
�

�

“imvol2” — 2005/12/8 — 9:43 — page 165 — #1
�

�

�

�

�

�

Internet Mathematics Vol. 2, No. 2: 165-184

Caching with Expiration
Times for Internet Applications
Parikshit Gopalan, Howard Karloff, Aranyak Mehta,
Milena Mihail, and Nisheeth Vishnoi

Abstract. Caching data together with expiration times beyond which the data are no
longer valid is a standard method for promoting information coherence in distributed
systems, including the Internet, the World Wide Web (WWW), and Peer-to-Peer (P2P)
networks. We use the framework of competitive analysis of online algorithms and
study upper and lower bounds for page eviction strategies in the case where data have
expiration times. We show that minimal adaptations of marking algorithms achieve
performance similar to that of the well-studied case of caching without the expiration
time constraint. Marking algorithms include the widely-used Least Recently Used
(LRU) eviction policy. In practice, when data have expiration times, the LRU eviction
policy is used widely, often without any consideration of expiration times. Our results
explain and justify this standard practice.

1. Introduction

Caching data together with expiration times beyond which the data are no longer
valid is a standard mechanism for promoting information coherence in distributed
systems. It has been considered in the context of distributed memory in com-
puter architecture [Hennessy and Patterson 90], in databases [Franklin 93], and,
more recently, in large database or data-warehouse maintenance [Kotidis and
Roussopoulos 99, Harinarayan et al. 96, Ullman 96]. Most important, caching
data together with expiration times is becoming the method of choice in Internet

© A K Peters, Ltd.
1542-7951/05 $0.50 per page 165

�

�

“imvol2” — 2005/12/8 — 9:43 — page 166 — #2
�

�

�

�

�

�

166 Internet Mathematics

and WWW applications [Bernes-Lee et al. 96, Blaze 93, Cao and Liu 97, Cohen
and Kaplan 01b, Cohen and Kaplan 01c, Gwertzman and Seltzer 96, Squid 05,
Wessels 95]. For example, a WWW server, proxy, or client (browser) may cache
pages together with an estimate of the time before the information in the page
becomes stale—also known as time-to-live (TTL). Expiration times are used
to promote consistency in Domain Name Server (DNS) resolution, and even in
advanced telephony expiration times are used in the context of translations of
800-number, mobile, and personal communications services. The most appealing
characteristic of this expiration time assignment method for data consistency is
simplicity of implementation.

In the context of the Internet, an important consideration in caching seems
to be the very decision as to what are appropriate expiration time assignments
[Bernes-Lee et al. 96, Cohen and Kaplan 01b, Cohen and Kaplan 01c, Gwertz-
man and Seltzer 96, Squid 05]. In the context of content distribution and DNS
resolution, a solid body of studies focuses on issues concerning latency and size
[Cao and Irani 97, Irani 97], as well as preemptive strategies, like prefetching
and its ramifications [Cohen and Kaplan 00, Cohen and Kaplan 01a, Cohen and
Kaplan 01b, Cohen and Kaplan 01c]. In this paper we focus on cache eviction
policies.

How does the widely-practiced LRU eviction policy adjust in the case where
pages in the cache have expiration times? If requests are generated by a fixed
probability distribution, then it can be verified that the most frequently-used
items, normalized by the length of their expiration times, should be kept in the
cache. Is such a normalization necessary when the request sequence does not
follow any particular pattern? The intuition behind LRU is that our best guess
for the future is that it mirrors the past, thus the least recently used item is also
the one requested farthest in the future (FF). If we carry this intuition to the
case of expiration times, we might think it beneficial to keep in the cache items
without recent use, if these items have very long expiration times and are thus
projected to be valid the next time that they are requested. And on the other
hand, we might want to evict items that were used quite recently if such items
have very short expiration times and are projected to be stale the next time that
they will be requested.

Our results suggest that, in the framework of competitive analysis of online
algorithms, LRU can be carried out effectively with minimal adaptations and
without any of the above additional heuristics. This can also be viewed as
reaffirming current practice, which does not invest valuable resources towards
optimizing eviction strategies. It is therefore reassuring to know that, at least
from the point of view of competitive analysis, such additional resources are not
necessary.

�

�

“imvol2” — 2005/12/8 — 9:43 — page 167 — #3
�

�

�

�

�

�

Gopalan et al.: Caching with Expiration Times for Internet Applications 167

The problem of caching with expiration times was first studied by Kimbrel
[Kimbrel 01]. He obtained deterministic algorithms for the general case in
which pages have expiration times, varying sizes as well as varying costs to
fetch each page. He shows that even in this scenario, a natural extension of
LRU and some other algorithms achieves a competitive ratio of k where here-
after k denotes the size of the cache. Thus our two papers come to the same
conclusion. For deterministic algorithms, the result in [Kimbrel 01] is stronger,
since it refers to a more general model. The proof of competitiveness in [Kim-
brel 01] uses a technical potential-function argument, but our result is relatively
simple.

Our result for deterministic online algorithms (Theorem 3.3) concerns only the
case in which all the pages have the same size. However, for this case, our proof
is much simpler. For randomized algorithms, we show that a simple, randomized
marking algorithm is (2Hk) competitive. We show that if the expiration times
are all bounded by τmax < k2 − k, then the lower bound of k is no longer valid.
We present a simple class of algorithms that achieve a ratio of � τmax

k � + 1. We
give a lower bound on the competitive ratio as a function of τmax that tends to
k for large values of τmax. We also study the complexity of the offline problem.
Without expiration times, the strategy of evicting the page whose next request
is farther in the future is the optimal offline strategy [Belady 66]. We show that
a natural extension of FF is no longer optimal with expiration times. (A similar
observation is made in [Kimbrel 01].) We show that a natural extension of FF
achieves an approximation factor of three. We give an optimal offline algorithm
that runs in time nO(k) where n is the length of the request sequence. The exact
complexity of the offline problem remains open.

