
Caching VM Instances for Fast VM Provisioning:
A Comparative Evaluation

Pradipta De1, Manish Gupta1, Manoj Soni2, and Aditya Thatte1

1 IBM Research India, New Delhi
{pradipta.de,gmanish,adthatte}@in.ibm.com

2 Georgia Institute of Technology, Atlanta, GA, USA
manojsoni@gatech.edu

Abstract. One of the key metrics of performance in an infrastructure cloud is
the speed of provisioning a virtual machine (or a virtual appliance) on request.
A VM is instantiated from an image file stored in the image repository. Since
the image files are large, often GigaBytes in size, transfer of the file from the
repository to a compute node running the hypervisor can take time in the order of
minutes. In addition to it, booting an image file can be a time consuming process if
several applications are pre-installed. Use of caching to pre-fetch items that may
be requested in future is known to reduce service latency. In order to overcome
the delays in transfer and booting time, we prepare a VM a priori, and save it in a
standby state in a “cache” space collocated with the compute nodes. On receiving
a matching request, the VM from the cache is instantly served to the user, thereby
reducing service time. In this paper, we compare multiple approaches for pre-
provisioning and evaluate their benefits. Based on usage data collected from an
enterprise cloud, and through simulation, we show that a reduction of 60% in
service time is achievable.

1 Introduction

Time to service a request for a new virtual machine in a cloud can often require several
minutes. The complete workflow beginning with receiving a request till a new virtual
machine is delivered to the user, follows a number of steps. First, the requested machine
image template from which the VM must be instantiated is looked up in the image
repository, then the image template file is copied to a compute host and the VM is
then booted up. Image template files are very large in size, often in GigaBytes range.
Transferring such large files over the network is time consuming. In addition to it, the
boot process can be slow depending on the number of pre-installed components in the
image. Due to these bottlenecks [8,19], servicing a provisioning request can take a long
time.

In order to speed up virtual server provisioning, there have been approaches to expe-
dite the transfer of the large template files using different streaming techniques [4, 18].
Caching of the template files at the compute nodes to mask the transfer latency has also
been explored [8]. To reduce the boot time, one approach is to instantiate a VM, and
store it in a standby mode in the cache. This saves the time to create an instance from
a template and boot the VM. In essence, an inventory of readily deliverable VMs are
maintained based on user request patterns.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 325–336, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

326 P. De et al.

In this work, we compare 3 techniques for pre-provisioning VM instances. Given
a fixed size cache space, each technique comes up with the composition of the inven-
tory. In other words, for a template type, the expected number of VM instances to be
requested is calculated and pre-provisioned. If a request matches a pre-provisioned VM
instance, it is delivered with minimal delay to the user. The cache or VM inventory
space is freed up when a VM instance is delivered to a user. The inventory is replen-
ished periodically with new VM instances. We have analyzed the server request trace
from an enterprise-wide cloud deployment to study the request pattern. We compare
three approaches to highlight the benefits of each technique in maintaining the inven-
tory or cache of VM instances for reducing the server provisioning time in cloud.

The rest of the paper is organized as follows. In Section 2, we present literature
related to caching in different contexts. In Section 3, we present an overview of the
cloud architecture, along with our simulation approach. Section 4 presents the pre-
provisioning methodologies. In Section 5, we present detailed simulation results show-
ing the benefits of pre-provisioning. Finally we conclude in Section 6.

2 Related Work

Caching as a technique has been extensively researched, specially in the domain of
operating system and design of memory hierarchies. Our focus is more on the use of
caching techniques in the context of cloud.

Web Caching and CDN: Application of caching serve content that is accessed repet-
itively over the Internet has been well studied [6]. Pre-fetching web resources by an-
ticipating future trends is a challenging problem. Usage prediction methods, that apply
clustering [11], neural networks [13], have proved to be of limited benefit. [6] reports
that cache hit rates can rarely cross 40-50%. Instead of tackling the problem of usage
prediction using standard methods, in this work we gain insight into the peculiarities of
a trace to leverage the usage pattern.

