
Caching Strategies in On-Demand Routing Protocols

for Wireless Ad Hoc Networks

Yih-Chun Hu David B. Johnson

Computer Science Depar tment

Carnegie Mel lon Univers i ty

Pittsburgh, PA 15213-3891 USA

http : //www. monarch, cs. cmu. edu/

{ yihchun,dbj } @cs. cmu.edu

A b s t r a c t

An on-demand routing protocol for wireless ad hoc networks is one

that searches for and attempts to discover a route to some destination

node only when a sending node originates a data packet addressed

to that node. In order to avoid the need for such a route discovery to

be performed before each data packet is sent, such routing protocols

must cache routes previously discovered. This paper presents an

analysis of the effects of different design choices for this caching in

on-demand routing protocols in wireless ad hoc networks, dividing

the problem into choices of cache structure, cache capacity, and

cache timeout. Our analysis is based on the Dynamic Source Routing

protocol (DSR), which operates entirely on-demand. Using detailed

simulations of wireless ad hoc networks of 50 mobile nodes, we

studied a large number of different caching algorithms that utilize a

range of design choices, and simulated each cache primarily over a

set of 50 different movement scenarios drawn from 5 different types
of mobility models. We also define a set of new mobility metrics that

allow accurate characterization of the relative difficulty that a given

movement scenario presents to an ad hoc network routing protocol,

and we analyze each mobility metric's ability to predict the actual

difficulty in terms of routing overhead experienced by the routing

protocol across the scenarios in our study.

1. I n t r o d u c t i o n

Caching is an important part of any on-demand routing protocol for

wireless ad hoc networks. In an ad hoc network [10, 6], all nodes

cooperate in order to dynamically establish and maintain routing in

the network, forwarding packets for each other to allow communica-

tion between nodes not directly within wireless transmission range.

Rather than using the periodic or background exchange of routing in-

formation common in most routing protocols, an on-demand routing

protocol is one that searches for and attempts to discover a route to

This work was supported in part by the Air Force Materiel Command (AFMC) under
DARPA contract number F19628-96-C-0061. Yih-Chun Hu was also supported by an
NSF Graduate Fellowship. The views and conclusions contained here are those of the
authors and should not be interpreted as necessarily representing the official policies
or endorsements, either express or implied, of AFMC, DARPA, NSE Carnegie Mellon
University, or the U.S. Government.

Po'mission to make digital or hard copies of all oi part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MOB[COM 2000 Boston MA USA
Copyright ACM 2000 1-58113-197-6/00/08...$5.00

some destination node only when a sending node originates a data

packet addressed to that node. In order to avoid the need for such a

route discovery to be performed before each data packet is sent, an

on-demand routing protocol must cache routes previously discov-

ered. Such caching then introduces the problem of proper strategies

for managing the structure and contents of this cache as nodes in

the network move in and out of wireless transmission range of one

another, possibly invalidating some cached routing information.

Several routing protocols for wireless ad hoc networks have

used on-demand mechanisms, including TORA [14], DSR [9],

AODV [15], ZRP [4], and LAR [11]. For example, in the Dynamic

Source Routing protocol (DSR) [l, 8, 9] in its simplest form, when

some node S originates a data packet destined for a node D to which S

does not currently know a route, S initiates a new Route Discovery

by beginning a controlled flood of a request packet through the

network. When a copy of this request packet reaches either D or

another node that has a cached route to D, this node then returns to S

the route discovered by this request.

Performing such a Route Discovery can be an expensive oper-

ation, since it may cause a large number of request packets to be

transmitted, and since it adds latency to the subsequent delivery of

the data packet that initiated it, but this Route Discovery may also

result in the collection of a large amount of information about the

current state of the network that may be useful in future routing deci-

sions. In particular, S may receive a number of replies in response to

its Route Discovery flood, each of which returns information about a

route to D through a different portion of the network; a node may also

learn information about the state of the network by eavesdropping

on the Route Discovery packets from other nodes. By caching and

making effective use of this collected network state information, the

amortized cost of Route Discoveries can be reduced and the overall

performance of the network can be significantly improved.
In this paper, we analyze the effects of different design choices

in caching strategies for on-demand routing protocols in wireless

ad hoc networks. These design choices generally fall into three

areas: cache structure, cache capacity, and cache timeout. For
a wide range of different caching algorithms based on these design

choices, we evaluate their effect on the ability of the routing protocol

to successfully route packets to different destinations, the number

of overhead packets generated by the routing protocol, the average

latency required to deliver data packets, and the optimality of the

routes used relative to the shortest route that physically existed at
the time each packet was sent. Our evaluation in this paper is based

on the caching behavior in the Dynamic Source Routing protocol

(DSR) [1, 8, 9], although many of the results presented here we

231

believe can be generalized to apply to other on-demand wireless

ad hoc network routing protocols as well.

To evaluate the effects of the different caching design choices,

we performed a set of detailed simulations of wireless ad hoc net-

works of 50 mobile nodes, with realistic modeling of factors such

as medium access control and contention, collisions, wireless signal

strength and propagation delay, carrier sense, and capture effect [2],

based on our extended version of the ns-2 network simulator [3].

We simulated each of the caching algorithms primarily over a set

of 50 different movement scenarios drawn from 5 different types of

mobility models. To better characterize the relative difficulty that

each movement scenario presents to the routing protocol, we utilize a

set of mobility metrics, including the geometric metric presented by

Johansson et al [7] and several improved metrics that we define here.

Section 2 of this paper gives an overview of the basic operation

of the DSR protocol. In Section 3, we discuss the caching strategy

design choices considered in the paper, and in Section 4, we describe

the specific caching algorithms based on these choices that we used

in our evaluation. In Section 5, we describe the methodology of our

simulation study, including our simulator features, the performance

metrics we evaluated, and the communication model we used. In

Section 6, we define several mobility metrics and describe a num-

ber of mobility models, and we show the correlation between the

mobility metrics of a scenario and the performance of DSR in that

scenario. In Section 7, we present the cache performance results of

this study, and in Section 8, we present conclusions.

2. Overview of the DSR Protocol

We use the Dynamic Source Routing protocol (DSR) [1, 8, 9] in this

paper to illustrate the effects of different caching strategies in on-

demand routing protocols, since DSR operates entirely on-demand

and thus clearly shows the caching behavior. DSR is composed

of two mechanisms that work together to allow the discovery and
maintenance of source routes in the ad hoc network. Route Discov-

ery is the mechanism by which a node S wishing to send a packet to

a destination node D obtains a source route to D. Route Discovery

is used only when S attempts to send a packet to D and does not

already know a route to D. Route Maintenance is the mechanism

by which node S, while using a source route to D, is able to detect

when the network topology has changed such that it can no longer

use its route to D because a link along the route no longer works.

When Route Maintenance indicates a source route is broken, S can

attempt to use any other route it happens to know to D, or can invoke
Route Discovery again to find a new route for subsequent packets

that it sends. Route Maintenance is used only when S is actually

sending packets to D. This section describes the basic operation of

Route Discovery and Route Maintenance, although a number of op-

timizations to this basic operation exist [I, 9] that are not discussed

here due to space limitations.

