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A b s t r a c t  

An on-demand routing protocol for wireless ad hoc networks is one 

that searches for and attempts to discover a route to some destination 

node only when a sending node originates a data packet addressed 

to that node. In order to avoid the need for such a route discovery to 

be performed before each data packet is sent, such routing protocols 

must cache routes previously discovered. This paper presents an 

analysis of the effects of different design choices for this caching in 

on-demand routing protocols in wireless ad hoc networks, dividing 

the problem into choices of cache structure, cache capacity, and 

cache timeout. Our analysis is based on the Dynamic Source Routing 

protocol (DSR), which operates entirely on-demand. Using detailed 

simulations of wireless ad hoc networks of 50 mobile nodes, we 

studied a large number of different caching algorithms that utilize a 

range of design choices, and simulated each cache primarily over a 

set of 50 different movement scenarios drawn from 5 different types 
of mobility models. We also define a set of new mobility metrics that 

allow accurate characterization of the relative difficulty that a given 

movement scenario presents to an ad hoc network routing protocol, 

and we analyze each mobility metric's ability to predict the actual 

difficulty in terms of routing overhead experienced by the routing 

protocol across the scenarios in our study. 

1. I n t r o d u c t i o n  

Caching is an important part of any on-demand routing protocol for 

wireless ad hoc networks. In an ad hoc network [10, 6], all nodes 

cooperate in order to dynamically establish and maintain routing in 

the network, forwarding packets for each other to allow communica- 

tion between nodes not directly within wireless transmission range. 

Rather than using the periodic or background exchange of routing in- 

formation common in most routing protocols, an on-demand routing 

protocol is one that searches for and attempts to discover a route to 
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some destination node only when a sending node originates a data 

packet addressed to that node. In order to avoid the need for such a 

route discovery to be performed before each data packet is sent, an 

on-demand routing protocol must cache routes previously discov- 

ered. Such caching then introduces the problem of proper strategies 

for managing the structure and contents of this cache as nodes in 

the network move in and out of wireless transmission range of one 

another, possibly invalidating some cached routing information. 

Several routing protocols for wireless ad hoc networks have 

used on-demand mechanisms, including TORA [14], DSR [9], 

AODV [15], ZRP [4], and LAR [11]. For example, in the Dynamic 

Source Routing protocol (DSR) [l,  8, 9] in its simplest form, when 

some node S originates a data packet destined for a node D to which S 

does not currently know a route, S initiates a new Route Discovery 

by beginning a controlled flood of a request packet through the 

network. When a copy of this request packet reaches either D or 

another node that has a cached route to D, this node then returns to S 

the route discovered by this request. 

Performing such a Route Discovery can be an expensive oper- 

ation, since it may cause a large number of request packets to be 

transmitted, and since it adds latency to the subsequent delivery of 

the data packet that initiated it, but this Route Discovery may also 

result in the collection of a large amount of information about the 

current state of the network that may be useful in future routing deci- 

sions. In particular, S may receive a number of replies in response to 

its Route Discovery flood, each of which returns information about a 

route to D through a different portion of the network; a node may also 

learn information about the state of the network by eavesdropping 

on the Route Discovery packets from other nodes. By caching and 

making effective use of this collected network state information, the 

amortized cost of Route Discoveries can be reduced and the overall 

performance of the network can be significantly improved. 
In this paper, we analyze the effects of different design choices 

in caching strategies for on-demand routing protocols in wireless 

ad hoc networks. These design choices generally fall into three 

areas: cache structure, cache capacity, and cache timeout. For 
a wide range of different caching algorithms based on these design 

choices, we evaluate their effect on the ability of the routing protocol 

to successfully route packets to different destinations, the number 

of overhead packets generated by the routing protocol, the average 

latency required to deliver data packets, and the optimality of the 

routes used relative to the shortest route that physically existed at 
the time each packet was sent. Our evaluation in this paper is based 

on the caching behavior in the Dynamic Source Routing protocol 

(DSR) [1, 8, 9], although many of the results presented here we 
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believe can be generalized to apply to other on-demand wireless 

ad hoc network routing protocols as well. 

To evaluate the effects of the different caching design choices, 

we performed a set of detailed simulations of wireless ad hoc net- 

works of 50 mobile nodes, with realistic modeling of factors such 

as medium access control and contention, collisions, wireless signal 

strength and propagation delay, carrier sense, and capture effect [2], 

based on our extended version of the ns-2 network simulator [3]. 

We simulated each of the caching algorithms primarily over a set 

of 50 different movement scenarios drawn from 5 different types of 

mobility models. To better characterize the relative difficulty that 

each movement scenario presents to the routing protocol, we utilize a 

set of mobility metrics, including the geometric metric presented by 

Johansson et al [7] and several improved metrics that we define here. 

Section 2 of this paper gives an overview of the basic operation 

of the DSR protocol. In Section 3, we discuss the caching strategy 

design choices considered in the paper, and in Section 4, we describe 

the specific caching algorithms based on these choices that we used 

in our evaluation. In Section 5, we describe the methodology of our 

simulation study, including our simulator features, the performance 

metrics we evaluated, and the communication model we used. In 

Section 6, we define several mobility metrics and describe a num- 

ber of mobility models, and we show the correlation between the 

mobility metrics of a scenario and the performance of DSR in that 

scenario. In Section 7, we present the cache performance results of 

this study, and in Section 8, we present conclusions. 

2. Overview of the DSR Protocol 

We use the Dynamic Source Routing protocol (DSR) [1, 8, 9] in this 

paper to illustrate the effects of different caching strategies in on- 

demand routing protocols, since DSR operates entirely on-demand 

and thus clearly shows the caching behavior. DSR is composed 

of two mechanisms that work together to allow the discovery and 
maintenance of source routes in the ad hoc network. Route Discov- 

ery is the mechanism by which a node S wishing to send a packet to 

a destination node D obtains a source route to D. Route Discovery 

is used only when S attempts to send a packet to D and does not 

already know a route to D. Route Maintenance is the mechanism 

by which node S, while using a source route to D, is able to detect 

when the network topology has changed such that it can no longer 

use its route to D because a link along the route no longer works. 

When Route Maintenance indicates a source route is broken, S can 

attempt to use any other route it happens to know to D, or can invoke 
Route Discovery again to find a new route for subsequent packets 

that it sends. Route Maintenance is used only when S is actually 

sending packets to D. This section describes the basic operation of 

Route Discovery and Route Maintenance, although a number of op- 

timizations to this basic operation exist [I, 9] that are not discussed 

here due to space limitations. 

