
CACL: Efficient Fine-Grained Protection

for Objects

Joel Richardson Peter Schwarz Luis-Felipe Cabrera

IBM Almaden Research Center

650 Harry Road

San Jose, CA 95120

Abstract

CACL is a protection scheme for objects that offers a

simple and flexible model of protection and has an

efficient, software-only implementation. The model,

based on Access Control Lists (ACLs) integrated

with the type system, allows owners to control who

may invoke which methods on which objects, per-

mits cooperation between mutually suspicious princi-

pals, allows ownership of objects to be transferred

safely, prevents unwanted propagation of authority

between principals, and allows changes to the autho-

rization information to take effect on the next method

invocation. The implementation, based on the inte-

gration of Capabilities with method dispatch, avoids

the overhead of access checking in the majority of

invocations, at the cost of space for extra dispatch

vectors. CACL offers a viable mechanism for fine-

grained protection in an object-oriented database sys-

tem.

1 Introduction

For a number of years, object-oriented database sys-

tems (OODBs) have been an active area of research.

Most of the attention has been given to traditional

database concerns, such as defining more expressive

data models, inventing query languages for objects,

and devising schemes for concurrency control and

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

@ 1992 ACM 0-89791~539-9/92/0010/0263...$1.50

recovery. Substantially less attention has been paid to

the problem of protection. In some systems, e.g., 02

[8], protection is not addressed at all (at least, in the

published literature). Presumably, one would protect

objects by protecting the operating system files in

which they reside. Many other OODBs protect

objects at the segment level [1][9]. A user can grant

(or deny) to other users the ability to read or write the

objects in his/her segments. One disadvantage of

these approaches is that the granularity of protection

is coarse. The entire object-base is partitioned into

relatively few operating system files or object seg-

ments. While in theory, individual objects could be

assigned to individual files or segments, doing so

would carry sizeable overhead, both in administra-

tive complexity and in system resources. Another

disadvantage is that the model of protection is differ-

ent from the model of the objects being protected. By

offering only Read/Write/Execute protection, the

protection model treats all objects as if they were of

type File. Not only is this counterintuitive for the

user, but it is probably sufficient only for get- and

put-style methods. An object usually hides much

complexity behind a relatively simple interface.

What may appear to be a retrieval from a given

object may actually involve “reading” many different

objects and “writing” others. It appears that any

assignment of rights to a user either grants too little

privilege to get the job done or far too much to be

safe.

There have been attempts to provide more sophisti-

cated models of protection for OODBs. For example,

a recent proposal allows both explicit and implicit

authorizations[lo]. An explicit authorization on one

part of the database implies certain rights over other

parts, unless overridden by another explicit authori-

zation. The scope and interaction of authorizations is

tied to the semantics of the various abstractions

offered by the model, e.g., classes, objects, compos-

ite objects, versions, and methods. This protection

model is certainly integrated with the data model to

which it applies. However, it is quite intricate, and

given an arbitrary set of explicit authorizations, it is

not immediately clear whether a given invocation by

a given user will succeed. Nor is it obvious what will

be the overall effect of a given change in authoriza-

tions.

Clearly, some form of protection is needed in any

system that intends to manage objects of value to its

users. However, we believe that a protection mecha-

nism must balance the sophistication of its protection

model against the ability of the users to understand it.

CACL offers a very simple model. Essentially, the

owner of an object controls who may invoke which

of the object’s methods. As we shall see, however,

this simple model is quite effective in solving some

interesting protection problems.

The seamless nature of an integrated object-oriented

system also forces one to consider the issue of when

authorization checks should be carried out. In con-

ventional operating systems, a process’ right to

access a file can be checked at a distinguished point

in the process’ execution, i.e., when the file is

opened. In an integrated object-oriented system, such

distinguished points do not exist; a program, begin-

ning at some root of persistence, simply follows ref-

erences and invokes methods on objects. It may be

necessary to check authorization at any point in the

propram’s execution. Furthermore, access rights may

be revoked or granted at arbitrary times. If such revo-

cations and restorations are to appear to be “immedi-

ate,” access rights must be checked (conceptually) at

every invocation.