In Section 2, we briefly review some classical results about caching in the
standard model. We then formally define the problem when the pages have
expiration times. We introduce the notion of a covering requirement for each
page that captures the technical difficulties introduced by expiration times. We
analyze deterministic algorithms in Section 3 and randomized algorithms in Sec-
tion 4. In Section 5 we give better upper and lower bounds on the competitive
ratio as a function of the maximum expiration time τmax. We study the offline
problem in Section 6.

A preliminary version of our paper appeared in [Gopalan et al. 02].

2. Preliminaries

In this section we briefly review the standard caching problem and state some
classical results. We give a formal statement of the problem of caching when the

�

�

“imvol2” — 2005/12/8 — 9:43 — page 168 — #4
�

�

�

�

�

�

168 Internet Mathematics

pages are assigned expiration times beyond which they are no longer valid. We
define the notion of a covering requirement, which is used in our analysis.

2.1. The Classical Caching Problem

Consider a universe of equally sized pages maintained in slow memory, and con-
sider a fast memory, or cache, which can hold k pages. k is typically much
smaller than the total number K of pages in the universe. We will assume,
for convenience, that the cache starts with k dummy pages, which are never
requested. Consider a sequence of n page requests σ = σ1, σ2, . . . , σn. In the
standard model, the requirement is that a copy of page σi is in the cache at time
i, otherwise it must be fetched from the slow memory at unit cost. This is also
called a fault or a miss. However, since the cache can hold at most k pages, pages
must also be evicted. The question is to devise eviction policies that minimize
the number of faults. In the offline scenario, where the whole request sequence
is known in advance, it is well known that evicting the page whose next request
is farthest in the future is an optimal eviction policy [Belady 66]. In the online
scenario, the request sequence is presented one request at a time. Thus, when
the cache is full and a page must be fetched from slow memory, then the decision
of which page to evict must be made without knowing the rest of the request
sequence. Naturally, this lack of information causes online algorithms to fault
more frequently than offline algorithms.

Competitive analysis measures the performance of an online algorithm by com-
paring its number of faults on a sequence of requests to the number of faults of
an optimal offline algorithm for the same request sequence and taking the worst
possible ratio over all sequences. For an algorithm A, let fA(σ) denote the num-
ber of faults incurred on request sequence σ. Let fOPT (σ) denote the number of
faults incurred by the optimal offline algorithm.

Definition 2.1. The online algorithm A is c-competitive if there is a constant b such
that for every request sequence σ,

fA(σ) ≤ c · fOPT (σ) + b

If the algorithm A is randomized, we replace fA(σ) by E(fA(σ)) where the
expectation is over the coin-tosses of A.

The following class of so-called marking algorithms has been well studied and
is known to be k-competitive [Irani 98]. Sleator and Tarjan show a lower bound
of k on the competitive ratio of any deterministic online algorithm [Sleator and
Tarjan 85].

�

�

“imvol2” — 2005/12/8 — 9:43 — page 169 — #5
�

�

�

�

�

�

Gopalan et al.: Caching with Expiration Times for Internet Applications 169

Algorithm 1 MARK.
Initially the cache contains k dummy pages, all unmarked;
repeat

r := next request;
if r ∈ cache, then mark r;
if r �∈ cache, then begin

if all pages are marked, then unmark all pages;
evict an (arbitrary) unmarked page;
fetch and mark r;

end;

In [Fiat et al. 91], the randomized variant of MARK, which evicts an unmarked
page chosen uniformly at random among all unmarked pages (instead of an
arbitrary one), is shown to be (2Hk)-competitive, where Hk =

∑k
i=1

1
i . In fact

this bound is tight. Detailed statements and proofs of these results can be found
in the survey by Irani [Irani 98].

2.2. Caching with Expiration Times

We study the problem of caching when the pages are assigned expiration times.
When page p is brought from main memory at time i, it is also assigned a time-
to-live (TTL) τp(i). This copy of the page is fresh only until time i+τp(i). After
time i+τp(i), the copy of the page becomes stale, and a new copy will need to be
fetched to serve requests. Thus an input instance consists of a request sequence
σ where σi ∈ {1, · · · , n} and a set of expiration times τp(i) that specify the
expiration times for the pages. Given the request sequence σ, the requirement is
that a fresh copy of page σi is in the cache at time i. We want to serve the request
sequence causing as few faults as possible. In the classical case where there are
no expiration times, one may assume without loss of generality that successive
requests are for different pages. However, in our model with expiration times,
successive requests for the same page are meaningful.

We will assume that the expiration times satisfy the following requirement,
which we call the monotonicity assumption: Copies of page p that are fetched
later expire later. In other words, if i < j then i + τp(i) ≤ j + τp(j).

This is a natural assumption since it says that if a page fetched from CNN
headline news at 9 am will be fresh until noon, then it cannot be the case that
the same page fetched at 10 am is fresh only until 11 am. Note that we are not
imposing any restriction on requests for different pages. Indeed, it is quite likely
that, for example, stock market quotes are consistently assigned much shorter
times-to-live than headline news.

�

�

“imvol2” — 2005/12/8 — 9:43 — page 170 — #6
�

�

�

�

�

�

170 Internet Mathematics

The monotonicity assumption also allows us to restrict ourselves to lazy algo-
rithms. We say that an algorithm is lazy if it fetches a page p at time i only if
σi = p and we do not have a fresh copy of p in the cache. Since the monotonicity
assumption guarantees that a page which is fetched later will stay fresh longer,
we can bring pages into the cache only when absolutely necessary. Without the
monotonicity assumption, it might happen that for some page p, at a certain
time i, τp(i) is very large while at all other times, it is small. The best strategy
might to bring p into the cache at time i, even if there is a fresh copy already in
the cache or σi �= p.