To initiate a new Route Discovery for a node D (the target of the 

Route Discovery), S transmits a ROUTE REQUEST packet, which is 

received by other nodes located within direct wireless transmission 

range of S. Each node that receives the ROUTE REQUEST packet 

appends its own address to a record in the packet and rebroadcasts 

it to its neighbors, unless it has recently seen another copy of the 

ROUTE REQUEST for this Route Discovery or it finds that its address 

was already listed in the route record in the packet. The forwarding 

of the ROUTE REQUEST terminates when it reaches node D; this 

node then returns a ROUTE REPLY packet to S, giving a copy of the 
accumulated route record from the ROUTE REQUEST, indicating the 

path that the ROUTE REQUEST traveled to reach D. The forwarding 

of the ROUTE REQUEST also terminates when it reaches a node that 

has in its cache a route to D; this node then returns a ROUTE REPLY 

packet to S, giving the route as a concatenation of the accumulated 

route record from the ROUTE REQUEST together with this node's 

own cached route to D. The returned source route from the ROUTE 

REPLY is cached by S for use in sending subsequent data packets. 

Route Maintenance is performed by each node that originates or 

forwards a data packet along a source route. Each such node is 

responsible for confirming that the packet has been received by the 

next hop along the source route given in the packet; the packet is 

retransmitted (up to a maximum number of attempts) until this con- 

firmation of receipt is received. This confirmation may be provided 

at no cost to DSR, either as an existing standard part of the MAC 

protocol in use (such as the link-level acknowledgement frame de- 

fined by IEEE 802.11 [5]), or by a passive acknowledgement [10]. 

If neither of these confirmation mechanisms are available, the node 

transmitting the packet may set a bit in the packet header to request 

a DSR-specific software acknowledgement be returned by the next 

hop. If this confirmation is not received after some maximum num- 

ber of local retransmission attempts, this node returns to the original 

sender of the packet a ROUTE ERROR message, identifying the link 

over which the packet could not be successfully transmitted. When 

receiving the ROUTE ERROR, this original sending node removes 

this broken link from its cache. In addition to returning a ROUTE 

ERROR message, this node may also attempt to salvage the original 

packet [2], if it has a route to the intended destination of the packet 

in its own cache. If so, the node replaces the original source route 

on the packet with the route from its cache and forwards the packet 

along that route; otherwise, the node discards the packet since no 

correct route is available. 

In response to a single Route Discovery, a node may learn and 

cache multiple routes to any destination. Nodes may also learn 

routing information from any packets that they forward or that they 
can overhear through optionally operating their network interface 

hardware in promiscuous mode; in particular, routing information 

may be learned from a ROUTE REQUEST, ROUTE REPLY, or ROUTE 

ERROR packet, or from the source route in the header of a data packet. 

3. Caching Strategy Design Choices 

3.1. Cache Structure 

In developing a caching strategy for an on-demand routing protocol 

for wireless ad hoc networks, one of the most fundamental design 

choices that must be made is the type of data structure used to rep- 

resent the cache. In DSR, the route returned in each ROUTE REPLY 

that is received by the initiator of a Route Discovery represents a 

complete path (a sequence of links) leading from that node to the 

destination node. By caching each of these paths separately, a path 

cache can be formed; Figure l(a) illustrates an example path cache 

for some node S in the ad hoc network. Alternatively, a link cache 

could be created, in which each individual link in the routes returned 

in ROUTE REPLY packets is added to a unified graph data structure 

of this node's current view of the network topology; Figure l(b) 
illustrates an example link cache for node S. 

A path cache is very simple to implement and easily guaran- 

tees that all routes are loop-free, since each individual route from 

a ROUTE REPLY is loop-free. To find a route in a path cache, the 

sending node can simply search its cache for any path (or prefix of a 

path) that leads to the intended destination node. On the other hand, 
to find a route in link cache, a node must use a much more complex 
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(a) Path Cache 

(h) Link Cache 

Figure I Alternative Cache Data Structures for a Node S 

graph search algorithm, such as the well-known Dijkstra's shortest- 

path algorithm, to find the current best path through the graph to the 

destination node. Such an algorithm is more difficult to implement 

and may require significantly more CPU time to execute. 

However, a path cache data structure cannot effectively utilize 

all of the potential information that a node might learn about the 

state of the network. In a link cache, links learned from different 

Route Discoveries or from the header of any overheard packets can 

be merged together to form new routes in the network, but this is 

not possible in a path cache due to the separation of each individual 

path in the cache. For example, if node S with the cache as shown 

in Figure l(b) learns of a new link from node A to node G, it can 

use this link to also form new routes to nodes I t  and I (through A 

and 13) that it could use if the link from F to 13 later breaks, but a 

node using a path cache would be unable to take advantage of these 

additional routes. 

3.2. Cache Capacity 

The capacity of a route cache is another important area of choice in 

designing a caching strategy for on-demand routing protocols. For a 

link cache, the logical choice is to allow the cache to store any links 

that are discovered, since there is a fixed maximum of N 2 links that 

may exist in an ad hoc network of N nodes. However, for a path 

cache, the maximum storage space that could be required is much 

larger, since each path is stored separately and there is no sharing in 

the data structure even when two paths share a number of common 

links. We thus consider the effects of different limits on the capacity 

of path caches in terms of the number of individual paths it can 

store. In general, our intuition was that the larger the capacity of a 

path cache, the better the routing protocol should perform, since it is 

able to keep a more complete set of routes. However, as we show in 

Section 7, a smaller cache size actually can have an indirect effect 

in improving performance. 

An additional design choice with respect to cache capacity that 

we consider is the division of the cache into two halves: one half 

for paths that have been used by this node (the primary cache) and a 
second half for paths that have not yet been used since being learned 

(the secondary cache); when a path (or a prefix of  a path) in the 

secondary c,_ac, he is first used, that path (or prefix) is promoted to the 
primary cache. This division of  the cache avoids forcing out of the 

cache paths that this node has found useful, when attempting to insert 

some new path into the cache that has just been learned and has not 

yet been used (and may never be used). Old paths in the secondary 

cache are removed due to capacity limits and the natural operation 

of the cache when adding new paths as they are learned, whereas 

old paths in the primary cache are more actively removed due to the 

operation of Route Maintenance as they are used. We refer to such 

a divided cache as a generational cache, in a manner similar to the 

way a generational garbage collector works in a language runtime 

system with dynamic storage allocation. 

3.3. Cache Timeout  

As with cache capacity, cache timeout policy introduces a number 

of design choices to consider in a caching strategy. Because a path 

cache generally has a mechanism for removing entries through a 

capacity limit, we did not implement a timeout for path caches. For 

link caches, the timeout on each link in the cache may be either 

static or adaptive. 

For a static timeout, each link is removed from the cache after a 

specified amount of  time has elapsed since the link was added to the 

cache. For an adaptive timeout, a node adding a link to its cache 

attempts to determine a suitable timeout after which the link will be 

deleted from the cache, and this timeout value should be based on 

properties of the link or the nodes that are the endpoints of the link. 