In web caching, often the most common cache replacement strategy of replacing
the Least-Recently-Used (LRU) item works quite well, as shown in [16]. However, in
a cloud, requests from one user may arrive in bursts, therefore, the replacement policy
may be inefficient if replacement is performed one item at a time. Rather, in our strategy
we predict the most suitable set of image templates, as well as, the number of VM
instances of each type.

Content Delivery Networks(CDN) uses caching at Internet scale. The key idea in
CDN is to push content closer to the user before a request arrives. [12] proposes schedul-
ing algorithms to push content in a timely manner to proxy cache servers, while [1]
discusses a cooperative cache management scheme to maximize traffic volume served
from the cache. These schemes can be useful in pushing the cloud images nearer to the
user, but we are also interested in maintaining multiple instances of a template.

Caching in Cloud Context: Caching machine image templates has been studied in grid
and cluster environments. In [8], Emeneker et al. show that caching of a virtual image
can speed up execution of parallel jobs. However, they do not explore the pros and cons
of different caching approaches.

Caching VM Instances for Fast VM Provisioning: A Comparative Evaluation 327

Predictive methods are used more frequently in cloud context in order to manage
resource requirement. Tackling the problem of when to scale resources by adding more
VMs, or how many resources to apportion to a cloud setup has been addressed by sev-
eral works. In [2], the authors develop a forecasting method to predict resource demand
in a cloud by using historic data. An approach to auto-scale during flash crowds is pre-
sented in [20]. Use of cloning or de-duplication techniques to quickly add new VMs
have been addressed in [10]. In our method, we deliver the server instance instantly if
there is a cached VM instance matching the request to avoid the overhead of cloning.

Several works identify that fetching an image from a central repository takes up sig-
nificant proportion of the service time of a request [8,19]. A BitTorrent-like distribution
system has been proposed to speed up image delivery in [4]. A similar image streaming
approach, by breaking up an image in chunks, has been proposed in [18]. We are com-
plementary to these schemes since we can leverage the speedy distribution of the image
once it has been identified by our scheme.

Moka5 provides a solution for desktop virtualization, where desktop snapshots are
generated at regular intervals and stored in a central repository [3, 14]. However, it
assumes a large storage repository and does not present any intelligent caching mech-
anism to speed up the delivery of images. Similarly, Eucalyptus cloud management
system mentions the use of caching without providing details [9, 15]. Even, Amazon
mentions that frequent users will have the benefit of a faster turnaround time which
hints at underlying caching. IBM Workload Deployer, previously known as WebSphere
CloudBurst Appliance, also mentions the use of caching [5]. However, caching prepared
VM instances, as opposed to image templates, distinguishes our work.

Inventory Management: A close look at our technique reveals that it is closest in
design to an inventory management system. Whenever a matching request arrives, an
instance of an image template is used up, and the inventory (cache) must be replenished
efficiently at a minimum cost. The problem of lot sizing in inventory management [7]
deals with selecting the appropriate quantities of each item to be provisioned in the
inventory. Similar to inventory management, it is necessary to predict the appropriate
number of each image template to be kept in the cache.

3 System Model and Assumptions

A typical cloud setup maintains a farm of compute nodes. The compute nodes are used
to instantiate virtual machines from user-specified image templates, which are stored in
an image repository. When a user makes a request for a new server instance, the request
is first intercepted by the cloud provisioning engine. The provisioning engine checks
for the available image type in the repository, and initiates a transfer of the image to
a compute host. Once the image is transferred to a compute host, it is expanded, and
booted to create an instance of a virtual machine. The SAN store is used for provid-
ing the user data space, similar to Amazon’s Elastic Block Storage (EBS). Besides the
provisioning requests, a user may also request deletion of an instance. Fig. 1 shows the
different components of the cloud architecture.