Clearly, the kind of mechanism we are suggesting

poses major implementation challenges. In particu-

lar, if we literally place an authorization check in the

path of every method invocation, performance will

be severely degraded. Furthermore, we believe the

vast majority of such checks will succeed because

they are, in fact, unnecessary. There are three reasons

for this. First, experience shows that most objects

exist only to implement a higher-level abstraction.

Method invocations that occur “inside” the larger

object should not be subject to access checks. Sec-

ond, we expect revocation and restoration of rights to

occur far less frequently than method invocation.

This means that in most cases, a process’ right to

access an object will not change from one invocation

to the next. Third, we expect that a large percentage

of all invocations will occur because a public method

invokes a series of other public or private methods on

self. If the caller has the right to invoke the public

method, that should imply the right of the method to

execute without further hindrance. Thus any practical

implementation must meet the rather severe require-

ment of doing little or no work on each method invo-

cation, yet giving the appearance of performing a full

access check.

CACL is a fine-grained protection mechanism for

strongly-typed, object-oriented programming envi-

ronments or database systems. In this paper, we will

discuss the model’s semantics and its efficient imple-

mentation. The protection model is easy to under-

stand, yet flexible enough to solve realistic protection

problems. Our implementation meets the stringent

performance requirement stated above, paying the

cost primarily in the space required for additional

dispatch vectors. The name, CACL, is a combination

of Capabilities and Access Control Lists, the two pro-

tection mechanisms whose properties are combined

in this design. While the semantics of CACL can be

described in terms of access control lists integrated

with the type system, the implementation can be seen

as capabilities integrated with method dispatch.

The remainder of the paper is organized as follows.

In the next section, we describe some basic assump-

tions concerning the object model and runtime envi-

ronment required by CACL. Section 3 describes the

CACL protection model, and Section 4 provides

some examples of its use. Section 5 describes an

implementation of CACL that does not require spe-

cialized support from the underlying operating sys-

tem or hardware, relying instead on cooperation

between the language compiler and runtime system.

Section 6 reviews related work, and Section 7 sum-

marizes the contributions of this work.

264

2 Assumptions tern requires several protection mechanisms in addi-

tion to CACL.

The design and implementation of CACL assumes

certain properties of the object model and runtime

environment in which it operates. While CACL was

developed in the context of a specific object model

(Melampus [2][ll]), the essential ideas are widely

applicable. In this paper, therefore, we shall limit the

set of assumptions to a minimum.

The first assumption is that every protected object is

an instance of an abstract type. An abstract type spec-

ifies an interface and an implementation for its

instances. An interface consists of a set of signatures

that syntactically define what operations may be per-

formed on an instance. The implementation consists

of a representation for instances and a set of proce-

dures which implement the operations in the inter-

face. For the purposes of this paper, the key feature

of an abstract type is that instances are encapsulated;

there is no way for a program to access an object

except by invoking its operations. Note that the

object model may or may not also support subtyping.

While such an assumption is made for this paper, it is

not strictly necessary.

The first assumption leads to the second, which is

that all methods and application code are written in a

strongly typed language. In particular, it must not be

possible to forge a reference (e.g., by casting) nor to

invoke any operation on an object that is not sup-

ported by the object’s implementation. This implies

that the compiler must be a trusted component of the

object system; indeed, in Section 5 we shall see how

the implementation of CACL relies on the type

checking performed by the compiler.

The last assumption is that the runtime environment

is safe from outside attack. CACL is designed to pro-

vide protection within the confines of a particular

data model that conforms to the assumptions

described above, but if the model’s implementation is

embedded in a hostile environment, additional mech-

anisms may be required. In particular, we assume

that all users of the system are reliably authenticated,

that communication channels are safe from message

replay and insertion, and that only trusted utilities

and programs compiled by a trusted compiler can

access the runtime interface. Clearly, a complete sys-

3 The Protection Model

This section describes the CACL model of protec-

tion. We will describe the basic concepts around

which the model is built, followed by a description of

the properties of certain critical events: method invo-

cation, object creation, and transferral of authority

between users.