Finally, similar to the generational path caching alternative, it is 

possible to allow a link that is being used to not expire by increasing 

its timeout when it is used. 

4. Caching Algorithms Studied 

From the caching strategy design choices given in Section 3, we 

chose a collection of path caches and link caches to simulate and 

evaluate. We also simulated an "omniscient expiration" cache, 

which although unimplementable in a real system, gives us a bench- 

mark against which our other cache algorithms can be compared. 

4.1. Path Caches 

Path caches store a set of  complete paths (sequences of links), each 

starting at the caching node. We analyzed the following algorithms 

that use path caches: 

• Path-lnf is a path cache with no capacity limit (infinite 

capacity). 

• Path-FIFO-64 is a path cache with a 64-path capacity limit. The 

cache replacement policy used on paths in the cache is FIFO. 

• Path.FIFO-32 is the same as Path-FIFO-64, except that it uses 

a 32-path capacity limit. 

• Path-Gen-64 is a generational path cache that employs a 30- 

element FIFO primary cache to store paths that have been used 

or were returned directly to this node in a ROUTE REPLY, and a 

separate 64-element FIFO secondary cache to store other paths; 

the total capacity of this cache is 94 elements. 

• Path-Gen-34 is the same as Path-Gen-64, except that the size 

of the secondary cache is 34-elements; the total capacity of this 

cache is 64 elements, the same as Path-FIFO-64. This specific 

caching algorithm, of this size, is the same as that used in our 

original ns-2 simulation of DSR [2]. 

4.2. Link Caches 

Link caches store a set of individual links, organized as a graph 

data structure. We analyzed the following algorithms that use link 
caches: 
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• Link-NoExp is a link cache with no timeout (no expiration). 

• Link-Static-5 is a link cache in which links normally are expired 

5 seconds after they are put into the cache. This is a generational 

cache, such that links that are used to source packets sent by 

this node are marked to not timeout. 

• Link-Adapt-1.25 is a link cache in which a link's timeout is 

chosen according to a stability table. Each node keeps a table 

recording its perceived stability of each other node. When 

a link is used, the stability metric for both endpoint nodes is 

incremented by the amount of time since that link was last used, 

multiplied by some factor; when a link is observed to break, the 

stability metric for both endpoints is multiplicatively decreased 

by a different factor. A link entering the cache is given a lifetime 

equal to the stability of the less-"stable" endpoint of the link, 

except that a link is not allowed to be given a lifetime under 

1 second. As with Link-Static-5, this is a generational cache, 

such that links that are used to source packets sent by this node 

are marked to not timeout. For this cache, the additive increase 

factor is 4, and the multiplicative decrease factor is 1.25. The 

stability table for each node is initialized to 25 seconds. 

• Link-Adapt-2 is the same as Link-Adapt-l.25, except that the 

multiplicative decrease factor is 2. 

• Link-MaxLife is the same as Link-Adapt-2, axcept that when a 

node chooses a route from the cache, it chooses the shortest- 

length route that has the longest expected lifetime (highest min- 

imum timeout of any link in the path), as opposed to an arbitrary 

route of shortest length. 

4.3. Omniscient  Expirat ion Cache 

For comparison against the other caching algoriaaras that we stud- 

ied, we also analyzed the following "omniscient expiration" caching 

algorithm: 

• Link-OmniExp is a link cache that performs omniscient expi- 

ration of cached links, such that a link is removed from the 

cache exactly when it ceases to physically exist. The simula- 

tor has omniscient knowledge of the location of all nodes, and 

Link-OmniExp bases cache expiration on a-nominal wireless 

transmission range for each link of 250 m. 

5. M e t h o d o l o g y  

5.1. Simulator  

We analyzed the effects the different caching strategydesign choices 

through detailed simulation of the different cachingalgorithms de- 

scribed in Section 4. The experiments were conducting using the 

ns-2 network simulator [3], which we have extended to support 

the simulation of wireless and mobile networks [2;]. The simula- 

tor properly models signal strength, RF propagation, propagation 

delay, wireless medium contention, capture effect, interference, and 

arbitrary continuous node mobility. The radio model is based on the 

Lucent Technologies WaveLAN 802.11 product, providing a 2 Mbps 

transmission rate and a nominal transmission range of 250 m. The 

link layer modeled is the Distributed Coordination Function (DCF) 

of the IEEE 802.11 wireless LAN standard [5]. 

5.2. Communicat ion Model Used 

The communication model simulated in all scenarios was a script 

consisting of 20 Constant Bit Rate (CBR) data connections, each 

transmitting 4 packets per second; the size of each packet is 64 bytes. 

Each node was the source of at most 2 CBR connections. 

5.3. DSR Performance Metrics 

We evaluated the performance of DSR on each of the caching algo- 

rithms according to four metrics: 

• Packet Delivery Ratio: The fraction of packets sent by the 

"application layer" on a source node that are received by the 

"application layer" on the corresponding destination node. 

• Overhead: The total number of packets transmitted by the 

routing protocol. This includes routing packets forwarded, but 

does not include data packets forwarded. 

• Latency: The delay from when a packet is sent by the "appli- 

cation layer" on a source node until it is received by the "appli- 

cation layer" on the corresponding destination node. This can 

only computed for packets that are successfully delivered. 

• Path Optimality: The difference between the number of hops 

over which a packet was routed and the number of hops in the 

shortest route that physically existed when the packet was sent. 

The simulator is able to determine this theoretical shortest route 

at all times, based on the nominal wireless transmission range 

for each link of 250 m. 

6. Mobility Models Studied 

6.1. Mobility Metrics 

The purpose of a mobility metric is to evaluate the relative difficulty 

of routing in a given ad hoc network scenario. 

6.1.I. Geometric Mobility Metric 

Johansson et al [7] describe a geometric mobility metric that is com- 

puted for a given scenario by 

N { N  - -  I ) T  i = l  $ = i d - I  0 

where each Pk (t) is the position of a node k at time t, N is the 
number of nodes, T is the length of the simulation, and the sum is 

calculated over all pairs of nodes over all time. 

For the results in their paper [7], they approximated this metric by 

computing it with a 0. l-second time granularity and rearranged [12] 

the equation to compute 

±±f2 
i = 1  j =i"1- I 0 

N IOT N 

i = 1  

N 

, .  
"-i-6 -" - P '  --i-6- ,_ 

This approximation, however, can lead to a very inaccurate calcula- 

tion in some cases. For example, on scenarios generated as described 

in Section 6.2.1, the approximate mobility metric (with 0.1-second 

granularity) was too small by more than a factor of 2.2. 