328 P. De et al.

Fig. 1. Cloud architecture overview showing different functional components

3.1 Simulation Model

We model the cloud provisioning engine as a multi-server queuing system. Each server
is modeled such that it handles a thread to service a request in the provisioning engine.
Assuming infinite servers in the model, we can accurately compute the time to service
each request, referred to as service time, since there is no delay in the queue. In order
to model the service time of each request, we introduce a start-event and finish-event
for each event type. For example, a provision request is modeled using a start and finish
event for that type. Corresponding events for deletion requests are introduced.

User Request Queue
(ProvisionReqs,DeleteReqs)

Request
type

Exists in
cache

Provision Request

Trigger cache policies
For update

updateCacheDecisions(){
run MFU policy;
run Burst policy;
run InterArrival Policy;
determine CacheDecisions;

}

Current user request

CacheUpdateDecisions

Delivery from Cache

Normal Provisioning

Yes

No

User request
pending

Cache update
required

Queue
empty

END

Yes

No

Yes

Initiate cache update
Yes

No

No

Normal Deletion

Deletion Request

Fig. 2. Flowchart showing the steps in the simulator

In order to quantify the benefits of pre-provisioning, events denoting cache pre-filling
event and cache entry deletion event are introduced. We assume that a fixed amount of
space is available for pre-provisioning; therefore, we can only pre-provision a fixed
number of VM instances. Before inserting a new VM instance, that are determined by
the cache update policies, an instance may be deleted from the cache. The pre-fetch
action never blocks a request already queued in the provisioning engine. However, once

Caching VM Instances for Fast VM Provisioning: A Comparative Evaluation 329

a pre-provision action is triggered, it must complete before releasing the thread. If a
user request arrives while pre-fetching is in progress, then the user request must wait,
thereby increasing its service time. Fig. 2 shows the flowchart for the simulator.

4 Pre-provisioning Techniques

In this section, we present the techniques for selection of the cache composition at
periodic intervals. First an analytical model is explained to motivate the approaches,
followed by three main approaches for selection of items to place in the cache.

4.1 Analytical Model for Pre-provisioning

The provisioning engine is modeled as a single server queue, with an additional cache
entity that can store exactly one VM instance at a time. Request arrival for image-
type-1(I1), and image-type-2(I2) follows Poisson distribution, with rates λ1 and λ2

respectively. The service time for each server request is image-type dependent, and
exponentially distributed with rates, μ1 and μ2 respectively. A pre-provisioned instance
is fetched and cached only if the cache is empty and there is no pending user request in
the queue. If a request for a server instance arrives before the pre-provisioning request
is complete, the pre-provisioning request is canceled, thereby leaving the cache empty.
The cache entry is purged if there is a cache miss. On cache hit, the request is serviced
instantaneously, implying zero service time.

The caching policy can be stated as follows: Create an instance of I1 with probability
p, otherwise create an instance of I2 with probability (1 − p) whenever the system is
detected to be idle. Our aim is to find the value of p such that it minimizes the average
end-to-end provisioning time for the requests.

Theorem 1. Under the stated assumptions, the optimal policy is to set p = 1, other-
wise set p = 0, if the following condition holds.

λ1

λ1+λ2+μ1
> λ2

λ1+λ2+μ2

Proof. Since the arrival and service processes are memory-less, due to our assumption,
therefore, the evolution of the process does not depend on past history. Minimizing the
expected service time is equivalent to maximizing the reduction in service time by using
the cache. The reduction in expected service time can be represented as:

p(μ1

λ1+λ2+μ1
)(λ1

λ1+λ2
) 1
μ1

+ (1− p)(μ2

λ1+λ2+μ2
)(λ2

λ1+λ2
) 1
μ2

The first and second terms in the expression corresponds to time reduction when I1 and
I2 are chosen respectively. Within each block in the expression, μ1