To initiate a new Route Discovery for a node D (the target of the

Route Discovery), S transmits a ROUTE REQUEST packet, which is

received by other nodes located within direct wireless transmission

range of S. Each node that receives the ROUTE REQUEST packet

appends its own address to a record in the packet and rebroadcasts

it to its neighbors, unless it has recently seen another copy of the

ROUTE REQUEST for this Route Discovery or it finds that its address

was already listed in the route record in the packet. The forwarding

of the ROUTE REQUEST terminates when it reaches node D; this

node then returns a ROUTE REPLY packet to S, giving a copy of the
accumulated route record from the ROUTE REQUEST, indicating the

path that the ROUTE REQUEST traveled to reach D. The forwarding

of the ROUTE REQUEST also terminates when it reaches a node that

has in its cache a route to D; this node then returns a ROUTE REPLY

packet to S, giving the route as a concatenation of the accumulated

route record from the ROUTE REQUEST together with this node's

own cached route to D. The returned source route from the ROUTE

REPLY is cached by S for use in sending subsequent data packets.

Route Maintenance is performed by each node that originates or

forwards a data packet along a source route. Each such node is

responsible for confirming that the packet has been received by the

next hop along the source route given in the packet; the packet is

retransmitted (up to a maximum number of attempts) until this con-

firmation of receipt is received. This confirmation may be provided

at no cost to DSR, either as an existing standard part of the MAC

protocol in use (such as the link-level acknowledgement frame de-

fined by IEEE 802.11 [5]), or by a passive acknowledgement [10].

If neither of these confirmation mechanisms are available, the node

transmitting the packet may set a bit in the packet header to request

a DSR-specific software acknowledgement be returned by the next

hop. If this confirmation is not received after some maximum num-

ber of local retransmission attempts, this node returns to the original

sender of the packet a ROUTE ERROR message, identifying the link

over which the packet could not be successfully transmitted. When

receiving the ROUTE ERROR, this original sending node removes

this broken link from its cache. In addition to returning a ROUTE

ERROR message, this node may also attempt to salvage the original

packet [2], if it has a route to the intended destination of the packet

in its own cache. If so, the node replaces the original source route

on the packet with the route from its cache and forwards the packet

along that route; otherwise, the node discards the packet since no

correct route is available.

In response to a single Route Discovery, a node may learn and

cache multiple routes to any destination. Nodes may also learn

routing information from any packets that they forward or that they
can overhear through optionally operating their network interface

hardware in promiscuous mode; in particular, routing information

may be learned from a ROUTE REQUEST, ROUTE REPLY, or ROUTE

ERROR packet, or from the source route in the header of a data packet.

3. Caching Strategy Design Choices

3.1. Cache Structure

In developing a caching strategy for an on-demand routing protocol

for wireless ad hoc networks, one of the most fundamental design

choices that must be made is the type of data structure used to rep-

resent the cache. In DSR, the route returned in each ROUTE REPLY

that is received by the initiator of a Route Discovery represents a

complete path (a sequence of links) leading from that node to the

destination node. By caching each of these paths separately, a path

cache can be formed; Figure l(a) illustrates an example path cache

for some node S in the ad hoc network. Alternatively, a link cache

could be created, in which each individual link in the routes returned

in ROUTE REPLY packets is added to a unified graph data structure

of this node's current view of the network topology; Figure l(b)
illustrates an example link cache for node S.

A path cache is very simple to implement and easily guaran-

tees that all routes are loop-free, since each individual route from

a ROUTE REPLY is loop-free. To find a route in a path cache, the

sending node can simply search its cache for any path (or prefix of a

path) that leads to the intended destination node. On the other hand,
to find a route in link cache, a node must use a much more complex

232

(a) Path Cache

(h) Link Cache

Figure I Alternative Cache Data Structures for a Node S

graph search algorithm, such as the well-known Dijkstra's shortest-

path algorithm, to find the current best path through the graph to the

destination node. Such an algorithm is more difficult to implement

and may require significantly more CPU time to execute.

However, a path cache data structure cannot effectively utilize

all of the potential information that a node might learn about the

state of the network. In a link cache, links learned from different

Route Discoveries or from the header of any overheard packets can

be merged together to form new routes in the network, but this is

not possible in a path cache due to the separation of each individual

path in the cache. For example, if node S with the cache as shown

in Figure l(b) learns of a new link from node A to node G, it can

use this link to also form new routes to nodes I t and I (through A

and 13) that it could use if the link from F to 13 later breaks, but a

node using a path cache would be unable to take advantage of these

additional routes.

3.2. Cache Capacity

The capacity of a route cache is another important area of choice in

designing a caching strategy for on-demand routing protocols. For a

link cache, the logical choice is to allow the cache to store any links

that are discovered, since there is a fixed maximum of N 2 links that

may exist in an ad hoc network of N nodes. However, for a path

cache, the maximum storage space that could be required is much

larger, since each path is stored separately and there is no sharing in

the data structure even when two paths share a number of common

links. We thus consider the effects of different limits on the capacity

of path caches in terms of the number of individual paths it can

store. In general, our intuition was that the larger the capacity of a

path cache, the better the routing protocol should perform, since it is

able to keep a more complete set of routes. However, as we show in

Section 7, a smaller cache size actually can have an indirect effect

in improving performance.

An additional design choice with respect to cache capacity that

we consider is the division of the cache into two halves: one half

for paths that have been used by this node (the primary cache) and a
second half for paths that have not yet been used since being learned

(the secondary cache); when a path (or a prefix of a path) in the

secondary c,_ac, he is first used, that path (or prefix) is promoted to the
primary cache. This division of the cache avoids forcing out of the

cache paths that this node has found useful, when attempting to insert

some new path into the cache that has just been learned and has not

yet been used (and may never be used). Old paths in the secondary

cache are removed due to capacity limits and the natural operation

of the cache when adding new paths as they are learned, whereas

old paths in the primary cache are more actively removed due to the

operation of Route Maintenance as they are used. We refer to such

a divided cache as a generational cache, in a manner similar to the

way a generational garbage collector works in a language runtime

system with dynamic storage allocation.

3.3. Cache Timeout

As with cache capacity, cache timeout policy introduces a number

of design choices to consider in a caching strategy. Because a path

cache generally has a mechanism for removing entries through a

capacity limit, we did not implement a timeout for path caches. For

link caches, the timeout on each link in the cache may be either

static or adaptive.

For a static timeout, each link is removed from the cache after a

specified amount of time has elapsed since the link was added to the

cache. For an adaptive timeout, a node adding a link to its cache

attempts to determine a suitable timeout after which the link will be

deleted from the cache, and this timeout value should be based on

properties of the link or the nodes that are the endpoints of the link.

Finally, similar to the generational path caching alternative, it is

possible to allow a link that is being used to not expire by increasing

its timeout when it is used.

4. Caching Algorithms Studied

From the caching strategy design choices given in Section 3, we

chose a collection of path caches and link caches to simulate and

evaluate. We also simulated an "omniscient expiration" cache,

which although unimplementable in a real system, gives us a bench-

mark against which our other cache algorithms can be compared.

4.1. Path Caches

Path caches store a set of complete paths (sequences of links), each

starting at the caching node. We analyzed the following algorithms

that use path caches:

• Path-lnf is a path cache with no capacity limit (infinite

capacity).

• Path-FIFO-64 is a path cache with a 64-path capacity limit. The

cache replacement policy used on paths in the cache is FIFO.