Instead, we used to following technique to calculate their geomet- 

ric mobility metric precisely: split the integral so that each integral is 

along an interval in which there is no change in the velocity of either 

i or 3. Define f ( t )  = liPs(t) - P~(t)ll2. We want f ;z  I d t  

If there is no relative velocity, then the integral is 0. If f has no 

local minima on [tl, t2], then the integral evaluates to [/(t)l',E,, I 
Otherwise, if t' E It 1, t2] is a local minima of f ,  then the integral is 

f ( t l )  + f ( t2)  - -  2f ( t ' ) .  
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6.1.2. Minimal Route-Change Metrics 

A difficulty with the geometric mobility metric [7] is that it cannot 

distinguish between mobility that changes the network topology and 

mobility that instead has no effect on any links in the network. If we 

have information about the nominal wireless transmission range of 

the radios used in the network, we can more accurately determine 
how mobility affects the difficulty of routing. 

The minimal shortest route-change metric for a pair of nodes i 

and 3 is the minimum number of times that i and j would need to 

change routes in order to always have a shortest (least hops) path to 

each other, assuming all links are bi-directional. 

An alternate metric, that we call the minimal route-change metric, 

is the same as the minimal shortest route-change metric, except that 

a route counted by the metric only changes when it breaks, not when 
a shorter route begins to exist. 

6.1.3. Communication Model-Dependant Metrics 

The minimal shortest route-change metric and the minimal route- 

change metric both provide a number per pair of nodes; to arrive at 

a metric for a scenario, we can either sum over only those node pairs 

that communicate at least once during the scenario, or simply over 

all pairs of nodes regardless of communication behavior. 

6.2.  Mobi l i t y  M o d e l  Spec i f i ca t ions  

We chose the parameters for our different mobility models to make 

the average speed of a node 10 m/s, and to keep the nodes as ran- 

domly distributed as the model would allow. All mobility mod- 

els were generated for 50 nodes moving over a simulated time of 

900 seconds, and all models confine the nodes to move within a 

1500 m x 500 m space. Unless otherwise noted, the initial position 
of each node is chosen as (:to, V0), with :r0 uniformly distributed 

over [0, 1500 m] and V0 uniformly distributed over [0, 500 m]. Ten 
different scenarios were generated for each model. 

6.2.1. Brownian Motion 

Nodes in our Brownian motion mobility model change speed and 

direction at discrete time intervals, such that at the beginning of 

each interval, each node chooses r E [0, vm,,~] and 0 E (-Tr, 7r] and 

moves with velocity vector (r sin 0, r cos 0) during that interval. If 

this movement would cause a node to end the interval beyond the 

boundaries of the rectangular area, the node instead picks the point 

within the rectangular area closest to the intended destination and 

moves to that point at the originally chosen velocity. The parameters 

used in our implementation of this model are given in Table I. 

6.2.2. Column Motion 

The column mobility model was developed by Sanchez [16]. In 

our implementation of this model, each node is either moving in 

the positive z direction or the negative z direction. The initial 

position of each node i is (10i, 10i), and all nodes start moving in 

the positive z direction. The motion of the nodes is divided into 

Table I Parameters for Brownian Motion 

Movement interval duration l 0 . I s  I 
Vm~ 20 m/s 

discrete intervals, such that at the beginning of each interval, each 

node chooses v E [0, v,n~] and moves with that speed in the same 

direction as it has been moving. If this movement would cause the 

node to cross the boundary of the rectangular area, the direction 

is instead flipped, and the node moves with speed v in the new 

direction rather than in the original direction. The parameters used 

in our implementation of this model are given in Table II. 

6.2.3. Random Gauss-Markov Motion 

The random Gauss-Markov mobility model was developed by Liang 

and Haas [13] and was described by Sanchez [17]. The motion of 

the nodes is divided into discrete time intervals, such that at the 

beginning of each interval, a node updates its velocity vector as 

v~ t = ~v~,_j + (1 - o~)~-~-~ + RV/1 - o~ 2 

vv, = o~vv,_ , + (1 - o¢)~'v + R V I  -- oL 2 

at interval t, where R is a normally distributed random variable with 

mean 0 and variance a ~ .  When a movement would cause a node 

to exceed the boundaries of the rectangular area, the sign of the 
velocity vector in that dimension is flipped. 

The parameters used in our implementation of this model are 

given in Table IlL The choice of o,~ and a~, u was made to have 

the median of [I(R~, P~)II~ be equal to 10 m/s. The value ofo~ was 

chosen to be equal to the value used by Sanchez in his implementa- 
tion [18]. 

6.2.4. Random Waypoint Motion 

The random waypoint mobility model was developed by Johnson 

and Maltz [9]. In this model, a node chooses a destination with a 

uniform random distribution over the area, moves there with velocity 
v uniformly distributed over [0, v,,~], waits there for a pause time, 

and then repeats this behavior. We used a pause time of 0, meaning 
continuous motion of all nodes, and chose v,,m = 20 m/s. The 

parameters used in our implementation of this model are given in 
Table IV. 

6.2.5. Pursue Motion 

The pursue mobility model was developed by Sanchez [16]. In 

our implementation of this model, there are I0 groups of 5 nodes 

each. The motion of the nodes is divided into discrete time intervals, 

such that in each group, one node moves according to the random 

waypoint model, and the others attempt to "intercept" that node by 

choosing their velocity vector at each interval to be toward the point 

that the target node would be at at the end of the interval, given that 

the target node would continue to move with the same velocity. The 

velocity of the pursuing nodes is chosen uniform random for each 

interval to be in the range [vp,i~, vp~,~]. The parameters used in our 

implementation of this model are given in Table V. 

Table III  Parameters for Random Gauss-Markov Motion 

Movement interval duration 0. I s 

Initial velocities 0 m/s 

0 m/s ~ ~ Uy 

Ov~ ~ Gv F 10.4835769m/s 
oe 0.9  

Table IV Parameters for Random Waypoint Motion 

v,,m 20 rrds 

Table II  Parameters for Column Motion 

/ Movement interval duration v,,~ [ 20 0.1s m/s I 

Pause time 0 s 
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Table V Parameters for Pursue Motion 

Movement interval duration 0.1 s 

v,,,~ 20 m/s 

z'pmJn 5 m/s 

Vpmax 15 rnls 

Pause time 0 s 

6.3. Evaluation of Mobility Metrics 

We evaluated the mobility metrics described in Section 6.1 for each 

of the scenarios used throughout this paper. The geometric mobility 

metric was evaluated with infinite precision using the technique de- 

scribed in Section 6. l . l .  The mobility metrics were normalized so 

that over all 50 scenarios, the metrics would lie in [0, l]. 

