plication. In order to select from the I-segment the object
with the least UV I−heap we must sort the metadata. Obvi-
ously, the metadata need not be completely sorted, because
we are interested only in the object with the least UV I−heap.
This is the reason behind the selection of the heap as the

data structure to keep the metadata. The pseudocode for
the implementaion of CRF is depicted in Figure 1.

Algorithm CRF
// Cache space = cs. Free cache space = a.
// Consider a request to an object oi of size si.
begin

if(si > cs) return;
if(I-heap-inHeap(oi)) update-statistics;
else if(R-heap-inHeap(oi))

R-heap-remove(oi);
I-heap-insert(oi);

else
if(si > a)

I-heap-build-heap();
while(a < si) evictOne();

R-heap-insert(oi);
a − = si;

end

procedure evictOne
begin

If(empty(I-heap)) finalVictim= R-heap-extract-max();
else if(empty(R-heap)) finalVictim= I-heap-extract-max();
else

dR = R-heap-return-max();
dI = I-heap-return-max();
if((dI.tl < dR.tl) AND

((tc − dI.tl) > (dI.tl − dI.tp)))
finalVictim= I-heap-extract-max();

else
finalVictim= R-heap-extract-max();

a + = sfinalVictim

end

Figure 1: The CRF replacement policy.

3. PERFORMANCE EVALUATION
We examined the performance of the CRF against that of

LRU, LFU, Size, LFUDA [5], GDS [3] (as representative of
the familily which includes GDS, GDSF, GDSF), SLRU [1],
LUV [2], HLRU [15], LNCRW3 [14]. Based on [15], we se-
lected the HRLU(6) to be the representative of the HLRU
family. The LNCRW3 is implemented so as to optimize the
BHR instead of DSR. Regarding the tuning of LUV, we tried
several values for the λ parameter, and finally we selected
the value 0.01, based on the fact that this value gave the best
performance for small caches and also the best performance
im most cases.

To generate synthetic Web request streams we used the
ProWGen tool [16]. Table 1 summarizes the values of vari-
ous input parameters to the ProWGen tool for the genera-
tion of the request traces.

We performed a performance evaluation of the selected
caching schemes for three parameters, the percentage of
one-timers, the skewness of the access pattern (Zipf slope)
and the “amount” of temporal locality. We partitioned
the examined algorithms into two families. The family of
recency-based algorithms includes the GDS, SLRU, Size,
LUV and the family of frequency-based includes the LRU,
LFU, LFUDA, LNCRW3, HLRU. The impact of each factor
on each family of algorithms was examined for three charac-
teristic cache sizes. The first cache is approximately equal

1111

Parameter Range

Total requests 2000000
Unique docs (% requests) 20%
One-timers (% unique) 65% – 80% [def:70%]
Zipf slope 0.65 – 0.95 [def:0.85]
Pareto tail index 1.0
Corr. size–popularity no correlation
Temporal locality dynamic

Table 1: Input parameters to the ProWGen tool.

to 0.15% of the infinite cache size. The second is approxi-
mately 0.75% and the last is equal to 1.5%. Due to lack of
space we will present only a very small subset of the obtained
results. Specifically, we will present graphs for small-sized
caches when we vary the percentage of one-timers and the
value of the zipfian skew. For the medium and large caches
we will provide some descriptions of the results and will
present some tables that contain aggregated information.

Sensitivity to one-timers. The previous studies [16]
examined only a couple of values for one-timers (60% and
70%). They concluded that as their percentage increases,
the cache’s performance gets only a small improvement (1%-
4%). We confirmed this observation, but observed a differ-
ent situation beyond the value of 70%, (Figures 2 and 3).
The general trend is that the HR of the recency-based algo-
rithms drops. This drop is more steep and happens immedi-
ately after the value of 70% for small caches, but less steep
and appears for higher percentages for other cache sizes.
The explanation is that the recency-based policies cannot
distinguish and isolate one-timers. A larger cache can ab-
sorb part of this effect, but the degradation of the perfor-
mance is still apparent when the percentage of one-timers
gets large enough, e.g., 80%. We make similar observations
w.r.t. BHR.

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.65 0.7 0.75 0.8

h
it
 r

a
te

one timers

HR vs one-timers: Recency-based algorithms

crf
slru
gds
size
luv

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.65 0.7 0.75 0.8

b
y
te

 h
it
 r

a
te

one timers

BHR vs one-timers: Recency-based algorithms

crf
slru
gds
size
luv

Figure 2: Recency-based policies for small caches. Left:

HR vs. one-timers, Right: BHR vs. one-timers.