• Path.FIFO-32 is the same as Path-FIFO-64, except that it uses

a 32-path capacity limit.

• Path-Gen-64 is a generational path cache that employs a 30-

element FIFO primary cache to store paths that have been used

or were returned directly to this node in a ROUTE REPLY, and a

separate 64-element FIFO secondary cache to store other paths;

the total capacity of this cache is 94 elements.

• Path-Gen-34 is the same as Path-Gen-64, except that the size

of the secondary cache is 34-elements; the total capacity of this

cache is 64 elements, the same as Path-FIFO-64. This specific

caching algorithm, of this size, is the same as that used in our

original ns-2 simulation of DSR [2].

4.2. Link Caches

Link caches store a set of individual links, organized as a graph

data structure. We analyzed the following algorithms that use link
caches:

233

• Link-NoExp is a link cache with no timeout (no expiration).

• Link-Static-5 is a link cache in which links normally are expired

5 seconds after they are put into the cache. This is a generational

cache, such that links that are used to source packets sent by

this node are marked to not timeout.

• Link-Adapt-1.25 is a link cache in which a link's timeout is

chosen according to a stability table. Each node keeps a table

recording its perceived stability of each other node. When

a link is used, the stability metric for both endpoint nodes is

incremented by the amount of time since that link was last used,

multiplied by some factor; when a link is observed to break, the

stability metric for both endpoints is multiplicatively decreased

by a different factor. A link entering the cache is given a lifetime

equal to the stability of the less-"stable" endpoint of the link,

except that a link is not allowed to be given a lifetime under

1 second. As with Link-Static-5, this is a generational cache,

such that links that are used to source packets sent by this node

are marked to not timeout. For this cache, the additive increase

factor is 4, and the multiplicative decrease factor is 1.25. The

stability table for each node is initialized to 25 seconds.

• Link-Adapt-2 is the same as Link-Adapt-l.25, except that the

multiplicative decrease factor is 2.

• Link-MaxLife is the same as Link-Adapt-2, axcept that when a

node chooses a route from the cache, it chooses the shortest-

length route that has the longest expected lifetime (highest min-

imum timeout of any link in the path), as opposed to an arbitrary

route of shortest length.

4.3. Omniscient Expirat ion Cache

For comparison against the other caching algoriaaras that we stud-

ied, we also analyzed the following "omniscient expiration" caching

algorithm:

• Link-OmniExp is a link cache that performs omniscient expi-

ration of cached links, such that a link is removed from the

cache exactly when it ceases to physically exist. The simula-

tor has omniscient knowledge of the location of all nodes, and

Link-OmniExp bases cache expiration on a-nominal wireless

transmission range for each link of 250 m.

5. M e t h o d o l o g y

5.1. Simulator

We analyzed the effects the different caching strategydesign choices

through detailed simulation of the different cachingalgorithms de-

scribed in Section 4. The experiments were conducting using the

ns-2 network simulator [3], which we have extended to support

the simulation of wireless and mobile networks [2;]. The simula-

tor properly models signal strength, RF propagation, propagation

delay, wireless medium contention, capture effect, interference, and

arbitrary continuous node mobility. The radio model is based on the

Lucent Technologies WaveLAN 802.11 product, providing a 2 Mbps

transmission rate and a nominal transmission range of 250 m. The

link layer modeled is the Distributed Coordination Function (DCF)

of the IEEE 802.11 wireless LAN standard [5].

5.2. Communicat ion Model Used

The communication model simulated in all scenarios was a script

consisting of 20 Constant Bit Rate (CBR) data connections, each

transmitting 4 packets per second; the size of each packet is 64 bytes.

Each node was the source of at most 2 CBR connections.

5.3. DSR Performance Metrics

We evaluated the performance of DSR on each of the caching algo-

rithms according to four metrics:

• Packet Delivery Ratio: The fraction of packets sent by the

"application layer" on a source node that are received by the

"application layer" on the corresponding destination node.

• Overhead: The total number of packets transmitted by the

routing protocol. This includes routing packets forwarded, but

does not include data packets forwarded.

• Latency: The delay from when a packet is sent by the "appli-

cation layer" on a source node until it is received by the "appli-

cation layer" on the corresponding destination node. This can

only computed for packets that are successfully delivered.

• Path Optimality: The difference between the number of hops

over which a packet was routed and the number of hops in the

shortest route that physically existed when the packet was sent.

The simulator is able to determine this theoretical shortest route

at all times, based on the nominal wireless transmission range

for each link of 250 m.

6. Mobility Models Studied

6.1. Mobility Metrics

The purpose of a mobility metric is to evaluate the relative difficulty

of routing in a given ad hoc network scenario.

6.1.I. Geometric Mobility Metric

Johansson et al [7] describe a geometric mobility metric that is com-

puted for a given scenario by

N { N - - I) T i = l $ = i d - I 0

where each Pk (t) is the position of a node k at time t, N is the
number of nodes, T is the length of the simulation, and the sum is

calculated over all pairs of nodes over all time.

For the results in their paper [7], they approximated this metric by

computing it with a 0. l-second time granularity and rearranged [12]

the equation to compute

±±f2
i = 1 j =i"1- I 0

N IOT N

i = 1

N

, .
"-i-6 -" - P ' --i-6- ,_

This approximation, however, can lead to a very inaccurate calcula-

tion in some cases. For example, on scenarios generated as described

in Section 6.2.1, the approximate mobility metric (with 0.1-second

granularity) was too small by more than a factor of 2.2.

Instead, we used to following technique to calculate their geomet-

ric mobility metric precisely: split the integral so that each integral is

along an interval in which there is no change in the velocity of either

i or 3. Define f (t) = liPs(t) - P~(t)ll2. We want f ;z I d t

If there is no relative velocity, then the integral is 0. If f has no

local minima on [tl, t2], then the integral evaluates to [/(t)l',E,, I
Otherwise, if t' E It 1, t2] is a local minima of f , then the integral is

f (t l) + f (t2) - - 2f (t ') .

234

6.1.2. Minimal Route-Change Metrics

A difficulty with the geometric mobility metric [7] is that it cannot

distinguish between mobility that changes the network topology and

mobility that instead has no effect on any links in the network. If we

have information about the nominal wireless transmission range of

the radios used in the network, we can more accurately determine
how mobility affects the difficulty of routing.

The minimal shortest route-change metric for a pair of nodes i

and 3 is the minimum number of times that i and j would need to

change routes in order to always have a shortest (least hops) path to

each other, assuming all links are bi-directional.

An alternate metric, that we call the minimal route-change metric,

is the same as the minimal shortest route-change metric, except that

a route counted by the metric only changes when it breaks, not when
a shorter route begins to exist.

6.1.3. Communication Model-Dependant Metrics

The minimal shortest route-change metric and the minimal route-

change metric both provide a number per pair of nodes; to arrive at

a metric for a scenario, we can either sum over only those node pairs

that communicate at least once during the scenario, or simply over

all pairs of nodes regardless of communication behavior.

6.2. Mobi l i t y M o d e l Spec i f i ca t ions

We chose the parameters for our different mobility models to make

the average speed of a node 10 m/s, and to keep the nodes as ran-

domly distributed as the model would allow. All mobility mod-

els were generated for 50 nodes moving over a simulated time of

900 seconds, and all models confine the nodes to move within a

1500 m x 500 m space. Unless otherwise noted, the initial position
of each node is chosen as (:to, V0), with :r0 uniformly distributed

over [0, 1500 m] and V0 uniformly distributed over [0, 500 m]. Ten
different scenarios were generated for each model.