3.1 Principals

In CACL, the locus of authority is called a princi-

pal[121. A principal may correspond to a human user,

a project group, or any other abstract entity on whose

behalf actions are carried out within the system. We

make no assumptions as to whether principals are

themselves modeled as objects in the system, subject

to protection. We assume only that principals are

authenticated to the system and that there is some

representation for a principal’s identity. Principals

appear in four different roles in CACL:

1. Each object has an owner, the principal

responsible for authorizing access to the

object. For any object O, Owner(o) returns

the identifier of the principal that owns o.

2. Each object has a method principal (MP)

on whose behalf the object’s methods will

execute. The MP is often, but not always, the

object’s owner. This point will be explained

shortly. MP(o) returns the identifier of the

method principal for u.

3. At runtime, the MP of the currently exe-

cuting method is called the current principal

(0). Since CPs are pushed and popped

along with activation records, we often speak

of the principal stack associated with an exe-

cution thread. CP() returns the identifier of

the current principal.

4. Finally, each implementation has an

implementor, the principal responsible for

the correctness of the implementation.

Zmpf(o) returns the identifier of the principal

that defined the implementation of O.

265

3.2 Access Control Lists

An object’s owner controls which principals may

invoke which operations by means of an access con-

trol list (ACL). A default ACL is attached to an object

when the object is created. Conceptually, the com-

plete set of ACLs in the system constitutes a map-

ping:

ACL(Object x Principal) + {Method)

That is, p is allowed to invoke method m on object o

only if m E ACL (0, p) . The primary motivation

for CACL is to enforce the semantics of ACL-based

protection for objects, while avoiding the cost of

checking an ACL on every method invocation. As

with principals, we do not specify whether ACLs are

modelled as objects.

3.3 Typed References

Objects are accessed by means of typed references.

The effective type of a reference is the interface

described by the intersection of the following three

components: 1) the interface of the declared type of

the variable containing the reference (the reference’s

static type), 2) the interface of the type of the object

denoted by the reference (the object’s creation type),
and 3) the interface specified in the object’s ACL for

the current principal (the principal’s authorization

type). The relationship between these types is illus-

trated in Figure 1. Static type checking ensures that

Statically Typed Reference

Figure 1. Types Associated with an Object

the static type of the reference is always a subset of

the creation type of the object to which it refers,

Likewise, the authorization type (by definition) must

always be a subset of the creation type. The relation-

ship between the static type and the authorization

type, however, depends on the principal who is

accessing the object and the permissions given to that

principal in the object’s ACL. In this example, the

effective type is narrower than the static type, as indi-

cated by the shading.

3.4 Method Invocation

From the point of view of protection, an execution

thread is simply a sequence of method invocations.

CACL focuses on this event and maintains the fol-

lowing invariant:

A method invocation succeeds if and only

if that method is part of the eflective type of

the reference at the time of the invocation.

Conceptually, the maintenance of this invariant

requires an access check with every method invoca-

tion. As we will see, however, the implementation of

CACL maintains the invariant in a way that stresses

fast invocation for those cases (expected to be the

majority) in which access checks are not needed.

Although we have described protection in terms of

type checking, there is an important difference for

the programmer between the assurances provided by

static type checking and those provided by the pro-

tection mechanism. In a conventional statically-typed

programming language, the programmer is assured

that a program which compiles without type errors

will be free from type errors during execution. Pro-

tection violations, however, by their very nature, can-

not be detected at compile time. Access permissions

vary from instance to instance within a class, and the

specific objects to which a method will be applied are

not known until runtime. Furthermore, access per-

missions may be changed at any time, and our desire

to make such changes take effect on the next invoca-

tion further constrains any attempt to do protection

checking in advance of method invocation.

We wish to stress, therefore, that although protection

violations appear as runtime type errors in CACL,

the runtime nature of such errors is inevitable and

266

does not represent any loss of type safety. Any type

errors that would be detected in a conventional

approach will be detected by static checking, as

usual.