The monotonicity requirement allows us to specify τp(i) only for the page p

where σi = p since this is the only page that we might bring in at time i. Thus we
may assume that the input consists of a pair of sequences (σ, τ), where σ(i) = p

is the ith request and τ(i) = τp(i) is the TTL if a copy of p is fetched at time i.

2.3. The Covering Requirement

We introduce a convenient graphical representation of the problem. Using this
we show that expiration times impose a certain covering requirement for every
page p, i.e., a minimum number of faults on requests to p for any algorithm
whether it is online or offline. This does not hold in the classical model. All the
bounds in this section are independent of the cache size; they are purely a result
of the expiration times.

For each page p and each time i where σ(i) = p, we introduce an interval
Lp(i) of type p that starts at i and ends at i+ τp(i). The interval Lp(i) can cover
all requests for p at time j where j ∈ [i, i + τp(i)]. A set S of intervals covers
all requests for p if every request is covered by an interval in S. We can cover
all requests to p by choosing intervals greedily. Pick the smallest i such that
σ(i) = p and i is not already covered by S. Add Lp(i) to S. We denote the size
of this greedy cover by α(p).

Lemma 2.2. Any set of intervals that covers all requests for p has size at least α(p).

Proof. Let S denote the greedily constructed cover above. Let the starting points
of the intervals in S be {i1, i2, · · · iα(p)}. Let T be some other cover of size α′(p)
consisting of intervals starting at points {j1, j2, · · · jα′(p)}. Clearly i1 = j1 since
this is the only interval that can cover the request at time i1. The interval Lp(i1)
covers all requests for p till i2. Assume that in T i2 is covered by Lp(j). We
must have j �= j1 and j ≤ i2. By the monotonicity assumption, we can replace
j with i2 since this will only cover more requests. Repeating this argument, we
can show that α′(p) ≥ α(p).

�

�

“imvol2” — 2005/12/8 — 9:43 — page 171 — #7
�

�

�

�

�

�

Gopalan et al.: Caching with Expiration Times for Internet Applications 171

We say that a set of intervals of type p is independent if the intervals do not
overlap.

Lemma 2.3. A set of independent intervals of type p can have size at most α(p).

Proof. The greedy cover S constructed above is independent, and it has size
α(p). Let T be an independent set of size t consisting of intervals starting at
points {j1, j2, · · · , jt}. Clearly j1 ≥ i1 since i1 is the first request for page p. By
monotonicity, we can replace Lp(j1) by Lp(i1) and still have an independent set.
By repeating this argument, we can replace T by a subset of S of size t, hence
t ≤ α(p).

It is not hard to see that the greedy cover S is the unique cover which is also
independent.

Corollary 2.4. Any algorithm A (online or offline) must fault at least α(p) times on
requests to page p.

Proof. We show that any algorithm must construct a cover for requests to p. A
request for p either results in a page fault or it is served using a copy of p brought
in previously. Consider the set F (p) of times when A faults on a request to p

and brings a new copy of p into the cache. Since other requests for page p result
in a cache hit, the set of intervals {Lp(i)|i ∈ F (p)} covers all the requests for p.
By Lemma 2.2, |F (p)| ≥ α(p).

A similar covering requirement holds for requests to p between time s and
time t. For s ≤ t, denote the subsequences of σ and τ that start at s and end
at t by σt

s and τ t
s . Let r1, · · · , r� denote the requests to p in this interval. We

can construct a greedy cover St
s by picking Lp(r1) and then repeatedly picking

the smallest ri that is not covered by the intervals chosen so far. Denote the size
of this cover by αt

s(p). Note that, in general, a cover for the requests in σt
s can

contain intervals that start before s.

Lemma 2.5. Any set of intervals that covers all requests for p in σt
s has size at least

αt
s(p). Further, at least αt

s − 1 intervals must start between s and t.

Proof. The first statement is proved by an argument similar to Lemma 2.2. We
will prove the second statement. Assume that T is a cover for the requests to p in
σt

s containing at most αt
s − 2 intervals starting between s and t. Let Lp(i) be an

interval starting at i < s. Since r1 ≥ s > i, by monotonicity the interval Lp(r1)

�

�

“imvol2” — 2005/12/8 — 9:43 — page 172 — #8
�

�

�

�

�

�

172 Internet Mathematics

321 2

T = 6

T = 2

T = 10

T = 10

T = 6

T = 10

2

3

4

5

6

7

Requests 1 3 1

T = 51

Figure 1.

covers all the requests to p in σt
s that are covered by Lp(i). Thus, removing all

the intervals from T that start before s and replacing them by Lp(r1) still gives
a cover for the requests to p in σt

s. This cover has size at most αt
s − 1, which is

a contradiction.

Corollary 2.6. Any algorithm A (online or offline) must fault at least αt
s(p)−1 times

on requests to page p between s and t. If the cache does not contain a copy of p

at time s, it must fault αt
s(p) times.

Proof. Consider the set F t
s(p) of pages used by the algorithm to serve requests to

p in σt
s. The intervals starting at these points cover the requests to p in σt

s. By
Lemma 2.5 at least αt

s(p)− 1 of them start between s and t. The starting points
correspond to faults on requests to page p between s and t.

If the cache does not have a copy of p at time t, all the intervals start between
s and t, so the algorithm faults at least αt

s(p) times.

Consider the following instance of the problem where σ = {1, 2, 3, 1, 2, 3, 1}
and the times-to-live are τ = {5, 6, 2, 10, 10, 6, 10}. The cache is of size k = 2.