6.2.1. Brownian Motion

Nodes in our Brownian motion mobility model change speed and

direction at discrete time intervals, such that at the beginning of

each interval, each node chooses r E [0, vm,,~] and 0 E (-Tr, 7r] and

moves with velocity vector (r sin 0, r cos 0) during that interval. If

this movement would cause a node to end the interval beyond the

boundaries of the rectangular area, the node instead picks the point

within the rectangular area closest to the intended destination and

moves to that point at the originally chosen velocity. The parameters

used in our implementation of this model are given in Table I.

6.2.2. Column Motion

The column mobility model was developed by Sanchez [16]. In

our implementation of this model, each node is either moving in

the positive z direction or the negative z direction. The initial

position of each node i is (10i, 10i), and all nodes start moving in

the positive z direction. The motion of the nodes is divided into

Table I Parameters for Brownian Motion

Movement interval duration l 0 . I s I
Vm~ 20 m/s

discrete intervals, such that at the beginning of each interval, each

node chooses v E [0, v,n~] and moves with that speed in the same

direction as it has been moving. If this movement would cause the

node to cross the boundary of the rectangular area, the direction

is instead flipped, and the node moves with speed v in the new

direction rather than in the original direction. The parameters used

in our implementation of this model are given in Table II.

6.2.3. Random Gauss-Markov Motion

The random Gauss-Markov mobility model was developed by Liang

and Haas [13] and was described by Sanchez [17]. The motion of

the nodes is divided into discrete time intervals, such that at the

beginning of each interval, a node updates its velocity vector as

v~ t = ~v~,_j + (1 - o~)~-~-~ + RV/1 - o~ 2

vv, = o~vv,_ , + (1 - o¢)~'v + R V I -- oL 2

at interval t, where R is a normally distributed random variable with

mean 0 and variance a ~ . When a movement would cause a node

to exceed the boundaries of the rectangular area, the sign of the
velocity vector in that dimension is flipped.

The parameters used in our implementation of this model are

given in Table IlL The choice of o,~ and a~, u was made to have

the median of [I(R~, P~)II~ be equal to 10 m/s. The value ofo~ was

chosen to be equal to the value used by Sanchez in his implementa-
tion [18].

6.2.4. Random Waypoint Motion

The random waypoint mobility model was developed by Johnson

and Maltz [9]. In this model, a node chooses a destination with a

uniform random distribution over the area, moves there with velocity
v uniformly distributed over [0, v,,~], waits there for a pause time,

and then repeats this behavior. We used a pause time of 0, meaning
continuous motion of all nodes, and chose v,,m = 20 m/s. The

parameters used in our implementation of this model are given in
Table IV.

6.2.5. Pursue Motion

The pursue mobility model was developed by Sanchez [16]. In

our implementation of this model, there are I0 groups of 5 nodes

each. The motion of the nodes is divided into discrete time intervals,

such that in each group, one node moves according to the random

waypoint model, and the others attempt to "intercept" that node by

choosing their velocity vector at each interval to be toward the point

that the target node would be at at the end of the interval, given that

the target node would continue to move with the same velocity. The

velocity of the pursuing nodes is chosen uniform random for each

interval to be in the range [vp,i~, vp~,~]. The parameters used in our

implementation of this model are given in Table V.

Table III Parameters for Random Gauss-Markov Motion

Movement interval duration 0. I s

Initial velocities 0 m/s

0 m/s ~ ~ Uy

Ov~ ~ Gv F 10.4835769m/s
oe 0.9

Table IV Parameters for Random Waypoint Motion

v,,m 20 rrds

Table II Parameters for Column Motion

/ Movement interval duration v,,~ [20 0.1s m/s I

Pause time 0 s

235

Table V Parameters for Pursue Motion

Movement interval duration 0.1 s

v,,,~ 20 m/s

z'pmJn 5 m/s

Vpmax 15 rnls

Pause time 0 s

6.3. Evaluation of Mobility Metrics

We evaluated the mobility metrics described in Section 6.1 for each

of the scenarios used throughout this paper. The geometric mobility

metric was evaluated with infinite precision using the technique de-

scribed in Section 6. l . l . The mobility metrics were normalized so

that over all 50 scenarios, the metrics would lie in [0, l].

Figure 2 summarizes the degree to which the mobility metrics ac-

curately characterize the difficulty of routing across the range of sce-

narios. Figure 2(a) shows the relationship between the normalized

all-pairs geometric mobility metric for each scenario and the actual

routing packet overhead generated by DSR on that scenario using the

Link-MaxLife and Path-Gen-34 caching algorithms. Also shown in

Figure 2(a) is the best quadratic fit to the individual data points, in a

least-squares sense, for these two caching algorithms. We show the

results for these two caching algorithms here, since Link-MaxLife

generally performs the best of the adaptive link caching algorithms,

and Path-Gen-34 is representative of the path caching algorithms.

Figure 2(b) shows the similar relationship and type of quadratic

fit for the number of ROUTE ERRORs originated during the simula-

tion of these scenarios. Figures 2(c) and (d) show these relation-

ships for the normalized all-pairs minimal route-change metric, and

Figures 2(e) and (f) show these relationships for the normalized min-

imal route-change metric summed only over communicating pairs.

Table VI shows the norm of residuals for the respective quadratic

fit for each mobility metric, including also the all-pairs minimal
shortest route-change metric, and the minimal shortest route-change

metric summed only over communicating pairs.

The minimal shortest route-change metric does not reflect well the

challenge presented to DSR, since DSR does not attempt to always

switch to the shortest route when new routes begin to exist. Instead,

Table VI Norm of Residuals for Quadratic Fits of Routing

Overhead and Number of ROUTE ERRORs

Path-Gen-34 Overhead ERRORS

Geometric
Min Route-Change over All Pairs
Min Route-Change over Comm Pairs
Min Shortest Route-Change over All Pairs
Min Shortest Route-Change over Comm Pairs

120,248 9,189
111,699 5,973
77,144 2,877

168,729 10,799
160,027 9,782

Link-MaxLife

Geometric
Min Route-Change over All Pairs
Min Route-Change over Comm Pairs
Min Shortest Route-Change over All Pairs
Min Shortest Route-Change over Comm Pairs

53,392 12,896
40,988 8,282
32,478 5,219
64,697 15,291
65,668 14,814

Link-OmniExp

Geometric
Min Route-Change over All Pairs
Min Route-Change over Comm Pairs
Min Shortest Route-Change over All Pairs
Min Shortest Route-Change over Comm Pairs

18,963 116
17,616 105
17,885 106
19,988 116
23,093 122

DSR will continue to use its best route until it breaks or until it

overhears a better route.
As shown in Figure 2 and Table VI, the four minimal route-

change metrics correlate significantly better, for both routing over-

head and number of ROUTE ERROR packets, than does the geometric

mobility metric, since route changes are a more direct cause of

overhead and ROUTE ERRORs than is geometric mobility. Of the

four minimal route-change metrics, the minimal route-change met-

ric summed only over communicating pairs (Figure 2(e) and (f))

correlates best, since summing only among communicating pairs

removes pairs which may undergo many route changes but that do

not affect the routing algorithm. In addition, since the individual

data points on the graphs relative to this metric are reasonably well

spread and not tightly clustered, we conclude that the particular

movement scenarios used in our study are generally representative

of a fairly broad array of possible scenarios within the bounds used

by these scenarios.