Figure 2 summarizes the degree to which the mobility metrics ac- 

curately characterize the difficulty of routing across the range of sce- 

narios. Figure 2(a) shows the relationship between the normalized 

all-pairs geometric mobility metric for each scenario and the actual 

routing packet overhead generated by DSR on that scenario using the 

Link-MaxLife and Path-Gen-34 caching algorithms. Also shown in 

Figure 2(a) is the best quadratic fit to the individual data points, in a 

least-squares sense, for these two caching algorithms. We show the 

results for these two caching algorithms here, since Link-MaxLife 

generally performs the best of the adaptive link caching algorithms, 

and Path-Gen-34 is representative of the path caching algorithms. 

Figure 2(b) shows the similar relationship and type of quadratic 

fit for the number of ROUTE ERRORs originated during the simula- 

tion of these scenarios. Figures 2(c) and (d) show these relation- 

ships for the normalized all-pairs minimal route-change metric, and 

Figures 2(e) and (f) show these relationships for the normalized min- 

imal route-change metric summed only over communicating pairs. 

Table VI shows the norm of residuals for the respective quadratic 

fit for each mobility metric, including also the all-pairs minimal 
shortest route-change metric, and the minimal shortest route-change 

metric summed only over communicating pairs. 

The minimal shortest route-change metric does not reflect well the 

challenge presented to DSR, since DSR does not attempt to always 

switch to the shortest route when new routes begin to exist. Instead, 

Table VI Norm of Residuals for Quadratic Fits of Routing 

Overhead and Number of ROUTE ERRORs 

Path-Gen-34 Overhead ERRORS 

Geometric 
Min Route-Change over All Pairs 
Min Route-Change over Comm Pairs 
Min Shortest Route-Change over All Pairs 
Min Shortest Route-Change over Comm Pairs 

120,248 9,189 
111,699 5,973 
77,144 2,877 

168,729 10,799 
160,027 9,782 

Link-MaxLife 

Geometric 
Min Route-Change over All Pairs 
Min Route-Change over Comm Pairs 
Min Shortest Route-Change over All Pairs 
Min Shortest Route-Change over Comm Pairs 

53,392 12,896 
40,988 8,282 
32,478 5,219 
64,697 15,291 
65,668 14,814 

Link-OmniExp 

Geometric 
Min Route-Change over All Pairs 
Min Route-Change over Comm Pairs 
Min Shortest Route-Change over All Pairs 
Min Shortest Route-Change over Comm Pairs 

18,963 116 
17,616 105 
17,885 106 
19,988 116 
23,093 122 

DSR will continue to use its best route until it breaks or until it 

overhears a better route. 
As shown in Figure 2 and Table VI, the four minimal route- 

change metrics correlate significantly better, for both routing over- 

head and number of ROUTE ERROR packets, than does the geometric 

mobility metric, since route changes are a more direct cause of 

overhead and ROUTE ERRORs than is geometric mobility. Of the 

four minimal route-change metrics, the minimal route-change met- 

ric summed only over communicating pairs (Figure 2(e) and (f)) 

correlates best, since summing only among communicating pairs 

removes pairs which may undergo many route changes but that do 

not affect the routing algorithm. In addition, since the individual 

data points on the graphs relative to this metric are reasonably well 

spread and not tightly clustered, we conclude that the particular 

movement scenarios used in our study are generally representative 

of a fairly broad array of possible scenarios within the bounds used 

by these scenarios. 

Although the four minimal route-change metrics correlate well 

to both the routing overhead and the number of ROUTE ERRORS, 

it correlates better for the number of ROUTE ERRORs. We believe 

this difference is due to the variable number of ROUTE REQUEST 

packets that may be sent as part of a Route Discovery, depending on 

the degree of containment of the ROUTE REQUEST flood that DSR 

is able to achieve for each individual Discovery attempt. We also 

examined the correlation of these metrics specifically to the number 

of Route Discoveries performed, and found fairly good correlation 

for Path-Gen-34 but not for Link-MaxLife, which we attribute to the 

very small, statistically insignificant number of Route Discoveries 

needed by Link-MaxLife. Even a small change in number of Route 

Discoveries for any scenario with Link-MaxLife will result in a large 

relative change in the total, making correlation of any mobility met- 

ric difficult. We omit the detailed graphs and table here for number 

of Route Discoveries due to space constraints. 

Another exception in the degree of correlation of the mobility 
metrics is those results obtained using the Link-OmniExp caching 

algorithm, for all of the performance indicators that we studied for 

the routing protocol. For all indicators, Link-OmniExp had rela- 

tively low correlation, since this caching algorithm creates very few 

Route Discoveries and even fewer ROUTE ERROR packets (and thus 

very small total routing overhead). As with the number of Route 

Discoveries needed by Link-MaxLife, as described above, none of 

the performance indicators that we studied for the routing protocol 

with Link-OmniExp are statistically significant. 

7. Simulation Results  

7.1. Overview of the Results 

For each of the caching algorithms presented in Section 4, we ran 

10 different scenarios of each of the mobility models described in 

Section 6.2. The scenarios were generated in advance, and the 

identical scenarios was used to evaluate each of the caching algo- 

rithms, allowing direct comparison of the results. Figure 3(a) shows 

the packet delivery ratio achieved by each caching algorithm, av- 

eraged over the 10 scenarios for each mobility model. Figure 3(b) 

shows the average routing packet overhead, Figure 3(c) shows the 

average packet delivery latency. Figure 3(d) shows the path op- 

timality for each of the caching algorithms over the 10 scenarios 

from each mobility model, normalized and averaged over the 5 

mobility models. 

The Link-Static-5 caching algorithm uses only a single fixed value 

for the cache timeout, although in general, no single timeout value 
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Figure 3 Performance of the Different Caching Algorithms on the Mobility Models 

can perform best for all nodes in all ad hoc networks in all circum- 

stances. In addition to the timeout value of 5 seconds shown in 

our results, we also evaluated a number of other timeouts ranging 

from 1 second to 40 seconds, and found that in our scenarios, the 

5-second timeout performed best in terms of packet delivery ratio. 

As shown in Figure 3, our scenarios represent a range of different 

challenges for the routing protocol, but in each of our individual 

scenarios, all nodes in a given scenario move according to the same 

pattern. Thus, the advantage of an algorithm that can adapt to dif- 

ferent timeouts for different links (between different pairs of nodes) 

was not fully exercised. We plan additional experiments in future 

work to explore this point, but here, we simply present the results 

for Link-Static-5 and omit further comparison of them in this paper 
due to space constraints. 

Although the column mobility model creates a large amount of 

motion among the nodes, there is very little relative motion among 

them and thus very little challenge to any of the caching algorithms. 

In fact, in each of our scenarios using the column mobility model, 

only 18 Route Discoveries were performed, regardless of the caching 

algorithm used. This property of the column model can also be seen 

using our new mobility metrics defined in Section 6.1; for example, 

the average geometric mobility metric over our column scenarios 

is 79.35% of the same metric over our random waypoint scenarios, 

appearing to indicate a comparable amount of mobility, yet when 

compared using our all-pairs minimal route-change mobility metric, 

this number drops to only 2.82%, clearly showing the much smaller 

challenge to the routing protocol. 