λ1+λ2+μ1
corresponds

to the probability that pre-provisioning I1 completes before next request arrival; λ1

λ1+λ2

denotes probability of arrival of I1 request before I2 request; and 1
μ1

is the expected
savings. The expression has the structure pA + (1− p)B where A > 0 and B > 0 are
constants. Now if A > B then the expression will be maximized by choosing p = 1
otherwise by choosing p = 0. ��

330 P. De et al.

If the service rates for two image types are identical (μ1 = μ2), then I1 would be the
optimal choice for cache if λ1

λ1+λ2
> λ2

λ1+λ2
, and vice versa. Given a window of R

requests from history, an image type with the highest request count within the window
should be cached.

Following notations are used henceforth to explain the techniques.
R := number of user requests asking for new image instances within a given time win-
dow
N := number of image templates used to create the R requests within a given time win-
dow
fij := 1 if the jth request is for the template i, otherwise 0
C := Maximum number of image instances that can be kept in the pre-provisioned in-
ventory

4.2 Techniques for Pre-provisioning

Most-Frequently-Used (MFU) strategy leverages the insight of popularity based caching
from Section 4.1. Within a window of R past requests, it computes the requests for type
i as fi =

∑
1≤j≤R fij . The order of importance of an image is proportional to fi. Now,

given a cache size of C, the cache is completely filled up using the following formula:

Ci = wi ∗ C, (1)

where wi is computed as,

wi =

∑
1≤j≤R fij

∑
1≤i≤N

∑
1≤j≤R fij

(2)

The MFU approach implicitly assumes that the request distribution for an image type is
stationary within the history window. In practice, the popularity of an image may fade
over time, thereby falsifying the stationarity assumption necessary for MFU to perform
effectively. If time elapsed since the last request for an image template is large, then we
can assume that the likelihood of a request for that image template is low. Thus, it is
required to take into account the time of arrival of a request while selecting the cache
composition.

In Most-Recently-Used(MRU) approach, we adjust wi for a template i by attenuat-
ing the contribution of instances whose requests are older. Values can be attenuated
by applying different functions. For instance, a naive approach is to reduce the values
proportional to the time elapsed since the arrival of an instance request for a specific
type. Alternatively, one can assign high importance to recent image types with the as-
sumption that image types go out of fashion very quickly. The attenuated weight, w′

i,
factoring in the temporal aspect, is expressed as,

w′
i =

∑
1≤j≤R A(j, fij)

∑
1≤i≤N

∑
1≤j≤R A(j, fij)

(3)

where, A(x, y) is the attenuation function and can be expressed as, A(x, y) = y ∗
exp(−x). The new weights, w′

i, are used in Eqn-1 to compute the number of instances
of an image template to be cached.

Caching VM Instances for Fast VM Provisioning: A Comparative Evaluation 331

In MFU and MRU, selection is based on the popularity of an image and the available
cache size. If the cache size is large, MFU and MRU may populate the cache with a large
count of VMs of a template, although in practice, the maximum request count for the
template is lower than the cached count. This allows the opportunity to fill the cache
more judiciously, thereby saving the resource wastage for deleting an unused cache
entry during next refresh. Burst Adjustment(BA) technique, finds the largest burst, Bi,
that an image template i has encountered in the request history of R requests, and then
uses Bi to limit the number of VM instances for image template i in cache. Represented
mathematically, the number of VM instances of image type i in cache, is:

Burst adjusted Ci = min(w′
i ∗ C, Bi) (4)

Note that the selection step in Eqn-2 or Eqn-4 computes fractional numbers. During
actual provisioning, VM instances occupy integral values, derived by rounding the frac-
tions. This leads to some VM instances, with a low fractional value, being dropped from
selection while allocating in decreasing order of the count. A simple example, where
the cache can store 10 VM instances, illustrates the effect of rounding. At the end of
BA technique, VMs of 3 image types are to be cached with instance count [6.7, 2.6,
0.7] respectively. Rounding the values changes the allocation to [7, 3, 0] respectively,
thereby discarding the third image type, thus affecting the cache hit rate.