Although the four minimal route-change metrics correlate well

to both the routing overhead and the number of ROUTE ERRORS,

it correlates better for the number of ROUTE ERRORs. We believe

this difference is due to the variable number of ROUTE REQUEST

packets that may be sent as part of a Route Discovery, depending on

the degree of containment of the ROUTE REQUEST flood that DSR

is able to achieve for each individual Discovery attempt. We also

examined the correlation of these metrics specifically to the number

of Route Discoveries performed, and found fairly good correlation

for Path-Gen-34 but not for Link-MaxLife, which we attribute to the

very small, statistically insignificant number of Route Discoveries

needed by Link-MaxLife. Even a small change in number of Route

Discoveries for any scenario with Link-MaxLife will result in a large

relative change in the total, making correlation of any mobility met-

ric difficult. We omit the detailed graphs and table here for number

of Route Discoveries due to space constraints.

Another exception in the degree of correlation of the mobility
metrics is those results obtained using the Link-OmniExp caching

algorithm, for all of the performance indicators that we studied for

the routing protocol. For all indicators, Link-OmniExp had rela-

tively low correlation, since this caching algorithm creates very few

Route Discoveries and even fewer ROUTE ERROR packets (and thus

very small total routing overhead). As with the number of Route

Discoveries needed by Link-MaxLife, as described above, none of

the performance indicators that we studied for the routing protocol

with Link-OmniExp are statistically significant.

7. Simulation Results

7.1. Overview of the Results

For each of the caching algorithms presented in Section 4, we ran

10 different scenarios of each of the mobility models described in

Section 6.2. The scenarios were generated in advance, and the

identical scenarios was used to evaluate each of the caching algo-

rithms, allowing direct comparison of the results. Figure 3(a) shows

the packet delivery ratio achieved by each caching algorithm, av-

eraged over the 10 scenarios for each mobility model. Figure 3(b)

shows the average routing packet overhead, Figure 3(c) shows the

average packet delivery latency. Figure 3(d) shows the path op-

timality for each of the caching algorithms over the 10 scenarios

from each mobility model, normalized and averaged over the 5

mobility models.

The Link-Static-5 caching algorithm uses only a single fixed value

for the cache timeout, although in general, no single timeout value

236

120

100

1so
"6

I
i
8
[.4o

Actual Path-Gen-34

°° .'.

~o

• - _ - .) ~ . e~" I~

0.1 . 0.2 03 0.4 0.5 0.8 0.7 0.8 0.9
Normalized Mobility Metric

(a) Geometric Mobility Metric (Routing overhead)

,2o
lOO

~ a o ¢J

~. 60

8,,to
.- e • l l e • "

~ O0 0 ,

• 0
, o ~ / ~ - - - " o ~ . ~

o - * _ _ _ * - ' ~ - * ~ 8

o o, o.2 03 o., o.s 06 0.7 06 0.6
Normalized Mo~ility Metric

(C) Minimal Route-Change Metric, All Pairs of Nodes
(Routing overhead)

120

100

l a o
"6

i

~4o

• e o

• %

• • •

_ 9 --*- oO o o ?:ooo:
• ~ - ' " 0 0 0 00 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 09
Normalized Mobility Metric

(e) Minima] Route-Change Metric, Communicating Pairs
(Routing overhead)

D

4

10

9

8

7

| .
g

j

J
E

o / i

o i J J

0 q l • ~ /S

~'°*

0.1 0.2 0.3 0A 0.5 0.6 0.7 0.8 0.9
Normalized Mobility Me~ic

(b) Geometric Mobility Metric (RotrrE ERRORS)

o

o o z /

0 0 1 O"

0 0 0 , / !

o s I

8

4 ~ 0 0

0 O~ S ~ 0 e •

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0,8 0.9
Noml l i z~ l Mobllily Melrio

(d) M i n i m a l R o u t e - C h a n g e M e t r i c , A l l P a i r s o f N o d e s

(R O U T E ERRORS)

0 ActUal LJnk-MaxUfe
- - Quadratic Fit to link-Max[.ife
• Actual Path-Gen-34

/
/

/
/

O / /
i

OO j "

* '~ 'O
0 0 0 ¢ / s 0 0

. - - (° . ~ . ¢ ~ . ~ • o

.s~9" .

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.$ 0.9
Normalized Mobility Metric

(f) Minimal Route-Change Metric. Communicating Pairs
(ROUTE ERRORS)

Fi gu re 2 Correlation of Mobility Metrics to Routing Overhead and Number of ROUTE ERRORs

2 3 7

I , , ,

o.98 90

i -

!o
Link-NoExp

0.88 25

i Link-Adapt-2

I i i / I I I I l l l l II!!11111 l l l l l l l /
0.86H E::]Link-$1atic-5 l l l l l l l l l l l l l l l l l l I I I I I I I I I l i l l l l l l l - I

Link-OmniExp 20
Path - ln f

0.84 l Path-FIFO-64 1=: -; 11111 t!1111 IIIIIIlll [llgll 0
Path-Gen-64

0., llLIIllLIIIIIHII_ llHII I
brownian column gauna pursue waypoint

Mobili~ Model

(a) P'acket Delivery Ratio vs. Cache Type

6 0 0 ~ "r T 1

i i t _ _ l ~ l R - - l , u ~ p
II r m ~=-~,,pt-l.2s
II i ~k-~,pt-=
I i l IJnk-MaxUfe

sooH E::] Unk-StaUc-S
II ~ L~k-Ome,~*
]l I Path-=nt
II mm PaU,-FZFO.-~
II r---q ~ - R F O - ~

2OO

100

0
bmwnian column gauu pursue waypoint

Mobility Model

(C) Latency vs. Cache Type

0.8

0.7

|
~ 0.6

=,,
. 0 .5

'3

~ 0.4

-=

~ 0.3

0.2

0.1

0

E ~ Lir~k~NoExp
Link-Adapt-1.25

i Link-Adapt-2
i Link-MaxLife
1 ~ Link-Static-5

Link~OmniExp
BIB Path-lnf
I Path-FIFO-64
[~ Pat h-FIFO-3,?.

Path-Gen-64
a m Path-Gent34

i

brownian COlumn gauss pursue waypoint
Mobility Model

(b) Routing Packet Overhead vs. Cache Type

t ~ Link-Adapt-2
i i Unk-MexLife
I I---I LJnk-Stafic-5
I ~ ~k-Or.niF-xp
I i Path-lnt
I ~ I Path-FIFO-e4
I I - -1 Palh-FIFO-32

0 1 2 3 4 5 6 7+
Path Length Difference From Shortest (hops)

(d) Normalized Path Optimality vs. Cache Type

Figure 3 Performance of the Different Caching Algorithms on the Mobility Models

can perform best for all nodes in all ad hoc networks in all circum-

stances. In addition to the timeout value of 5 seconds shown in

our results, we also evaluated a number of other timeouts ranging

from 1 second to 40 seconds, and found that in our scenarios, the

5-second timeout performed best in terms of packet delivery ratio.