In the pursue mobility model, the network remains partitioned 

much of the time; the 5 nodes in each group stay very close to each 
other, while the 10 separate groups are free to move over the entire 

simulation area, often leaving large, unoccupied spaces between the 

groups. For example, across all of our scenarios using the pursue 

mobility model, the network is partitioned on average 76.07% of 

the time. Due to this high occurrence of partition, the behavior of 

any caching algorithm used with the routing protocol will be very 

different than in more typical, usually connected networks, mak- 

ing comparison of different caching algorithms in these scenarios 

difficult. 
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In the remainder of this paper, we therefore focus in our analysis 

on only the scenarios using the Brownian, random Gauss-Markov, 

and random waypoint mobility models. 

7.2. Effects of Cache Structure 

For the packet delivery ratio metric, as shown in Figure 3(a), the 

Link-Adapt-2 and Link-MaxLife link caching algorithms outperform 

all path caches, obtaining higher packet delivery ratio than the best 

path cache, evaluated individually for each mobility model. In most 

cases, Link-MaxLife performs somewhat better than Link-Adapt-2 
since it is able to select routes using links with the longest expected 

lifetime (based on the remaining cache timeout for each link) in 

addition to both algorithms' ability to select cache timeouts based 

on each node's stability metric. 

Similarly, for the routing overhead metric, as shown in 

Figure 3(b), Link-Adapt-2 and Link-MaxLife outperform all path 

caches, obtaining in most cases a reduction in overhead by a fac- 

tor of about 2 or more over the best path cache for each mobility 

model. In addition, Link-Adapt-l.25 performs better than the best 
path cache for each mobility model, although not by as much as do 

Link-Adapt-2 and Link-MaxLife. This is consistent with the design 

intent of link caches over path caches, as link caches remove only a 

single link in response to a ROUTE ERROR (rather than removing a 

whole path or path suffix) and are able to combine information from 

different Route Discoveries to form new routes from the cached 

information. 

In the scenarios that we studied, two primary factors contribute 

to the total latency experienced by a packet: the time spent by 

the packet waiting for a Route Discovery to complete before the 

packet can be sent, and the time spent in Route Maintenance de- 

tecting (through retransmissions) broken links and performing sal- 
vaging. For our Brownian motion scenarios, the dominant factor 

of these two is Route Discovery, which favors the link caches for 

low latency, since link caches generally perform fewer Discover- 

ies than path caches, due to the increase in information that can 

be represented in the cache. For example, Link-Adapt-l.25 (the 

highest-latency adaptive link cache) performs on average 431.5 

fewer Route Discoveries than Path-FIFO-32 (the lowest-latency 
path cache) in these scenarios, but it causes on average only 

130.7 more ROUTE ERRORs. For the random Gauss-Markov and 

random waypoint scenarios, however, the number of ROUTE ER- 

RORS becomes significant in the link caches, particularly for the 

Link-NoExp and Link-Adapt-l.25. For example, Link-NoExp and 
Link-Adapt-l.25, respectively, cause 31,117 and 10,652 ROUTE 
ERRORs, yet Path-FIFO-32 (the highest-latency non-infinite path 

cache) causes only 1,973 ROUTE ERRORs. 

All of the caching algorithms achieve good path optimality, and 

the differences between the results with different caching algo- 

rithms is small. In particular, the 5 path caching algorithms per- 

form almost identically on most scenarios. However, for the link 

caching algorithms, path optimality differs for the Link-NoExp and 

Link-Adapt-l.25 algorithms; these algorithms deliver a greater frac- 

tion of packets along optimal routes (path optimality 0) than do the 

other caching algorithms, yet also deliver a greater fraction of pack- 

ets along routes 6 and 7 or more hops longer than optimal than do 

the other algorithms. 
Both of these algorithms are able to keep a large number of un- 

used links in the cache, as Link-NoExp never times out such links 

and Link-Adapt-l.25 increases the node stability metrics (and thus 
the link cache lifetimes) much more aggressively than it decreases 

them. As such, these algorithms are able to opportunistically com- 

bine results from different Route Discoveries and from other routing 

information learned from packets forwarded or overhead, in order 

to more often find the shortest route that exists. However, the many 

unused links that these algorithms can keep in the cache also at 

times are a liability; many of these links may be broken, increasing 
the number of packets that must be salvaged multiple times, and 

thus increasing the total hop count for salvaged packets that are 

ultimately successfully delivered. In our simulations, each packet 

was prevented from being salvaged more than 15 times, in order to 

prevent the packet from possibly looping yet also allow alternate 

routing and backtracking of the packet in the presence of some stale 

cached links. 
Overall, Link-MaxLife outperforms the other caching algorithms 

(excluding Link-Static-5 and Link-OmniExp) on the set of perfor- 

mance metrics and scenarios studied. By taking advantage of the 

lifetime values in the route selection algorithm to differentiate be- 

tween multiple routes of equal length, Link-MaxLife attempts to 

avoid using routes that may soon result in a ROUTE ERROR and a 

possible new Route Discovery. For example, in 26 of the 30 Brown- 

ian motion, random Gauss-Markov, and random waypoint scenarios, 

Link-MaxLife experiences fewer ROUTE ERRORs than Link-Adapt-2, 
where Link-Adapt-2 is the same algorithm as Link-MaxLife without 

the use of lifetimes to aid in route selection. 

7.3. Effects of Cache Capacity 

In scenarios generated using the random waypoint mobility model, 

the Path-Inf caching algorithm, with its unlimited cache size, sur- 

prisingly performs much worse than the other path caches (with 

limited cache sizes) with respect to packet delivery ratio, as shown 

in Figure 3(a). This performance is due to the large number of 

ROUTE ERRORS caused by the use of stale routing information. When 

compared to Path-FIFO-64, Path-Inf experiences only 6.51% more 

ROUTE ERRORS in scenarios generated using our Brownian motion 

mobility model and 40.72% more ERRORs in our random Gauss- 

Markov scenarios, but experiences 165.58% more ERRORS in our 

waypoint scenarios. 
Latency and routing packet overhead for the Path-lnf algo- 

rithm also suffer in the random waypoint scenarios, as shown in 

Figures 3(b) and (c). Sending a ROUTE ERROR typically counts as 

several packets of overhead since it must in general traverse several 

hops. In addition, when a packet is salvaged, the combined route 

traveled by the packet will typically be longer than the original route 

with which the packet was sent. When a packet must be salvaged 

multiple times, the resulting total routes can be quite long, causing 
significant increases in latency, and for each time a packet is sal- 

vaged, another ROUTE ERROR is returned to the original sender or 

previous salvager of the packet. 
For the FIFO cache replacement policies studied here for path 

caches, no one cache size provides the best packet delivery ratio 

for all mobility models. For mobility models with large amounts 

of relative mobility, many Route Discoveries take place, causing 

a rapid turnover in each node's cache as it replaces existing cache 

entries with new entries learned from its own Route Discoveries 

or from other packets it has overheard. This cache replacement 

is in effect a form of adaptation in the caching algorithm, since 

as the amount of mobility in the network increases, the average 

number of broken routes created in the network increases and the 
average time that entries remain in a node's cache decreases with the 

cache turnover. However, with cache capacity as the limiting factor 
causing increased cache turnover, the FIFO caching algorithms have 

little control over which cache entry is replaced at which time. In 
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particular, in a different movement scenario with highly non-unitbrm 

behavior between different nodes, FIFO cache replacement would 

force the replacement of all paths (containing nodes with different 

behaviors) to be treated equally. 