5 Experimental Evaluation

In this section, we show the results of evaluating the pre-provisioning approaches using
simulation. We explain the simulation parameters, and provide a summary of the RC2
trace data which helps in understanding the results.

5.1 Simulation Parameters

Table 1 shows the simulation parameters used in the experiments. Three key parame-
ters are: (a) cache size denotes the total number of instances of VMs that can be pre-
provisioned, (b) history window denotes the number of past requests that are taken into
consideration while computing the cache composition, (c) pool-size denotes the num-
ber of available threads or resources that can be dedicated for computations such as
deletion, pre-provisioning. Cache-update-interval parameter is used to trigger the com-
putation of cache composition periodically.

Few other parameters relevant for evaluating the caching techniques are: (i) cache
entry insertion time accounts for the time to fetch an image from repository and place
it in the cache, (ii) cache entry deletion time accounts for the time to delete an entry
from the cache, (iii) service time on cache hit accounts for the time to deliver a cached
instance to the user request. Cache hit service time is non-zero because some user-
defined configurations may need to be set up prior to delivering the VM to the user.

The MRU technique uses an attenuation function to assign higher importance to the
recent requests. A negative exponential function with a mean of 10.0 is used(refer Eqn-
3). In the BA technique, we compute the burst size by clustering all requests of an image
type that arrive within the cluster size of burst.

332 P. De et al.

Table 1. Simulation Parameters

Simulation Parameter Parameter Value
Cache Size 30 (or as mentioned)

History Window 1000 (or as mentioned)
Pool Size 100 (or as mentioned)

Cache Update Interval 15 mins
Cache Entry Insertion time 10 mins
Cache Entry Deletion time 2 mins

Servicing time on Cache Hit 2 mins
MRU Policy Parameter 10.0
Cluster Size for Burst 11 mins

5.2 RC2 Trace Summary

We collected a 1 year request log from the Research Compute Cloud (RC2), which is a
cloud computing platform for use by the worldwide IBM Research community [17]. It
serves on average 200 active users and 800 VM instances per month, with a user base
of 700 users. 10200 requests were logged during the 1-year observation period. For
each request, the time of arrival of the provision request and deletion request, as well
as, the time taken to provision the request is collected. Provision time is the end-to-end
time from the request arrival to the user being notified of successful deployment of the
virtual machine.

1088 unique image types were requested by 743 different users over the 1-year pe-
riod. Less than 10 server instances were requested for 890 image templates, with just a
single request for 453 image types, making request density for an image template quite
sparse. Requests for the top 15 image types constitute only 26% of the total requests
serviced. Another trend in request arrival is the presence of requests for an image type
arriving in bursts, which could happen when a multi-tier application is being set up with
similar servers. Even if one request from this group takes longer, it will force the user
to wait. Therefore, an efficient caching strategy must try to provision all the instances
during a burst.

5.3 Simulation Results: Using RC2 Trace Data

We compare the cache hit ratio with a varying cache size, as shown in Fig. 3. Beyond
a cache size of 20, the BA technique outperforms all other techniques. When the cache
size is less than 20, then according to Eqn-4, the MRU method performs better than the
BA technique; thereby the results for both of them are identical.