As shown in Figure 3, our scenarios represent a range of different

challenges for the routing protocol, but in each of our individual

scenarios, all nodes in a given scenario move according to the same

pattern. Thus, the advantage of an algorithm that can adapt to dif-

ferent timeouts for different links (between different pairs of nodes)

was not fully exercised. We plan additional experiments in future

work to explore this point, but here, we simply present the results

for Link-Static-5 and omit further comparison of them in this paper
due to space constraints.

Although the column mobility model creates a large amount of

motion among the nodes, there is very little relative motion among

them and thus very little challenge to any of the caching algorithms.

In fact, in each of our scenarios using the column mobility model,

only 18 Route Discoveries were performed, regardless of the caching

algorithm used. This property of the column model can also be seen

using our new mobility metrics defined in Section 6.1; for example,

the average geometric mobility metric over our column scenarios

is 79.35% of the same metric over our random waypoint scenarios,

appearing to indicate a comparable amount of mobility, yet when

compared using our all-pairs minimal route-change mobility metric,

this number drops to only 2.82%, clearly showing the much smaller

challenge to the routing protocol.

In the pursue mobility model, the network remains partitioned

much of the time; the 5 nodes in each group stay very close to each
other, while the 10 separate groups are free to move over the entire

simulation area, often leaving large, unoccupied spaces between the

groups. For example, across all of our scenarios using the pursue

mobility model, the network is partitioned on average 76.07% of

the time. Due to this high occurrence of partition, the behavior of

any caching algorithm used with the routing protocol will be very

different than in more typical, usually connected networks, mak-

ing comparison of different caching algorithms in these scenarios

difficult.

2 3 8

In the remainder of this paper, we therefore focus in our analysis

on only the scenarios using the Brownian, random Gauss-Markov,

and random waypoint mobility models.

7.2. Effects of Cache Structure

For the packet delivery ratio metric, as shown in Figure 3(a), the

Link-Adapt-2 and Link-MaxLife link caching algorithms outperform

all path caches, obtaining higher packet delivery ratio than the best

path cache, evaluated individually for each mobility model. In most

cases, Link-MaxLife performs somewhat better than Link-Adapt-2
since it is able to select routes using links with the longest expected

lifetime (based on the remaining cache timeout for each link) in

addition to both algorithms' ability to select cache timeouts based

on each node's stability metric.

Similarly, for the routing overhead metric, as shown in

Figure 3(b), Link-Adapt-2 and Link-MaxLife outperform all path

caches, obtaining in most cases a reduction in overhead by a fac-

tor of about 2 or more over the best path cache for each mobility

model. In addition, Link-Adapt-l.25 performs better than the best
path cache for each mobility model, although not by as much as do

Link-Adapt-2 and Link-MaxLife. This is consistent with the design

intent of link caches over path caches, as link caches remove only a

single link in response to a ROUTE ERROR (rather than removing a

whole path or path suffix) and are able to combine information from

different Route Discoveries to form new routes from the cached

information.

In the scenarios that we studied, two primary factors contribute

to the total latency experienced by a packet: the time spent by

the packet waiting for a Route Discovery to complete before the

packet can be sent, and the time spent in Route Maintenance de-

tecting (through retransmissions) broken links and performing sal-
vaging. For our Brownian motion scenarios, the dominant factor

of these two is Route Discovery, which favors the link caches for

low latency, since link caches generally perform fewer Discover-

ies than path caches, due to the increase in information that can

be represented in the cache. For example, Link-Adapt-l.25 (the

highest-latency adaptive link cache) performs on average 431.5

fewer Route Discoveries than Path-FIFO-32 (the lowest-latency
path cache) in these scenarios, but it causes on average only

130.7 more ROUTE ERRORs. For the random Gauss-Markov and

random waypoint scenarios, however, the number of ROUTE ER-

RORS becomes significant in the link caches, particularly for the

Link-NoExp and Link-Adapt-l.25. For example, Link-NoExp and
Link-Adapt-l.25, respectively, cause 31,117 and 10,652 ROUTE
ERRORs, yet Path-FIFO-32 (the highest-latency non-infinite path

cache) causes only 1,973 ROUTE ERRORs.

All of the caching algorithms achieve good path optimality, and

the differences between the results with different caching algo-

rithms is small. In particular, the 5 path caching algorithms per-

form almost identically on most scenarios. However, for the link

caching algorithms, path optimality differs for the Link-NoExp and

Link-Adapt-l.25 algorithms; these algorithms deliver a greater frac-

tion of packets along optimal routes (path optimality 0) than do the

other caching algorithms, yet also deliver a greater fraction of pack-

ets along routes 6 and 7 or more hops longer than optimal than do

the other algorithms.
Both of these algorithms are able to keep a large number of un-

used links in the cache, as Link-NoExp never times out such links

and Link-Adapt-l.25 increases the node stability metrics (and thus
the link cache lifetimes) much more aggressively than it decreases

them. As such, these algorithms are able to opportunistically com-

bine results from different Route Discoveries and from other routing

information learned from packets forwarded or overhead, in order

to more often find the shortest route that exists. However, the many

unused links that these algorithms can keep in the cache also at

times are a liability; many of these links may be broken, increasing
the number of packets that must be salvaged multiple times, and

thus increasing the total hop count for salvaged packets that are

ultimately successfully delivered. In our simulations, each packet

was prevented from being salvaged more than 15 times, in order to

prevent the packet from possibly looping yet also allow alternate

routing and backtracking of the packet in the presence of some stale

cached links.
Overall, Link-MaxLife outperforms the other caching algorithms

(excluding Link-Static-5 and Link-OmniExp) on the set of perfor-

mance metrics and scenarios studied. By taking advantage of the

lifetime values in the route selection algorithm to differentiate be-

tween multiple routes of equal length, Link-MaxLife attempts to

avoid using routes that may soon result in a ROUTE ERROR and a

possible new Route Discovery. For example, in 26 of the 30 Brown-

ian motion, random Gauss-Markov, and random waypoint scenarios,

Link-MaxLife experiences fewer ROUTE ERRORs than Link-Adapt-2,
where Link-Adapt-2 is the same algorithm as Link-MaxLife without

the use of lifetimes to aid in route selection.