The HR of the frequency-based algorithms drops only for
small caches, whereas for all other cache sizes it increases
slightly or remains stable. When the cache is small, they do
not have many opportunities to filter the one-timers, since
they flood the whole cache space. The great advantage of the
frequency-based policies is the constantly increasing BHR
with increasing percentage of one-timers. This is a natural
consequence of their decision to avoid weighing by the ob-
ject’s size. Their BHR drops, only when the cache is small
and the number of one-timers too large.

Let us look now at the performance of the CRF. From
a qualitative point of view, CRF’s behaviour combines the
best features of the two families. CRF’s HR is very close
to that of the recency-based policies and its BHR is only
moderately lower than that of the frequency-based poli-
cies. Moreover, its HR remains stable or increases slightly,

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.65 0.7 0.75 0.8

h
it
 r

a
te

one timers

HR vs one-timers: Frequency-based algorithms

crf
lru
lfu

lfuda
lncrw3

hlru

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.65 0.7 0.75 0.8

b
y
te

 h
it
 r

a
te

one timers

BHR vs one-timers: Frequency-based algorithms

crf
lru
lfu

lfuda
lncrw3

hlru

Figure 3: Frequency-based policies for small caches.

Left: HR vs. one-timers, Right: BHR vs. one-timers.

Recency-based Frequency-based
Cache HR BHR HR BHR

small -2 +11 +3 -2
medium -1 +15 +9 -5
large -2 +11 +10 -6

Average -2 +12 +7 -4

Table 2: CRF’s gain-loss w.r.t. one-timers.

similarly to the HR of the frequency-based policies (except
from the case of small cases, where the HR of all algo-
rithms drops). Its BHR increases significantly with increas-
ing number of one-timers, similarly to the behaviour of the
frequency-based policies. From a quantitative point of view,
Table 2, summarizes CRF’s performance with respect to
that of the best performing algorithm in each case. Each
table’s cell shows the average CRF’s performance improve-
ment taken over all measurements for a particular cache size
(a plus sign indicates better performance, and a minus indi-
cates worse performance). We can see that CRF sacrifices
2% of HR to achieve 12% greater BHR when compared with
the recency-based policies. Similarly when compared with
the frequency-based policies, it sacrifices a certain amount
of BHR, i.e., 4%, in order to offer (almost) double savings
in HR, i.e., 7%.

Sensitivity to Zipfian slope. The second experiment
studies the effect of the Zipf slope on the performance of
the replacement policies (refer to Figures 4 and 5). The
general pattern is that the HR and BHR of all policies in-
creases with increasing skewness. Increased skewness means
stronger temporal locality. Thus, the recency-based policies
can exploit this skewness quite effectively. Similarly, the
frequency-based polices recognize easily the objects that are
more popular, since they get more references. The second
generic observation concerns the BHR of all policies. Be-
yond a specific value of skewness, the BHR shows an abrupt
increase. This increase appears at the value of 0.80 and it
is more steep for the frequency-based policies. Beyond that
value for the slope, the larger part of the “popularity mass”
is concentrated into a very small number of objects. These
objects are recognized by the policies and stay longer in
the cache. The frequency-based policies more easily identify
these objects and since they do not weigh by the object’s
size, they achieve higher BHR.

We have observed that the general pattern is a constant in-
crease of the BHR with increasing skewness. A closer exam-
ination reveals a more complex situation. There are cases,
where higher skewness (e.g., 0.95) leads to slightly smaller
BHR for the frequency-based policies than lower skewness
(e.g., 0.85). This situation is mainly encountered in medium
and large caches. Such cases do not appear for the recency-

1112

0.15

0.2

0.25

0.3

0.35

0.4

0.65 0.7 0.75 0.8 0.85 0.9 0.95

h
it
 r

a
te

skewness

HR vs skewness: Recency-based algorithms

crf
slru
gds
size
luv

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.65 0.7 0.75 0.8 0.85 0.9 0.95

b
y
te

 h
it
 r

a
te

skewness

BHR vs skewness: Recency-based algorithms

crf
slru
gds
size
luv

Figure 4: Recency-based policies for small caches. Left:

HR vs. Zipf slope, Right: BHR vs. Zipf slope.

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.65 0.7 0.75 0.8 0.85 0.9 0.95

h
it
 r

a
te

skewness

HR vs skewness: Frequency-based algorithms

crf
lru
lfu

lfuda
lncrw3

hlru

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.65 0.7 0.75 0.8 0.85 0.9 0.95

b
y
te

 h
it
 r

a
te

skewness

BHR vs skewness: Frequency-based algorithms

crf
lru
lfu

lfuda
lncrw3

hlru

Figure 5: Frequency-based policies for small caches.