3.5 Object Creation

Principals create objects with a system operation,

new, which requires its caller to designate an imple-

mentation to be used for the new object. The current

principal becomes the new object’s owner and the

implementation’s implementor becomes the object’s

method principal. The reason that the object’s initial

MP is the implementor (and not the CP), will be dis-

cussed shortly. The object’s initial ACL grants all

rights to the owner, and none to any other principal.

Object creation is summarized in Table 1.

Owner(o) t CP

MP(o) t Impl(o)

ACL(o, p) = 4. if p z Owner(o)

ACL(o, Owner(o)) = CreationType

TABLE 1. Object Creation

3.6 Changing the Owner and Method

Principal

The owner of an object can transfer ownership to any

other principal by means of the operation Change-

Owner(o, p). In so doing, the former owner transfers

the right to manipulate the object’s ACL to the new

owner. However, the object’s method principal does

not change. The current owner of an object can set

the object’s method principal to him/her self, but not

to any other principal, with the operation Set-

MethodPrincipal(Together, these two operations

provide for controlled transfer of an object between a

donor and a recipient in a way the exposes neither

party to involuntary risk. In the first phase of the

transfer, an owner delegates the ability to update the

object’s ACL to another principal. This unilateral

action does not pose a risk for the recipient, since the

object’s methods still execute with the authority of

the old MP, i.e., it is not possible for an attacker to

create an object of his/her choosing, “give” it to an

unsuspecting user, then invoke the object’s methods

with the authority of the victim. In the second phase

of the transfer, the recipient agrees to accept respon-

sibility for the object’s behavior by becoming the

method principal. Here, the recipient accepts some

risk, but only voluntarily. It is assumed that the recip-

ient will first verify that the object is not a Trojan

Horse, before agreeing to become MP

4 Discussion and Examples

In this section, we discuss the features of the CACL

protection model and show how they can be used to

solve several important protection problems.

4.1 Trust Among Principals

CACL was designed with the assumption that differ-

ent levels of trust exist between the principals who

implement, administer, and use objects. In order to

accomplish any cooperative work in a computer sys-

tem, some mutual trust is obviously necessary. The

client of a document editor entrusts the editor to

make changes to a given document. Users of a mail

system trust that mail will be delivered to all of (and

only) the named recipients. All users trust the kernel

to implement its abstractions correctly. However,

“some trust” is not the same as blind faith. Allowing

the document editor to update a particular document

should not (necessarily) imply the granting of rights

to any of the client’s other objects. Furthermore,

while the client may trust the editor, he/she may not

trust the owner of the editor. Thus, allowing the edi-

tor to read a document should not imply the right of

the editor’s owner to read the document. These argu-

ments led to the explicit support in CACL for the role

of the implementor and to the separation of owner

and method principal.

When a method executes, code written by the imple-

mentor executes on behalf of the method principal.

Any client that invokes the method, passing it object

references as parameters, must therefore grant to the

MP enough rights over the parameter objects to allow

the invoked method to execute properly. The set of

methods required by the invoked method is likely to

be advertised to the client as the static type of the

parameter. If the client is unwilling to grant that

many rights to the MP, then he/she cannot use the

267

service (and is free to go elsewhere). There is a moti-

vation here, familiar to software engineers, for an

implementor to declare parameter types that are no

more specific than necessary to perform the service.

Even though a client may trust a particular imple-

mentation to perform some function, the method

principal may not be the implementor, but some other

principal. In this case, the client still has a measure of

protection in using the service, even though the MP

may not be trusted in general. The reason is that pass-

ing the object to the method is not equivalent to sim-

ply handing the reference to the method principal; his

ability to use the reference is constrained by the

implementor’s design, If the MP has no other access

to the client’s object, and if the implementation is

sufticiently trusted, then the client can grant the

required rights to the MP, even if the MP is not

trusted.

4.2 Examples

4.2.1 Mutual Suspicion

Consider a scenario in which two mutually suspi-

cious principals wish to cooperate to accomplish

some task. Neither principal wishes to grant the other

more than the minimal authorizations needed to

accomplish the task. The fine-granularity protection

supported by CACL makes this possible. Each prin-

cipal need only authorize the other to perform exactly

those operations on exactly those objects that are

necessary to get the job done, and this authorization

can be revoked immediately once the need for coop-

eration has ended. Furthermore, because references

are unforgeable, neither principal can even attempt to

invoke operations on objects that were not explicitly

given to them.