Results for varying history window are shown in Fig. 4 The LRU method is not
impacted by a varying history window because it always replaces the least recently
used entry from the cache without looking at the history. The MFU technique may
degrade in performance with an increasing history window because when the history
size is increased, several image types which are old are often never requested again.
Therefore, giving equal importance to all requests, without taking temporal aspect into
account, leads to a degraded performance for MFU. The performance improves as soon

Caching VM Instances for Fast VM Provisioning: A Comparative Evaluation 333

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Fixed History Size of 1000 requests
No queuing delay for a request

Cache Size (No of Entries)

C
ac

he
 H

it
R

at
io

 (
%

)

MFU
MRU
Burst
LRU

Fig. 3. Comparison of different techniques on
RC2 trace data, where cache size is varied

0 500 1000 1500
25

30

35

40

45

50

55

60

Fixed Cache Size of 30 entires
No queuing delay for a request

History Window (No of Requests)

C
ac

he
 H

it
R

at
io

 (
%

)

MFU
MRU
Burst
LRU

Fig. 4. Comparison of different techniques on
RC2 trace data, where history window is
varied

as MRU is applied along with the MFU method. However, MRU also may end up over-
allocating instances for an image type. BA reduces the number of instances of an image
type to be pre-provisioned, thereby creating room to cache more image types.

0 20 40 60 80 100
6

8

10

12

14

16

18

Fixed History Size of 1000 requests
No queuing delay for a request

Cache Size (No of Entries)

A
ve

ra
ge

 S
er

vi
ce

 T
im

e
(m

in
ut

es
)

MFU
MRU
Burst
LRU
No Pre−Provisioning

Fig. 5. Plot shows the average service time for
provisioning a request

0 20 40 60 80 100
0

20

40

60

80

100

Cache Size (No of Entries)

M
is

s
du

e
to

 P
ol

ic
y

R
ej

ec
tio

n
of

 Id
(%

 o
f T

ot
al

 R
eq

ue
st

s)

MFU
MRU
Burst

Fig. 6. Reduction in misses, due to the policy
rejecting an image id, as the cache size is in-
creased

We also report the improvement in service time with caching. Without pre-provsioning,
the average service time for a request is 18 minutes. When pre-provisioning is applied,
the average service time can be reduced to as low as 6 minutes for some configurations,
as shown in Fig 5. The best case with a history size of 1000 requests is recorded when
the cache size is 100 and burst adjustment policy is applied. The reduction in service
time is 62%. If we consider a more realistic cache size of 30 entries of an average size
of 30 GB, requiring total space of approximately 1 TB, then the reduction of 51% in
service time is still significant.

334 P. De et al.

5.4 Reasons for Cache Misses

Cache misses are due to several reasons, some of which are unavoidable, viz. a request
for a template is received for the first time. Choice of history window size impacts misses
since a larger history window provides a larger set of image types being requested.
Third type of miss occurs due to rounding.. Since some image types ends up with a
zero allocation, therefore, it may lead to a cache miss if a request for the discarded
type arrives despite the policy correctly inferring the importance of the image type. In
addition to this, if request inter-arrival time is short, then although the caching decision
may be accurate, the time for pre-provisioning is insufficient.

0 500 1000 1500
0

5

10

15

20

25

30

35

40

History Window Size (no of entries)

M
is

s
du

e
to

 Id
 M

is
si

ng
 in

 H
is

to
ry

 W
in

do
w

(%
 o

f T
ot

al
 R

eq
ue

st
s)

Burst Adjustment

Fig. 7. Reduction in misses, due to the absence
of an image type in the history window, as his-
tory window size is increased

0 2000 4000 6000 8000 10000 12000
0

100

200

300
Unique Image Types within a history window of 1000 requests

#U
ni

qu
e

Im
ag

e
T

yp
es

0 2000 4000 6000 8000 10000 12000
0

20

40

60

80
Hit Ratio is computed over a window of last 1000 requests

Provision Requests in Chronological order

H
it

R
at

io

Fig. 8. Cache Hit Ratio computation over a
rolling window where rolling window is 1000
entries. Graph also shows the number of
unique image types in the window.

Fig. 6 shows that as the cache size is increased, it allows more space to accommodate
larger number of image types. Thus while performing the integral allocation step in
caching; lesser number of image types are rejected, thereby increasing the number of
hits. In case of BA, since the policy trims the number of instances to be kept for each
image type to the maximum size of burst observed, therefore, it helps in accommodating
instances of more image types. Therefore, number of misses due to the policy rejecting
an image type is lowest for the burst adjustment (BA) method.