The optimal eviction policy is as follows. At time 1, fetch page 1. At time 2,
fetch page 2. At time 3, fetch page 3 and evict page 1. At time 4 fetch page 1
and evict page 3. At time 5, there is a fresh copy of page 2 in the cache. At
time 6, fetch page 3 and evict page 2. At time 7, there is a fresh copy of page 1
in the cache. To see that this strategy is optimal, observe that it gives a total of
five faults, α(1) = 2, α(2) = 1, and α(3) = 2.

We conclude this section with an illustration that the problem with expiration
times is significantly different from the classical caching problem. Essentially the
same observation was made in [Kimbrel 01]. It is well known that for the offline

�

�

“imvol2” — 2005/12/8 — 9:43 — page 173 — #9
�

�

�

�

�

�

Gopalan et al.: Caching with Expiration Times for Internet Applications 173

version of the classical problem, farthest in the future is an optimal eviction
policy [Belady 66]. In our model, the following simple modification to FF may
seem to be a good candidate for the optimal offline algorithm.

Algorithm 2 FF2.
r := next request;
If r /∈ cache;

evict a page that is stale already or will be stale before the next request for it;
else evict the page whose next request is farthest in the future.

Theorem 2.7. Algorithm FF2 is not an optimal offline algorithm.

Proof. The request sequence in Figure 1 shows that FF2 is not optimal. At time
3, when page 3 is requested, we need to evict either page 1 or page 2. Though
page 2 is requested farther in the future, the optimal strategy is to evict page 1.
On can see that fFF2(σ) = 6, whereas fOPT (σ) = 5.

3. Deterministic Online Marking Algorithms

In this section we show that a simple modification of MARK achieves a compet-
itive ratio of k for the generalized problem of caching with expiration times.

Algorithm 3 MARK1.
Initially the cache has k dummy pages, all unmarked;
repeat

r = next request;
if r ∈ cache and r is fresh, then mark r;
if r ∈ cache and r is stale, then begin

evict r;
fetch and mark r;

end;
if r �∈ cache, then begin

if all pages are marked, then unmark all pages;
evict an (arbitrary) unmarked page;
fetch and mark r;

end;

To prove that MARK1 is k-competitive, we argue in phases. The request
sequence is divided into phases, with the first phase starting at time 1. A phase
ends just before the request for the (k + 1)st distinct page. The start of a

�

�

“imvol2” — 2005/12/8 — 9:43 — page 174 — #10
�

�

�

�

�

�

174 Internet Mathematics

new phase coincides with the point when the algorithm unmarks all the pages
in its cache. Suppose that phase i begins at time s and ends at time t. Let
Pi = {p1, · · · , pk} be the set of distinct pages requested in phase i.

Lemma 3.1. MARK1 will fault at most
∑k

j=1 αt
s(pj) times during phase i.

Proof. Let p be a fixed page. At the start of phase i, if there isn’t a fresh copy of
p in the cache, then MARK1 constructs a greedy cover St

s(p) for the requests to
p in phase i. By Lemma 2.5, it faults αt

s(p) times. Now assume that there is a
fresh copy of p at the start of phase i, which expires at time s′ ≥ s. If s ≥ s′ < t,
MARK1 will greedily cover the requests to p in σt

s′ at a cost of αt
s′(p). It is easy

to show that αt
s′(p) ≤ αt

s(p). In the case when s′ ≥ t, MARK1 will not fault
on page p in phase i. Let fMARK1(i) denote the number of faults of MARK1 in
phase i. Then fMARK1(i) ≤

∑k
j=1 αt

s(pj).

Following [Irani 98], we define segment i to be the sequence starting at time
s + 1 and ending at time t + 1. Let pk+1 be the page requested at time t + 1.

Lemma 3.2. Any algorithm will fault at least 1 +
∑k

j=1(α
t
s(pj) − 1) times during

segment i.

Proof. The pages that could be requested in segment i are p1, · · · , pk+1. The
number of faults on p1 during segment i is minimized if a fresh copy of p1 is
brought into the cache at time s. In this case, constructing a greedy cover for
the remaining requests requires αt

s(p1)−1 faults. This shows that any algorithm
must fault at least αt

s(p1) − 1 times on request to page p1 in segment i.
For p2, · · · , pk+1 we bound the number of faults using Corollary 2.6. At time

k + 1, the cache contains a copy of p1, so by the pigeonhole principle it does
not contain a copy of p� for some � between 2 and k + 1. The algorithm will
fault αt+1

s+1(p�) times on requests to p�. For j �= �, the algorithm will fault
αt+1

s+1(pj) − 1 times on page pj during segment i. Both these statements follow
from Corollary 2.6.

Note that for 2 ≤ j ≤ k, αt+1
s+1(pj) = αt

s(pj) and αt+1
s+1(pk+1) = 1. Let fOPT (i)

denote the number of faults in segment i. We have

fOPT (i) ≥ αt
s(p1) − 1 +

k+1∑
j=2

j �=�

(αt+1
s+1(pj) − 1) + αt+1

s+1(p�)

≥
k∑

j=1

(αt
s(pj) − 1) + 1, since αt+1

s+1(pk+1) = 1.

�

�

“imvol2” — 2005/12/8 — 9:43 — page 175 — #11
�

�

�

�

�

�

Gopalan et al.: Caching with Expiration Times for Internet Applications 175

Theorem 3.3. MARK1 is k-competitive.