7.3. Effects of Cache Capacity

In scenarios generated using the random waypoint mobility model,

the Path-Inf caching algorithm, with its unlimited cache size, sur-

prisingly performs much worse than the other path caches (with

limited cache sizes) with respect to packet delivery ratio, as shown

in Figure 3(a). This performance is due to the large number of

ROUTE ERRORS caused by the use of stale routing information. When

compared to Path-FIFO-64, Path-Inf experiences only 6.51% more

ROUTE ERRORS in scenarios generated using our Brownian motion

mobility model and 40.72% more ERRORs in our random Gauss-

Markov scenarios, but experiences 165.58% more ERRORS in our

waypoint scenarios.
Latency and routing packet overhead for the Path-lnf algo-

rithm also suffer in the random waypoint scenarios, as shown in

Figures 3(b) and (c). Sending a ROUTE ERROR typically counts as

several packets of overhead since it must in general traverse several

hops. In addition, when a packet is salvaged, the combined route

traveled by the packet will typically be longer than the original route

with which the packet was sent. When a packet must be salvaged

multiple times, the resulting total routes can be quite long, causing
significant increases in latency, and for each time a packet is sal-

vaged, another ROUTE ERROR is returned to the original sender or

previous salvager of the packet.
For the FIFO cache replacement policies studied here for path

caches, no one cache size provides the best packet delivery ratio

for all mobility models. For mobility models with large amounts

of relative mobility, many Route Discoveries take place, causing

a rapid turnover in each node's cache as it replaces existing cache

entries with new entries learned from its own Route Discoveries

or from other packets it has overheard. This cache replacement

is in effect a form of adaptation in the caching algorithm, since

as the amount of mobility in the network increases, the average

number of broken routes created in the network increases and the
average time that entries remain in a node's cache decreases with the

cache turnover. However, with cache capacity as the limiting factor
causing increased cache turnover, the FIFO caching algorithms have

little control over which cache entry is replaced at which time. In

239

particular, in a different movement scenario with highly non-unitbrm

behavior between different nodes, FIFO cache replacement would

force the replacement of all paths (containing nodes with different

behaviors) to be treated equally.

7.4. Effects of Cache Timeout

The use of a timeout on each cache entry in a link cache has a

similar effect in cache replacement as the use of limited capacity

has in a path cache, as described in Section 7.3. For example, the

Link-NoExp algorithm, which has no timeout on cache entries, per-

forms poorly with respect to packet delivery ratio for scenarios from

the random Gauss-Markov and random waypoint mobility models,

as shown in Figure 3(a). The movement in these models is gener-

ally quite dynamic, often resulting in the route that a node selects

to use from its cache being broken even before the first packet is

sent on it; this in turn causes the same type of ineffective salvaging

and dropped packets as occurred when using the Path-lnf algorithm,

with its unlimited path cache size.

The timeout value used on entries in the cache is closely related

to a number of performance factors of the routing protocol. For

example, if the timeout value is often too short, the number of

ROUTE REQUESTs may increase, in order to rediscover links that

were previously cached; if the timeout is often too long, the number

of ROUTE ERRORs may increase, as more broken links are used from

the cache. Similarly, the packet delivery ratio and routing over-

head in a given scenario may increase or decrease, depending on the

contents of the cache and the routing protocol's reaction to it.

In order to assess these relationships, we ran further simulations

to collect results for static cache timeout values of 1, 2, 10, 20,

and 40 seconds, in addition to the static timeout of 5 seconds

of Link-Static-5 and the infinite timeout (no expiration) cache of

Link-NoExp. For each of these new static cache timeout values,

we simulated each of our 10 random Gauss-Markov and 10 random

waypoint scenarios. We present the results in Figure 4 for all 7
of these static timeout values for the random waypoint scenarios,

although the results for the random Gauss-Markov scenarios are
similar.

Figure 4(a) shows the relationship of the cache timeout value to

the packet delivery ratio achieved during each of our random way-

point scenarios. Figure 4(b) shows the relationship to the routing

overhead during each of these scenarios, and Figures 4(c) and (d), re-

spectively, show the relationship to the number of ROUTE REQUESTs

initiated and number of ROUTE ERRORs generated during each sce-

nario. For each timeout value, in order to show the individual point

representing each of the scenarios more clearly, the location of the

points along the x-axis have been spread uniformly over the axis to

the left and right of the specific timeout value, and the set of points

for each individual timeout value have been colored alternately black

or white. The scenarios within each timeout value in the graphs are
ordered arbitrarily, in the order originally generated.

For cache timeout values of 20 seconds or less, as shown in

Figure 4(a), the routing protocol was able to achieve between 98.8%

(the minimum in this range, at timeout 20) and 99.1% (the maximum

in this range, at timeout 5) packet delivery ratio; however, beginning

at a timeout of 40 seconds, the packet delivery ratio falls sharply due

to the large number of broken links that are allowed to accumulate

in the route caches. This large number of broken links can also be

seen in the rise in number of ROUTE ERRORs beginning at about
a timeout of 10 seconds, and rising sharply above 20 seconds, as
shown in Figure 4(d).

The routing overhead of the protocol is affected by the choice of

cache timeout much more than is the packet delivery ratio. As shown

in Figure 4(b), the routing overhead reaches a low of 15,423 routing

packets in a single run at a timeout of 10 seconds (averaged over all

of the scenarios with the same timeout); the overhead rises gradually
to an average 25,482 packets at a timeout value of 1, and rises rapidly

to an average 69,294 for the Link-NoExp caching algorithm with no

cache timeout. This rapid rise in routing overhead with increasing

cache timeout value is due to the corresponding rise in number of

ROUTE ERRORs, as shown in Figure 4(d), caused by the increased

accumulation of broken links in the caches.

The rise in routing overhead with lower cache timeout values,

below a timeout value of 10, is due to the rise in ROUTE REQUEST

packets, as shown in Figure 4(c). Rather than allowing broken links

to remain in the caches, such short timeout values in these scenarios

often delete a link from the cache while it is still valid and still

needed. The packet delivery ratio achieved decreases only slightly

due to this rise in routing overhead with lower cache timeouts, as

noted above, indicating the success of the routing protocol in being

able to quickly rediscover and re-cache routes needed for the data

packets being sent.

Based on these simulations across a range of static timeout values,

it appears that either 5 or l0 seconds may be the best static value

on these scenarios. A 5-second cache timeout results in the highest

packet delivery ratio, but is only slightly higher than at 10 seconds;

conversely, a 10-second cache timeout results in the lowest routing

overhead, but is only slightly lower than at 5 seconds. At differ-

ent node movement speeds or with different wireless transmission

ranges, however, the optimal static timeout on these same scenarios

would be different. We did not include our adaptive cache timeout

algorithms in this analysis, since in these algorithms, each link re-

ceives a different timeout, and these timeouts vary over the life of

the scenario, whereas the metrics that we relate to cache timeout

value in Figure 4 are aggregate measures that reflect the overall per-
formance of the entire scenario. Based on the performance metrics

shown in Figure 3, however, the performance of our Link-MaxLife

algorithm is very close to that of the Link-Static-5 algorithm, the

best performing static timeout caching algorithm.

8. Conclus ions

A number of on-demand routing protocols for wireless ad hoc net-

works have been proposed, including TORA [14], DSR [1, 8, 9],

AODV [15], ZRP [4], and LAR [ll] , and earlier detailed simula-

tion work has shown that such protocols can have excellent per-

formance [2, 7]. One key to achieving this type of performance is

the design of an appropriate caching strategy for the protocol, that

can make effective use of the state information about the network

collected by the protocol as part of the process of discovering routes

to other nodes. Caching is important in order to avoid the over-

head of discovering a new route before sending each data packet,

but caching also brings with it the risk and associated expenses of

retaining routing information in a cache after the information is no

longer valid due to changes in different nodes' positions or changes

in the wireless propagation environment.