Fig. 7 shows that as the history window size is increased, it allows the cache policy to
view more image types, therefore helping the caching policy to take more image types
into account while deciding the cache composition. It can be inferred from the figure
that with a higher history window size the misses will reduce.

We also investigate the evolution of the cache hit ratio over a period of time. In Fig. 8,
we consider a sliding window of 1000 requests, to observe the change in cache hit ratio.
We also plot the number of unique image types present in the same history window.
The graph confirms our observation that as the number of unique image types increases
within a history window, it leads to a drop in the cache hit ratio.

Caching VM Instances for Fast VM Provisioning: A Comparative Evaluation 335

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cache Size (No of Entries)

#D
el

et
io

ns
/#

In
se

rt
io

ns

MFU
MRU
Burst

Fig. 9. Ratio of number of deletions to num-
ber of insertions in the cache. Lower ratio in-
dicates that the time wasted for deletion was
saved during an insertion.

0 20 40 60 80 100
200

300

400

500

600

700

800

900

1000

1100

Cache Size (No of Entries)

N
um

be
r

of
 M

is
se

s
D

ue
 to

 C
ac

hi
ng

 In
−

P
ro

gr
es

s

MFU
MRU
Burst

Fig. 10. Number of misses due to caching in-
progress for the RC2 traces having a total of
10210 requests

5.5 Gains Demystified

Deletion of a VM instance from the cache implies that the VM instance was provisioned
unnecessarily. It wastes the time to pre-provision, as well as, time is spent in deleting it,
thereby delaying the insertion of a new VM instance. In BA, since we are conservative
in placing a VM instance into the cache, therefore, it reduces the number of deletions.
When we compare the number of deletions, with respect to the number of insertions,
per policy, we observe that this ratio is lower for the BA compared to the MRU policy,
as shown in Fig 9.

Although MFU policy shows a significantly low deletion to insertion ratio, it still
performs worse overall because it suffers due to the choice of image templates. Fig. 6
earlier shows that the MFU policy suffers mainly due to rejection of a number of image
types when the integral allocation step is applied.

Despite an accurate prediction of the future arrival of requests by a policy, it still may
not show the result, if the pre-provisioning of the instance does not complete before the
next arrival. Often inter-arrival time between requests for an image type is shorter than
the time to complete a pre-provisioning request. In our simulation, we assume that if the
caching is in progress then it is a cache miss. Fig. 10 shows for each policy the number
of requests which recorded a miss although the image instance was being cached.

6 Conclusion

Typically, it takes time in order of minutes to provision a new VM in cloud. Transfer of
the large image template file from an image repository to a compute node, and booting
are the main causes of delay in the provisioning workflow. We apply caching to alleviate
the problem. Using request logs, we determine the image templates which will be high
in demand, and also estimate the number of requests for each image type. Thus we
can pre-provision VM instances by preparing and storing them in standby mode in the
cache. On receiving a matching request, a cached VM is readily delivered to the user.
We have compared 3 different techniques for selection of the cached VM instances.

336 P. De et al.

Under specific configurations, service time to deploy a virtual machine can be reduced
by 60% as compared to a no cache enabled scenario.