Proof. We compare the faults incurred by MARK1 in phase i to those incurred
by OPT in segment i. By Lemmas 3.1 and 3.2,

fMARK1(σ)
fOPT (σ)

≤
∑

i fMARK1(i)∑
i fOPT (i)

≤ max
i

fMARK1(i)
fOPT (i)

≤
∑k

j=1 αt
s(pj)∑k

j=1(αt
s(pj) − 1) + 1

≤
∑k

j=1(α
t
s(pj) − 1) + k∑k

j=1(αt
s(pj) − 1) + 1

≤ k.

3.1. LRU with Expiration Times

The following modification of LRU satisfies our definition of a marking algorithm.
On a request for page p, if there is a fresh copy of p in the cache, then use it.
If there is a stale copy of p in the cache, then evict the stale copy and replace
it with a fresh copy. If there is no copy of p in the cache, then evict the least
recently used page and fetch a copy of p.

Notice that the above algorithm does not take into account expiration times.
Indeed, the algorithm may evict a fresh page (if this was the least recently used
page) and keep a stale page (if this page happened to have been used recently).
And yet, at least according to the competitive ratio performance measure, the
algorithm achieves optimal competitiveness.

4. A Randomized (2Hk)-Competitive Algorithm

In this section we study a randomized eviction policy, for the case in which pages
have expiration times. We introduce the randomized marking algorithm RMA,
defined exactly like MARK1 except that, on being required to evict a page, the
algorithm evicts a page chosen uniformly at random from the set of unmarked
pages in the cache. We show that RMA achieves a competitive ratio of 2Hk.

RMA is a simple adaptation of the randomized marking algorithm of [Fiat et
al. 91], in which pages are not assigned expiration times. This latter algorithm
was shown to achieve a competitive ratio of 2Hk [Fiat et al. 91]. Therefore,

�

�

“imvol2” — 2005/12/8 — 9:43 — page 176 — #12
�

�

�

�

�

�

176 Internet Mathematics

we come to the conclusion that, like deterministic marking algorithms studied
in the previous section, the standard randomized eviction policies achieve good
performance with minimal adaptations and, in particular, essentially without
consideration of expiration times.

Theorem 4.1. The randomized marking algorithm RMA is (2Hk)-competitive.

Proof. As in the previous section, phase i starts at time s and ends at time t. The
set of pages requested in phase i is denoted by Pi. At the beginning of phase
i, there are k distinct pages in the cache that were brought in before the phase
started. During phase i, k distinct pages are requested, some of which may be
in the cache at the beginning of phase i. For phase i, let Ai be the set of pages
that are in the cache at the beginning of the phase but that will be stale the first
time that they will be requested during the phase. Let Bi be the set of pages in
the cache at the beginning of the phase that will be fresh the first time that they
will be requested in the phase. Let Ci be the set of pages requested in phase
i that are not in the cache at the beginning of phase i. Therefore, there were
|Ci| pages in the cache at the end of phase i− 1 that were not requested during
phase i. Let ai = |Ai|, bi = |Bi|, and ci = |Ci|. Notice that ai + bi + ci = k.

RMA will certainly fault on the first requests for pages in Ai∪Ci. The number
of faults on the first requests for the pages in Bi is a random variable Zi. Let us
first calculate the expected value of Zi. To do so, order the pages in Bi according
to the time when they are first requested. We calculate the probability of a fault
on the first request for the jth page in Bi. Suppose that lj pages in Ci and
mj pages in Ai have already been requested. There are k − (mj + j − 1) pages
that were in the cache at the beginning of the phase and that have not already
been requested. It can be seen (for example, inductively) that the lj pages from
Ci replace a set of size lj chosen uniformly at random from these pages. The
probability that the jth page from Bi is in this subset is lj

k−(mj+j−1) . We thus
have

E(Zi) =
bi∑

j=1

lj
k − (mj + j − 1)

≤
bi∑

j=1

ci

k − (ai + j − 1)

=
b1∑

j=1

ci

ci + bi − j + 1

�

�

“imvol2” — 2005/12/8 — 9:43 — page 177 — #13
�

�

�

�

�

�

Gopalan et al.: Caching with Expiration Times for Internet Applications 177

=
ci

ci + bi
+ . . . +

ci

ci + 1
= ci(Hbi+ci

− Hci
)

≤ ciHk. (4.1)

Let fOPT (i) be the number of faults of this optimal algorithm in the ith phase.
Consider phases i and i + 1. There are k + ci distinct pages requested in these
two phases. Hence, the optimal algorithm faults at least ci times in these two
phases. Hence,

ci ≤ fOPT (i) + fOPT (i + 1)

⇒
∑

i

ci ≤ 2fOPT (σ). (4.2)

Let x be the total number of fresh pages evicted by RMA over all phases:

x ≤
∑

i

(ci + Zi)

⇒ E[x] ≤
∑

i

ci +
∑

i

E[Zi]

≤ (1 + Hk)
∑

i

ci by (4.1)

≤ 2(1 + Hk)fOPT (σ) by (4.2). (4.3)

Let y be the total number of stale pages evicted by RMA over all phases. Let
yp denote the number of stale copies of page p. The intervals corresponding to
yp form an independent set, hence by Lemma 2.3 yp ≤ α(p). Note that both y

and yp are random variables. Hence,

E[y] =
∑

p

E[yp] ≤
∑

p

α(p) ≤ fOPT (σ). (4.4)

The total number of faults equals the total number of pages evicted. Hence,

E[fRMA(σ)] = E[x] + E[y]

≤ (2Hk + 3)fOPT (σ). (4.5)

5. Improved Bounds for Deterministic Online Algorithms

In this section we investigate how the competitive ratio of deterministic online
algorithms depends on the maximum time-to-live τmax = maxp,i{τp(i)}. The

�

�

“imvol2” — 2005/12/8 — 9:43 — page 178 — #14
�

�

�

�

�

�

178 Internet Mathematics

case in which all times-to-live are infinity corresponds to caching without expi-
ration times, for which the well-known tight upper and lower bounds of k apply
[Sleator and Tarjan 85, Borodin and El-Yaniv 98]. When τmax = 0, it is obvious
that the competitive ratio is necessarily 1, since every requested page has to be
fetched at every time step. We would like to determine upper and lower bounds
on competitive ratios for intermediate values of τmax.