Left: HR vs. Zipf slope, Right: BHR vs. Zipf slope.

based policies or the CRF and any such deterioration in
BHR for these policies is attributed to the statistical vari-
ance. For instance, we observe that the BHR is lower at the
slope value of 0.95 than it is for the value of 0.85. Lower Zip-
fian slopes means that it is quite possible that some large
objects are popular enough to stay long in the cache and
contribute in the BHR. Increasing only at a small amount
the value of the slope, this population of objects decreases
causing a degradation in BHR.

Regarding the performance of the CRF refer to Figures 4
and 5. We notice that its BHR does not drop (as hap-
pens with the frequency-based policies) but it constantly
increases. From a quantitative point of view, CRF bridges
the performance gap between the high HR of the frequency-
based policies and the high BHR of the frequency-based poli-
cies. The former achieve a 5% to 10% higher HR than the
latter and the latter achieve a 20% to 30% better BHR.
Table 3 summarizes the quantitative measurements. When
compared with the recency policies, CRF sacrifies 1% of
HR to increase at 10% the BHR. When compared with the
frequency-based policies, it sacrificies 6% of BHR to offer
(almost) double savings in HR.

Recency-based Frequency-based
Cache HR BHR HR BHR

small -1 +10 +5 -7
medium 0 +15 +13 -4
large -1 +9 +13 -6

Average -1 +11 +10 -6

Table 3: CRF’s gain-loss w.r.t. Zipfian slope.

4. CONCLUSIONS
We have proposed a new replacement policy for Web caches,

called CRF, which is the result of a careful selection of de-
sign alternatives. It was designed to adresses all the par-
ticularities of the Web environment. We evaluated CRF’s
performance using synthetic request streams and examined

its performance relative to that of the state-of-the-art algo-
rithms. The results confirmed that CRF is truly a hybrid
between recency and frequency-based policies. This find-
ing was consistent across a range of cache sizes and request
distributions.

5. REFERENCES
[1] C. Aggrawal, J. Wolf, and P.S. Yu. Caching on the

World Wide Web. IEEE Transactions on Knowledge
and Data Engineering, 11(1):94–107, 1999.

[2] H. Bahn, K. Koh, S.H. Noh, and S.L. Min. Efficient
replacement of nonuniform objets in Web caches.
IEEE Computer, 35(6):65–73, June 2002.

[3] P. Cao and S. Irani. Cost-aware WWW proxy cahing
algorithms. In Proceedings of USITS, pages 193–206,
1997.

[4] E. Cohen, H. Kaplan, and U. Zwick. Connection
caching: Model and algorithms. Journal of Computer
and System Sciences, 67(1):92–126, 2003.

[5] J. Dilley and M. Arlitt. Improving proxy cache
performance: Analysis of three replacement policies.
IEEE Internet Computing, 3(6):44–50, 1999.

[6] S. Jiang and X. Zhang. LIRS:An efficient low
inter-reference recency set replacement policy to
improve buffer cache performance. In Proceedings of
the ACM SIGMETRICS, pages 31–42, 2002.

[7] S. Jin and A. Bestavros. GreedyDual⋆ Web caching
algorithm: Exploiting the two sources of temporal
locality in Web request streams. Computer
Comnunications, 24(2):174–183, 2001.

[8] R. Karedla, J.S. Love, and B.G. Wherry. Caching
strategies to improve disk system performance. IEEE
Computer, 27(3):38–46, 1994.

[9] D. Katsaros and Y. Manolopoulos. Cache
management for Web-powered databases. In
Web-Powered Databases, pages 201–242. IDEA Group
Publishing, 2002.

[10] N. Megiddo and D. S. Modha. ARC: A self-tuning low
overhead replacement cache. In Proceedings of the
USENIX FAST, 2003.

[11] A. Nanopoulos, D. Katsaros, and Y. Manolopoulos. A
data mining algorithm for generalized Web
prefetching. IEEE Transactions on Knowledge and
Data Engineering, 15(5):1155–1169, 2003.

[12] L. Rizzo and L. Vicisano. Replacement policies for a
proxy cache. IEEE/ACM Transactions on Networking,
8(2):158–170, 2000.

[13] J.T. Robinson and M.V. Devarakonda. Data cache
management using frequency-based replacement. In
Proceedings of the ACM SIGMETRICS, pages
134–142, 1990.

[14] J. Shim, P. Scheuermann, and R. Vingralek. Proxy
cache algorithms: Design, implementation and
performance. IEEE Transactions on Knowledge and
Data Engineering, 11(4):549–562, 1999.

[15] A. Vakali. Proxy cache replacement algorithms: A
history-based approach. The World Wide Web
Journal, 4(4):277–297, 2001.

[16] C. Williamson. On filter effects in Web caching
hierarchies. ACM Transactions on Internet
Technology, 2(1):47–77, 2002.

1113