References

1. Borst, S., Gupta, V., Walid, A.: Distributed caching algorithms for content distribution net-
works. In: INFOCOM (2010)

2. Caron, E., Desprez, F., Muresan, A.: Forecasting for grid and cloud computing on-demand
resources based on pattern matching. In: Proceedings of the 2010 IEEE Second International
Conference on Cloud Computing Technology and Science, CLOUDCOM 2010 (2010)

3. Chandra, R., Zeldovich, N., Sapuntzakis, C., Lam, M.S.: The collective: a cache-based sys-
tem management architecture. In: Proceedings of the 2nd Conference on Symposium on
Networked Systems Design & Implementation, NSDI (2005)

4. Chen, Z., Zhao, Y., Miao, X., Chen, Y., Wang, Q.: Rapid provisioning of cloud infrastructure
leveraging peer-to-peer networks. In: ICDCS Workshops (2009)

5. IBM Workload Deployer,
http://www-01.ibm.com/software/webservers/workload-deployer/

6. Davison, B.D.: A web caching primer. IEEE Internet Computing 5 (July 2001)
7. Drexl, A., Kimms, A.: Lot sizing and scheduling – survey and extensions. European Journal

of Operational Research 99(2) (1997)
8. Emeneker, W., Stanzione, D.: Efficient virtual machine caching in dynamic virtual clusters.

In: SRMPDS Workshop, ICAPDS 2007 Conference (2007)
9. Eucalyptus Systems, http://www.eucalyptus.com/

10. Lagar-Cavilla, H.A., Whitney, J.A., Scannell, A.M., Patchin, P., Rumble, S.M., de Lara, E.,
Brudno, M., Satyanarayanan, M.: Snowflock: rapid virtual machine cloning for cloud com-
puting. In: EuroSys (2009)

11. Lin, J., Huang, T., Yang, C.: Research on web cache prediction recommend mechanism based
on usage pattern. In: Proceedings of the First International Workshop on Knowledge Discov-
ery and Data Mining (2008)

12. Liran, R.C.: Scheduling algorithms for a cache pre-filling content distribution network (2002)
13. Makkar, P., Gulati, P., Sharma, A.: A novel approach for predicting user behavior for improv-

ing web performance. International Journal on Computer Science and Engineering 02(04)
(2010)

14. MokaFive Desktop Management Simplified, http://www.moka5.com/
15. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., Zagorodnov,

D.: Eucalyptus: A technical report on an elastic utility computing archietcture linking your
programs to useful systems. Tech. Rep. 2008-10, UCSB Computer Science Technical Report
(October 2008)

16. Podlipnig, S., Böszörmenyi, L.: A survey of web cache replacement strategies. ACM Com-
put. Surv (2003)

17. Ryu, K.D., Zhang, X., Ammons, G., Bala, V., Berger, S., Da Silva, D.M., Doran, J., Franco,
F., Karve, A., Lee, H., Lindeman, J.A., Mohindra, A., Oesterlin, B., Pacifici, G., Pendarakis,
D., Reimer, D., Sabath, M.: Rc2-a living lab for cloud computing. In: Proceedings of the 24th
International Conference on Large Installation System Administration, LISA 2010 (2010)

18. Shi, L., Banikazemi, M., Wang, Q.B.: Iceberg: An image streamer for space and time efficient
provisioning of virtual machines. In: Proceedings of the 2008 International Conference on
Parallel Processing - Workshops (2008)

19. Sotomayor, B., Keahey, K., Foster, I.: Combining batch execution and leasing using virtual
machines. In: Proceedings of the 17th International Symposium on High Performance Dis-
tributed Computing, HPDC (2008)

20. Zhu, J., Jiang, Z., Xiao, Z.: Twinkle: A fast resource provisioning mechanism for internet
services. In: INFOCOM, pp. 802–810 (2011)

http://www-01.ibm.com/software/webservers/workload-deployer/
http://www.eucalyptus.com/
http://www.moka5.com/

	Caching VM Instances for Fast VM Provisioning: A Comparative Evaluation
	Introduction
	Related Work
	System Model and Assumptions
	Simulation Model

	Pre-provisioning Techniques
	Analytical Model for Pre-provisioning
	Techniques for Pre-provisioning

	Experimental Evaluation
	Simulation Parameters
	RC2 Trace Summary
	Simulation Results: Using RC2 Trace Data
	Reasons for Cache Misses
	Gains Demystified

	Conclusion
	References