Theorem 5.1. For τmax ≤ k, there is a deterministic algorithm with competitive
ratio 1.

Proof. Since τmax ≤ k, the only pages that could be fresh at time i are the pages
that are brought in during the interval [i−k, i−1]. There are at most k of them,
so we can keep all these pages in the cache.

The algorithm is the obvious greedy algorithm. When a request for page p

arrives, if there is a fault, evict a page that will be stale at time i + 1. Such
a page always exists. It is easy to show that this algorithm produces a greedy
cover for each page p, so it is optimal by Corollary 2.4.

Any algorithm that evicts only stale pages is optimal. Since LRU will not
evict a page that is used in the last k − 1 requests, it will never evict a fresh
page, hence it is optimal.

For τmax > k, we establish a lower bound that tends to k for large τmax.
We also give an upper bound for a simple modification of the basic marking
algorithm.

Theorem 5.2. When τmax > k, for any deterministic online algorithm the competitive
ratio is at least τmax

k+� τmax−k
k � .

Proof. Let A be a deterministic online algorithm. We construct a request sequence
σ for k+1 distinct pages of length τmax +1 as follows. At each time i ≤ τmax +1,
we request a page in 1, · · · , k + 1 that A does not have in the cache. We set
τ(i) = τmax +1− i, so that all pages expire at time τmax +1. From time τmax +2
to 2τmax + 2, we construct a similar sequence of requests for a different set of k

pages and so on. Clearly, the expiration times are bounded by τmax, and they
are monotone. The algorithm A faults on every request in this sequence.

We now service the request using the offline algorithm FF. (FF is in fact the
optimal offline strategy for the above request sequence, but we will not need this
fact.) FF faults k times for the first k requests. Beyond that, FF faults just once
at the start of each phase, where a phase is as defined in Section 3. Since each

�

�

“imvol2” — 2005/12/8 — 9:43 — page 179 — #15
�

�

�

�

�

�

Gopalan et al.: Caching with Expiration Times for Internet Applications 179

Algorithm 4 MARK2.
Initially cache has k dummy pages, all unmarked;
repeat

r = next request;
if r ∈ cache and r is fresh, then mark r;
else begin

if all pages are marked, then unmark all pages;
evict an unmarked page;
fetch and mark r;

end;

phase has length at least k, there are at most � τmax−k
k � phases after the first k

requests. Hence, FF faults at most k + � τmax−k
k � times until time τmax + 1.

This gives a lower bound of τmax

k+� τmax−k
k � on the competitive ratio of A.

Let ρ = � τmax
k �. In terms of ρ, the competitive ratio is at least ρk

ρ+k . When ρ

is large compared to k, this ratio is close to k.
We derive upper bounds on the competitive ratio of marking algorithms as

a function of the maximum expiration time. We define a new class of marking
algorithms in Algorithm 4. We analyze their performance using the notion of an
epoch.

For an interval [s, t] let P t
s denote the set of pages requested in that interval.

Definition 5.3. An epoch starting at time s ends at time t, where t is the maximum
time such that

∑
p∈P t

s
αt

s(p) ≤ k.

The next epoch begins at time t + 1. The first epoch begins at time 1.

Theorem 5.4. For τmax > k, MARK2 is min{� τmax
k � + 1, k}-competitive.

Proof. Let ρ = � τmax
k �. Divide the input sequence into epochs. Suppose that there

are N epochs, and assume, for simplicity, that the last epoch was completed.
The start of a new epoch coincides with the time when the marking algorithm
unmarks all the pages in the cache.

Suppose that epoch i begins at time s and ends at time t. It follows from the
definition of epoch that

∑
p∈P t

s
αt

s(p) = k. MARK2 constructs a greedy cover for
pages in P t

s , hence it faults at most k times in epoch i. Thus, fMARK2(σ) ≤ Nk.
By Lemma 2.5, any algorithm will need at least αt

s(p) distinct copies of page
p ∈ P t

s to serve the requests for p in epoch i. Hence, in total any algorithm will
need k distinct copies of pages in P t

s to service all requests in epoch i. We use
this observation to derive a lower bound on fOPT (σ).

�

�

“imvol2” — 2005/12/8 — 9:43 — page 180 — #16
�

�

�

�

�

�

180 Internet Mathematics

Let f1, · · · , fN be the number of faults in each epoch, thus fOPT (σ) =
∑N

i=1 fi.
Consider the last epoch. At least k distinct copies of pages are needed to serve
all the requests in epoch N . Since the algorithm faults fN times in epoch N , the
other k−fN pages would have been brought in during previous epochs. Note that
each epoch is of length at least k. Since the expiration time is bounded by ρk,
these pages must have been brought in during the epochs N −1, N −2 · · ·N −ρ,
since all pages brought before that would have expired. This implies

fN−1 + fN−2 + · · · + fN−ρ ≥ k − fN

⇒ fN + fN−1 + · · · + fN−ρ ≥ k.

Similarly we get

fN−ρ−1 + fN−ρ−2 + · · · + fN−2ρ−1 ≥ k

...

f� + · · · + f1 ≥ k.

Adding all these equations, we get

fOPT (σ) ≥
⌈

N

ρ + 1

⌉
k ≥ Nk

ρ + 1
. (5.1)

Hence, the competitive ratio of MARK2 is at most Nk
(Nk)/(ρ+1) ≤ ρ + 1. By an

analysis similar to that used for MARK1 in Section 3, we can also show that the
competitive ratio is also bounded by k. Hence, the competitive ratio is bounded
by min{ρ + 1, k}.