7.4. Effects of Cache Timeout 

The use of a timeout on each cache entry in a link cache has a 

similar effect in cache replacement as the use of limited capacity 

has in a path cache, as described in Section 7.3. For example, the 

Link-NoExp algorithm, which has no timeout on cache entries, per- 

forms poorly with respect to packet delivery ratio for scenarios from 

the random Gauss-Markov and random waypoint mobility models, 

as shown in Figure 3(a). The movement in these models is gener- 

ally quite dynamic, often resulting in the route that a node selects 

to use from its cache being broken even before the first packet is 

sent on it; this in turn causes the same type of ineffective salvaging 

and dropped packets as occurred when using the Path-lnf algorithm, 

with its unlimited path cache size. 

The timeout value used on entries in the cache is closely related 

to a number of performance factors of the routing protocol. For 

example, if the timeout value is often too short, the number of 

ROUTE REQUESTs may increase, in order to rediscover links that 

were previously cached; if the timeout is often too long, the number 

of ROUTE ERRORs may increase, as more broken links are used from 

the cache. Similarly, the packet delivery ratio and routing over- 

head in a given scenario may increase or decrease, depending on the 

contents of the cache and the routing protocol's reaction to it. 

In order to assess these relationships, we ran further simulations 

to collect results for static cache timeout values of 1, 2, 10, 20, 

and 40 seconds, in addition to the static timeout of 5 seconds 

of Link-Static-5 and the infinite timeout (no expiration) cache of 

Link-NoExp. For each of these new static cache timeout values, 

we simulated each of our 10 random Gauss-Markov and 10 random 

waypoint scenarios. We present the results in Figure 4 for all 7 
of these static timeout values for the random waypoint scenarios, 

although the results for the random Gauss-Markov scenarios are 
similar. 

Figure 4(a) shows the relationship of the cache timeout value to 

the packet delivery ratio achieved during each of our random way- 

point scenarios. Figure 4(b) shows the relationship to the routing 

overhead during each of these scenarios, and Figures 4(c) and (d), re- 

spectively, show the relationship to the number of ROUTE REQUESTs 

initiated and number of ROUTE ERRORs generated during each sce- 

nario. For each timeout value, in order to show the individual point 

representing each of the scenarios more clearly, the location of the 

points along the x-axis have been spread uniformly over the axis to 

the left and right of the specific timeout value, and the set of points 

for each individual timeout value have been colored alternately black 

or white. The scenarios within each timeout value in the graphs are 
ordered arbitrarily, in the order originally generated. 

For cache timeout values of 20 seconds or less, as shown in 

Figure 4(a), the routing protocol was able to achieve between 98.8% 

(the minimum in this range, at timeout 20) and 99.1% (the maximum 

in this range, at timeout 5) packet delivery ratio; however, beginning 

at a timeout of 40 seconds, the packet delivery ratio falls sharply due 

to the large number of broken links that are allowed to accumulate 

in the route caches. This large number of broken links can also be 

seen in the rise in number of ROUTE ERRORs beginning at about 
a timeout of 10 seconds, and rising sharply above 20 seconds, as 
shown in Figure 4(d). 

The routing overhead of the protocol is affected by the choice of 

cache timeout much more than is the packet delivery ratio. As shown 

in Figure 4(b), the routing overhead reaches a low of 15,423 routing 

packets in a single run at a timeout of 10 seconds (averaged over all 

of the scenarios with the same timeout); the overhead rises gradually 
to an average 25,482 packets at a timeout value of 1, and rises rapidly 

to an average 69,294 for the Link-NoExp caching algorithm with no 

cache timeout. This rapid rise in routing overhead with increasing 

cache timeout value is due to the corresponding rise in number of 

ROUTE ERRORs, as shown in Figure 4(d), caused by the increased 

accumulation of broken links in the caches. 

The rise in routing overhead with lower cache timeout values, 

below a timeout value of 10, is due to the rise in ROUTE REQUEST 

packets, as shown in Figure 4(c). Rather than allowing broken links 

to remain in the caches, such short timeout values in these scenarios 

often delete a link from the cache while it is still valid and still 

needed. The packet delivery ratio achieved decreases only slightly 

due to this rise in routing overhead with lower cache timeouts, as 

noted above, indicating the success of the routing protocol in being 

able to quickly rediscover and re-cache routes needed for the data 

packets being sent. 

Based on these simulations across a range of static timeout values, 

it appears that either 5 or l0 seconds may be the best static value 

on these scenarios. A 5-second cache timeout results in the highest 

packet delivery ratio, but is only slightly higher than at 10 seconds; 

conversely, a 10-second cache timeout results in the lowest routing 

overhead, but is only slightly lower than at 5 seconds. At differ- 

ent node movement speeds or with different wireless transmission 

ranges, however, the optimal static timeout on these same scenarios 

would be different. We did not include our adaptive cache timeout 

algorithms in this analysis, since in these algorithms, each link re- 

ceives a different timeout, and these timeouts vary over the life of 

the scenario, whereas the metrics that we relate to cache timeout 

value in Figure 4 are aggregate measures that reflect the overall per- 
formance of the entire scenario. Based on the performance metrics 

shown in Figure 3, however, the performance of our Link-MaxLife 

algorithm is very close to that of the Link-Static-5 algorithm, the 

best performing static timeout caching algorithm. 

8. Conclus ions  

A number of on-demand routing protocols for wireless ad hoc net- 

works have been proposed, including TORA [14], DSR [1, 8, 9], 

AODV [15], ZRP [4], and LAR [ll] ,  and earlier detailed simula- 

tion work has shown that such protocols can have excellent per- 

formance [2, 7]. One key to achieving this type of performance is 

the design of an appropriate caching strategy for the protocol, that 

can make effective use of the state information about the network 

collected by the protocol as part of the process of discovering routes 

to other nodes. Caching is important in order to avoid the over- 

head of discovering a new route before sending each data packet, 

but caching also brings with it the risk and associated expenses of 

retaining routing information in a cache after the information is no 

longer valid due to changes in different nodes' positions or changes 

in the wireless propagation environment. 