This paper has presented an analysis of the effects of different

design choices in caching strategies for on-demand routing protocols

in wireless ad hoc networks, dividing the problem into choices of

cache structure, cache capacity, and cache timeout. Our analysis

is based on the Dynamic Source Routing protocol (DSR) [1, 8, 9],

which operates entirely on-demand. Using detailed simulations of

240

0.9

0,8

e
~ - 0 8 ~ =
Q

0.75

0.7

lOOO

9 o o

8o0

700

Q: 500

4 ~

eO•~ •

0

0

0

0

0 0

n I n L i

2 5 10 20 40
l~meout (s e c o n d s)

(a) Packet Delivery Ratio vs. Cache Timeout

0
I

NoExp

o
~ o o

°° • e
o ,"

o

O 0 0 0

0

• 0
0

° o

opt
~ o •

0 0 o

; °%°°
• o

• 2

o

J I I I I

1 2 5 10 20
Timeo ut (s e c o n d s)

% 0 o

o ° o oo
i i

40 NoExp

(C) N u m b e r o f ROUTE REQUESTS vs. C a c h e T i m e o u t

~ 70~-

20

25

15

O

O

0

O°o°°~. • -
o "e ~ o • o o •

o • • "~o oooo; ~.o ~o

0 0 O ~ - O0--O

• o

i i i 11o I i
1 2 5 20 40

Tirn~out (seconds)

(b) Routing Overhead vs. Cache Timeout

0 0

0

L

NoExp

O 0

0 0 O 0 00~OC~

i i i i i i

1 2 5 10 20 40
T i r~out (s e c o n d s)

(d) N u m b e r o f ROUTE ERRORs vs. C a c h e T i m e o u t

0

0

0

0

0

o o

o

0 0

0

0

I
NOEXp

Figure 4 Performance as a Function of Cache Timeout (Random Waypoint Scenarios)

wireless ad hoc networks of 50 mobile nodes, we studied a large

number of different caching algorithms that utilize a range of caching

strategy design choices, and simulated each cache primarily over a

set of 50 different movement scenarios drawn from 5 different types

of mobility models. Our evaluations include the packet delivery

ratio, routing packet overhead, packet delivery latency, and path
optimality relative to the shortest path, achieved by each caching
algorithm.

We found that the performance of adaptive caches is comparable

to that of well-tuned static caches, and that by utilizing a cache data

structure based on a graph representation of individual links, rather

than based on complete paths through the network, the routing pro-

tocol was much better able to make use of the potential information
available to it; for example, several of our link caching algorithms

were able to achieve about a factor of 2 less routing overhead than

our best path caches on many scenarios. In addition, we identified

some subtle relationships between cache timeout policies and cache
capacity limits, and between these choices and some performance

metrics for the routing protocol, most notably the packet delivery
ratio and the routing packet overhead caused by the routing pro-

tocol. Somewhat unexpectedly, we also found a strong indication

that caches of unlimited capacity or with no cache timeout perform

substantially worse than caches with reasonable capacity or timeout

limits.

This paper also contributes to the emerging definition and analysis

of mobility metrics designed to allow a characterization of the rela-

tive difficulty that a given movement scenario presents to an ad hoc

network routing protocol. We improve on the geometric mobility

metric defined by Johansson et al [7] and define a set of new mobil-

ity metrics that much more accurately characterizes the important

mobility in the system that may affect the routing protocol.

A c k n o w l e d g e m e n t s

We would like to thank Miguel Sanchez and Ben Liang, for making

their mobility models available, and Tony Larsson, for sending us
the source code used by Johansson et al [7] in calculating their geo-

metric mobility metric. We would also like to thank the anonymous
reviewers, whose comments and suggestions helped to improve the
presentation of the paper.

241

References

[1] Josh Broch, David B. Johnson, and David A. Maltz. The
Dynamic Source Routing Protocol for Mobile Ad Hoc Net-
works. Internet-Draft, draft-ietf-manet-dsr-03.txt, October
1999. Work in progress.

[2] Josh Broch, Dave Maltz, Dave Johnson, Yih-Chun Hu, and
Jorjeta Jetcheva. A Performance Comparison of Multi-Hop
Wireless Ad Hoc Network Routing Protocols. In Proceedings

of the Fourth Annual ACM/IEEE International Conference on

Mobile Computing and Networking, pages 85-97, October
1998.

[3] Kevin Fall and Kannan Varadhan, editors, ns Notes and
Documentation. The VINT Project, UC Berkeley, LBL,
USC/ISI, and Xerox PARC, November 1997. Available from
http://www-mash.cs.berkeley.edu/ns/.

[4] Zygmunt J. Haas. A Routing Protocol for the Reconfigurable
Wireless Network. In 1997 IEEE 6th International Conference

on Universal Person Communications Record. Bridging the

Way to the 21st Century, ICUPC '97, volume 2, pages 562-
566, October 1997.

[5] IEEE Computer Society LAN MAN Standards Committee.
Wireless LAN Medium Access Control (MAC) and Physical

Layer (PHY) Specifications, IEEE Std 802.11-1997. The In-
stitute of Electrical and Electronics Engineers, New York,
New York, 1997.

[6] Intemet Engineering Task Force MANET Working Group.
Mobile Ad-hoc Networks (manet) Charter. Available at
http:llwww.ietf.orglhtml.charterslmanet-charter.html.

[7] Per Johansson, Tony Larsson, Nicklas Hedman, Bartosz Miel-
czarek, and Mikael Degermark. Scenario-based Performance
Analysis of Routing Protocols for Mobile Ad-hoc Networks.
In Proceedings of the Fifth Annual ACM/IEEE International

Conference on Mobile Computing and Networking, pages 195-
206, August 1999.

[8] David B. Johnson. Routing in Ad Hoc Networks of Mobile
Hosts. In Proceedings of the IEEE Workshop on Mobile Com-

puting Systems and Applications, pages 158-163, December
1994.

[9] David B. Johnson and David A. Maltz. Dynamic Source
Routing in Ad Hoc Wireless Networks. In Mobile Comput-

ing, edited by Tomasz Imielinski and Hank Korth, chapter 5,
pages 153-181. Kluwer Academic Publishers, 1996.

[10] John Jubin and Janet D. Tomow. The DARPA Packet Radio
Network Protocols. Proceedings of the IEEE, 75(1):21-32,
January 1987.

[11] Young-Bae Ko and Nitin Vaidya. Location-Aided Routing
(LAR) in Mobile Ad Hoc Networks. In Proceedings of the

Fourth International Conference on Mobile Computing and

Networking (MobiCom'98), pages 66--75, October 1998.

[12] Tony Larsson. Personal communication, February 8, 2000.

[13] Ben Liang. Personal communication, February 4, 2000.

[14] Vincent D. Park and M. Scott Corson. A Highly Adaptive Dis-
tributed Routing Algorithm for Mobile Wireless Networks. In
Proceedings oflNFOCOM'97, pages 1405-1413, April 1997.

[15] Charles E. Perkins and Elizabeth M. Royer. Ad-Hoc On-
Demand Distance Vector Routing. In Second 1EEE Workshop

on Mobile Computing Systems and Applications, pages 90-
100, February 1999.

[16] Miguel Sanchez, RE: Mobility pattern in a MANET,
June 25, 1998. IETF MANET Mailing List, Message-ID:
<000a01 bda0555d84f9380511352a9e@ msanchez.disca.upv.es>.

[17] Miguel Sanchez. Re: Node Movement Models in Ad hoc,
July 15, 1999. IETF MANET Mailing List, Message-ID:
<378DC8F6.B01 CF351 @disca.upv.es>.

[18] Miguel Sanchez. Personal communication, February 1, 2000.

2 4 2