MARK2 seems rather wasteful since it might evict a fresh page even though
some other page in the cache is stale. However, we are unable to show an
improved competitive ratio for any deterministic algorithm.

6. The Offline Problem

The offline problem of caching with expiration times can be stated as follows.

Input: The cache size k, a request sequence σ of length n, a sequence
τ of expiration times that satisfy the monotonicity assumption.

Output: A sequence of pages to evict such that there is a fresh copy
of page σi in the cache at time i and the number of faults is
minimized.

�

�

“imvol2” — 2005/12/8 — 9:43 — page 181 — #17
�

�

�

�

�

�

Gopalan et al.: Caching with Expiration Times for Internet Applications 181

We showed in Theorem 2.7 that the natural modification of FF is not optimal.
We have not found an optimal offline algorithm polynomial in both n and k. We
do not know if the problem is NP-complete for arbitrary k.

Theorem 6.1. There is an optimal offline algorithm that runs in time nO(k).

Proof. The problem of finding the optimal offline algorithm can be modeled as a
shortest-path problem on a graph with nO(k) vertices. The vertices of the graph
correspond to all possible configurations of the cache. At time t, there are at
most

(
t
k

)
possible configurations corresponding to the subsets of pages currently

in the cache. Hence, the total number of nodes is bounded by nk+1.
A configuration at time t is adjacent to those configurations at time t+1 that

can be reached from it. The edge is assigned a weight of 1 or 0 depending on
whether or not the algorithm must fault in order to make the transition. We
add a source connected to all configurations at time 1 and a sink connected from
all configurations at time n by edges of cost 0. The problem reduces to finding
a shortest path from the source to the sink. The running time of this algorithm
is nO(k).

Theorem 6.2. There is a 3-approximation algorithm to the offline problem that runs
in time poly(n, k).

Proof. We define an offline algorithm OFF that proceeds in phases like the ran-
domized marking algorithm RMA. We follow the terminology used in Section 4.
At the start of phase i, since algorithm OFF knows the entire request sequence,
it can identify the sets Ai, Bi, and Ci. It evicts all pages in Ai and then the ci

pages that are not requested in this phase. These ci pages are the only pages
that could be fresh when evicted. Note that there are only ci new pages that are
requested in phase i, so we do not need to evict any page in Bi.

Suppose that algorithm OFF evicts x fresh pages and y stale pages:

y ≤
∑

p

α(p) ≤ fOPT (σ) by Lemma 2.3

x =
∑

i

ci ≤ 2fOPT (σ) by Equation 4.2

⇒ FOFF (σ) = x + y ≤ 3fOPT (σ).

Hence, OFF is a 3-approximation to the offline problem.

Corollary 6.3. Algorithm FF2 gives a 3-approximation to the offline problem.

�

�

“imvol2” — 2005/12/8 — 9:43 — page 182 — #18
�

�

�

�

�

�

182 Internet Mathematics

Proof. We analyze FF2 in phases. Assume that during phase i, algorithm FF2
faults on a request to page p and evicts a fresh copy of page q. Then, it must
be that q is requested furthest in the future and the k − 1 other pages currently
in the cache are requested before q. Also, page p has been requested in phase i.
Since phase i terminates just before the (k + 1)st distinct page is requested, we
conclude that page q is not requested again in phase i.

Thus if FF2 evicts a live page, that page is not requested again in the same
phase. Hence, the analysis of Theorem 6.2 can be applied to it, implying that
FF2 gives a 3-approximation to the offline problem.

7. Further Work

There is a gap between the upper and lower bounds on the competitive ratio in
Theorems 5.2 and 5.4. Perhaps tighter bounds are possible. Also, the algorithms
here do not make use of the time-to-live. It may be possible to get a better
competitive ratio using this information. Finally, the status of the optimal offline
problem (NP-completeness or upper bounds polynomial in both n and k) is open.

Acknowledgments. Research supported by NSF under grant CCR-9732746 and by a Geor-
gia Tech Edenfield Faculty Fellowship.

References

[Belady 66] L. A. Belady. “A Study of Replacement Algorithms for Virtual Storage.”
IBM Systems Journal 5 (1966), 78–101.

[Bernes-Lee et al. 96] T. Bernes-Lee, R. Fielding, and H. Frystyk. “Hypertext Transfer
Protocol. HTTP 1.0.” RFC 1945, Network Working Group, 1996. Available from
World Wide Web (http://rfc.sunsite.dk/rfc/rfc1945.txt).

[Blaze 93] M. A. Blaze. “Caching in Large-Scale Distributed File Systems.” PhD diss.,
Princeton University, 1993.

[Borodin and El-Yaniv 98] A. Borodin and R. El-Yaniv. Online Computation and
Competitive Analysis. Cambridge, UK: Cambridge University Press, 1998.

[Cao and Irani 97] P. Cao and S. Irani. “Cost Aware WWW Proxy Caching Algo-
rithms.” Technical Report 1343, Deptartment of Computer Science, University of
Wisconsin, 1997.

[Cao and Liu 97] P. Cao and C. Liu. “Maintaining Strong Cache Consistency in the
Wold-Wide Web.” In Proceedings of the 17th International Conference on Dis-
tributed Computing Systems, pp. 12–21. Los Alamitos, CA: IEEE Computer Soci-
ety, 1997.