This paper has presented an analysis of the effects of different 

design choices in caching strategies for on-demand routing protocols 

in wireless ad hoc networks, dividing the problem into choices of 

cache structure, cache capacity, and cache timeout. Our analysis 

is based on the Dynamic Source Routing protocol (DSR) [1, 8, 9], 

which operates entirely on-demand. Using detailed simulations of 
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Figure 4 Performance as a Function of Cache Timeout (Random Waypoint Scenarios) 

wireless ad hoc networks of 50 mobile nodes, we studied a large 

number of different caching algorithms that utilize a range of caching 

strategy design choices, and simulated each cache primarily over a 

set of 50 different movement scenarios drawn from 5 different types 

of mobility models. Our evaluations include the packet delivery 

ratio, routing packet overhead, packet delivery latency, and path 
optimality relative to the shortest path, achieved by each caching 
algorithm. 

We found that the performance of adaptive caches is comparable 

to that of well-tuned static caches, and that by utilizing a cache data 

structure based on a graph representation of individual links, rather 

than based on complete paths through the network, the routing pro- 

tocol was much better able to make use of the potential information 
available to it; for example, several of our link caching algorithms 

were able to achieve about a factor of 2 less routing overhead than 

our best path caches on many scenarios. In addition, we identified 

some subtle relationships between cache timeout policies and cache 
capacity limits, and between these choices and some performance 

metrics for the routing protocol, most notably the packet delivery 
ratio and the routing packet overhead caused by the routing pro- 

tocol. Somewhat unexpectedly, we also found a strong indication 

that caches of unlimited capacity or with no cache timeout perform 

substantially worse than caches with reasonable capacity or timeout 

limits. 

This paper also contributes to the emerging definition and analysis 

of mobility metrics designed to allow a characterization of the rela- 

tive difficulty that a given movement scenario presents to an ad hoc 

network routing protocol. We improve on the geometric mobility 

metric defined by Johansson et al [7] and define a set of new mobil- 

ity metrics that much more accurately characterizes the important 

mobility in the system that may affect the routing protocol. 

A c k n o w l e d g e m e n t s  

We would like to thank Miguel Sanchez and Ben Liang, for making 

their mobility models available, and Tony Larsson, for sending us 
the source code used by Johansson et al [7] in calculating their geo- 

metric mobility metric. We would also like to thank the anonymous 
reviewers, whose comments and suggestions helped to improve the 
presentation of the paper. 

241 



References 

[1] Josh Broch, David B. Johnson, and David A. Maltz. The 
Dynamic Source Routing Protocol for Mobile Ad Hoc Net- 
works. Internet-Draft, draft-ietf-manet-dsr-03.txt, October 
1999. Work in progress. 

[2] Josh Broch, Dave Maltz, Dave Johnson, Yih-Chun Hu, and 
Jorjeta Jetcheva. A Performance Comparison of Multi-Hop 
Wireless Ad Hoc Network Routing Protocols. In Proceedings 

of the Fourth Annual ACM/IEEE International Conference on 

Mobile Computing and Networking, pages 85-97, October 
1998. 

[3] Kevin Fall and Kannan Varadhan, editors, ns Notes and 
Documentation. The VINT Project, UC Berkeley, LBL, 
USC/ISI, and Xerox PARC, November 1997. Available from 
http://www-mash.cs.berkeley.edu/ns/. 

[4] Zygmunt J. Haas. A Routing Protocol for the Reconfigurable 
Wireless Network. In 1997 IEEE 6th International Conference 

on Universal Person Communications Record. Bridging the 

Way to the 21st Century, ICUPC '97, volume 2, pages 562- 
566, October 1997. 

[5] IEEE Computer Society LAN MAN Standards Committee. 
Wireless LAN Medium Access Control (MAC) and Physical 

Layer (PHY) Specifications, IEEE Std 802.11-1997. The In- 
stitute of Electrical and Electronics Engineers, New York, 
New York, 1997. 

[6] Intemet Engineering Task Force MANET Working Group. 
Mobile Ad-hoc Networks (manet) Charter. Available at 
http:llwww.ietf.orglhtml.charterslmanet-charter.html. 

[7] Per Johansson, Tony Larsson, Nicklas Hedman, Bartosz Miel- 
czarek, and Mikael Degermark. Scenario-based Performance 
Analysis of Routing Protocols for Mobile Ad-hoc Networks. 
In Proceedings of the Fifth Annual ACM/IEEE International 

Conference on Mobile Computing and Networking, pages 195- 
206, August 1999. 

[8] David B. Johnson. Routing in Ad Hoc Networks of Mobile 
Hosts. In Proceedings of the IEEE Workshop on Mobile Com- 

puting Systems and Applications, pages 158-163, December 
1994. 

[9] David B. Johnson and David A. Maltz. Dynamic Source 
Routing in Ad Hoc Wireless Networks. In Mobile Comput- 

ing, edited by Tomasz Imielinski and Hank Korth, chapter 5, 
pages 153-181. Kluwer Academic Publishers, 1996. 

[10] John Jubin and Janet D. Tomow. The DARPA Packet Radio 
Network Protocols. Proceedings of the IEEE, 75(1):21-32, 
January 1987. 

[11] Young-Bae Ko and Nitin Vaidya. Location-Aided Routing 
(LAR) in Mobile Ad Hoc Networks. In Proceedings of the 

Fourth International Conference on Mobile Computing and 

Networking (MobiCom'98), pages 66--75, October 1998. 

[12] Tony Larsson. Personal communication, February 8, 2000. 

[13] Ben Liang. Personal communication, February 4, 2000. 

[14] Vincent D. Park and M. Scott Corson. A Highly Adaptive Dis- 
tributed Routing Algorithm for Mobile Wireless Networks. In 
Proceedings oflNFOCOM'97, pages 1405-1413, April 1997. 

[15] Charles E. Perkins and Elizabeth M. Royer. Ad-Hoc On- 
Demand Distance Vector Routing. In Second 1EEE Workshop 

on Mobile Computing Systems and Applications, pages 90- 
100, February 1999. 

[16] Miguel Sanchez, RE: Mobility pattern in a MANET, 
June 25, 1998. IETF MANET Mailing List, Message-ID: 
<000a01 bda0555d84f9380511352a9e@ msanchez.disca.upv.es>. 

[17] Miguel Sanchez. Re: Node Movement Models in Ad hoc, 
July 15, 1999. IETF MANET Mailing List, Message-ID: 
<378DC8F6.B01 CF351 @disca.upv.es>. 

[18] Miguel Sanchez. Personal communication, February 1, 2000. 

2 4 2  