�

�

“imvol2” — 2005/12/8 — 9:43 — page 183 — #19
�

�

�

�

�

�

Gopalan et al.: Caching with Expiration Times for Internet Applications 183

[Cohen and Kaplan 00] E. Cohen and H. Kaplan. “Prefetching the Means for Docu-
ment Transfer: A New Approach for Reducing Web Latency.” In Proceedings IEEE
INFOCOM 2000: The Conference on Computer Communications: Reaching the
Promised Land of Communications, Vol. 2, pp. 854–863. Los Alamitos, CA: IEEE
Computer Society, 2000.

[Cohen and Kaplan 01a] E. Cohen and H. Kaplan. “Proactive Caching of DNS
Records: Addressing a Performance Bottleneck.” In 2001 Symposium on Applica-
tions and the Internet (SAINT 2001), pp. 85–94. Los Alamitos, CA: IEEE Com-
puter Society, 2001.

[Cohen and Kaplan 01b] E. Cohen and H. Kaplan. “Refreshment Policies for Web Con-
tent Caches.” In Proceedings IEEE INFOCOM 2001: The Conference on Com-
puter Communications: Twenty Years into the Communications Odyssey, Vol. 3,
pp. 1398–1406. Los Alamitos, CA: IEEE Computer Society, 2001.

[Cohen and Kaplan 01c] E. Cohen and H. Kaplan. “The Age Penalty and Its Effect on
Cache Performance.” In 3rd USENIX Symposium on Internet Technologies and
Systems, (USITS ’01), pp. 73–84. Berkeley, CA: USENIX, 2001.

[Fiat et al. 91] A. Fiat, R. Karp, M. Luby, L. A. McGeoch, D. Sleator, and N. E.
Young. “Competitive Paging Algorithms.” Journal of Algorithms 12 (1991), 685–
699.

[Franklin 93] M. Franklin. Client Data Caching: A Foundation for High Performance
Object Database Systems. Dordrecht: Kluwer Academic Publishers, 1993.

[Gopalan et al. 02] P. Gopalan, H. Karloff, A. Mehta, M. Mihail, and N. Vishnoi.
“Caching with Expiration Times.” In Proceedings of the Thirteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 540–547. Philadelphia, PA: Society
for Industrial and Applied Mathematics, 2002.

[Gwertzman and Seltzer 96] J. Gwertzman and M. Seltzer. “World Wide Web Cache
Consistency.” In 1996 USENIX Annual Technical Conference, pp. 141–151. Berke-
ley, CA: USENIX, 1996.

[Harinarayan et al. 96] V. Harinarayan, A. Rajaraman, and J. Ullman. “Implementing
Data Cubes Efficiently.” In Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, pp. 205–216. New York, ACM Press, 1996.

[Hennessy and Patterson 90] J. L. Hennessy and D. A. Patterson. Computer Archi-
tecture: A Quantitative Approach. San Francisco: Morgan Kaufmann Publishers,
1990.

[Irani 97] S. Irani. “Page Replacement with Multi-Size Pages and Applications to Web
Caching.” In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory
of Computing, pp. 701–710. New York: ACM Press, 1997.

[Irani 98] S. Irani. “Competitive Analysis of Paging: A Survey.” In Online Algorithms:
The State of the Art, edited by Amos Fiat and Gerhard J. Woeginger, pp. 52–73,
Lecture Notes in Computer Science 1442. New York: Springer, 1998.

[Irani and Karlin 97] S. Irani and A. R. Karlin. “Online Computation.” In Approxima-
tion Algorithms for NP-Hard Problems, edited by D. S. Hochbaum, pp. 521–564.
Boston: PWS Publishing Company, 1997.

�

�

“imvol2” — 2005/12/8 — 9:43 — page 184 — #20
�

�

�

�

�

�

184 Internet Mathematics

[Kimbrel 01] T. Kimbrel. “Online Paging and Caching with Expiration Times.” The-
oretical Computer Science 268 (2001), 119–131.

[Kotidis and Roussopoulos 99] Y. Kotidis and N. Roussopoulos. “DynaMat: A Dy-
namic View Management System for Data Warehouses.” In Proceedings of the
1999 ACM SIGMOD International Conference on Management of Data, pp. 371–
382. New York: ACM Press, 1999.

[Motwani and Raghavan 95] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge, UK: Cambridge University Press, 1995.

[Sleator and Tarjan 85] D. Sleator and R. E. Tarjan. “Amortized Efficiency of List
Update and Paging Rules.” Communications of the ACM 28 (1985), 202–208.

[Squid 05] “Squid Web Proxy Cache.” Available from World Wide Web (http://www
.squid-cache.org), 2005.

[Ullman 96] J. Ullman. “Efficient Implementation of Data Cubes Via Materialized
Views.” In Proceedings of the Second International Conference on Knowledge Dis-
covery and Data Mining, pp. 386–388. Melno Park, CA: AAAI Press, 1996.

[Wessels 95] D. Wessels. “Intelligent Caching for WWW Objects.”
INET’95 Hypermedia Proceedings. Available from World Wide Web
(http://www.isoc.org/HMP/PAPER/139/abst.html), 1995.

Parikshit Gopalan, College of Computing, Georgia Institute of Technology, Atlanta,
GA 30332-0280 (parik@cc.gatech.edu)

Howard Karloff, AT&T Labs, Research, Florham Park, NJ 07932
(howard@research.att.com)

Aranyak Mehta, College of Computing, Georgia Institute of Technology, Atlanta, GA
30332-0280 (aranyak@cc.gatech.edu)

Milena Mihail, College of Computing, Georgia Institute of Technology, Atlanta, GA
30332-0280 (mihail@cc.gatech.edu)

Nisheeth Vishnoi, College of Computing, Georgia Institute of Technology, Atlanta, GA
30332-0280 (nkv@cc.gatech.edu)

Received December 4, 2003; accepted May 9, 2005.