For instance, suppose Joel wishes to print one of his

documents using a printer owned by Peter. For the

moment, let us also assume that Peter is the method

principal for the printer’s methods. Joel obtains a ref-

erence to the object that represents the printer, and

invokes the Print method. If Peter has agreed to let

Joel USC his printer, the authorization type for Joel in

the printer’s ACL will include this method and the

invocation will succeed. Once invoked, the Print

method invokes various methods on Joel’s document

object to extract the document’s text for printing.

Since Peter is the method principal, these invocations

will only succeed if the authorization type for Peter

in the document’s ACL includes these methods.

Note, however, that the printer software has no need

to update the document, and hence Peter need not be

authorized to do so. Furthermore, by granting Peter

access to this document, Joel does not grant Peter

access to any of his other documents. Likewise, Peter

does not need to grant Joel authority to use any other

printer.

4.2.2 Trusted Implementations

In some cases, a principal may own, and wish to con-

trol access to, a resource which requires authority

exceeding his own in order to operate correctly. For

instance, the printer owned by Peter in the preceding

example may require access to a proprietary font

database in order to print documents. Only the imple-

mentor of the printer software, Acme Software,

should be permitted to access this database. CACL

provides the tools to solve this problem. As the

implementor of the printer software, Acme Software

is (by default) the method principal of the Print

method when Peter instantiates a new printer object.

The printer object will be owned by Peter, who can

therefore control which other users may print on it,

but Peter need not be authorized to access the font

database because the CP during execution of the

Print method will be Acme Software. As owner of

the printer, Peter can make himself the method prin-

cipal at any time, but thereafter the software will sim-

ply cease to work because he is not authorized to

access the font database.

Note that in our revised example, Joel must authorize

Acme Software, but not Peter, to access his docu-

ment. This represents an additional reduction in the

amount of trust Joel must place in Peter in order to

use his resource. Joel must simply trust the (immuta-

ble) implementation of the Print method supplied by

Acme Software.

Finally, we note that a considerable amount of

mutual protection can be obtained even when the

method principal is not a trusted third party, as in the

example above. Suppose the Print method requires

access to an audit file proprietary to Peter, instead of

268

the font database, and therefore the method principal

must be Peter. If Joel trusts Acme Software’s imple-

mentation sufficiently, he will be willing to authorize

Peter to read his document even though he doesn’t

trust Peter. This is because, as long as Peter cannot

obtain a reference to the document through some

other means, his ability to access the document is

constrained by Acme’s trusted implementation.

5 An Implementation Design for

CACL

5.1 Introduction

A naive implementation of the CACL protection

model would simply check the ACL of the target

object before each method invocation. As we noted

in Section 1, such an implementation would be pro-

hibitively and unnecessarily costly. In designing a

practical implementation for CACL, we sought to

take advantage of the observation that the effective

type of a reference can only change as a result of cer-

tain relatively infrequent events:

1. Crossing a Protection Domain Bound-

ary: If a method executing with pl as current

principal invokes a method that will execute

on behalf of principal ~2, the effective type

of each reference passed as a parameter must

be recomputed based on ~2’s authorization

type for each referenced object. A similar

recomputation must be performed for each

reference that p2 returns to ~1.

2. Widening: Object models that support

subtyping often allow assignments in which

the static type of the destination variable is a

subtype of the static type of the source vari-

able, provided that the creation type of the

referenced object (as determined by a runt-

ime check) is a subtype of the type of the

destination variable. If a method executing

with pl as current principal holds a reference

of static type T, and tries to widen its view to

type T2, the effective type must be recom-

puted based on both the referenced object’s

creation type and its authorization type for

PI*

3. Changing an Object’s Method Princi-

pal: Each instance variable in an object is a

reference whose effective type is limited by

the method principal’s authorization type for

the referenced object. If the method principal

changes from pI to ~2, the effective type of

each instance variable must be recomputed

based on p2’s authorization type for the ref-

erenced object.

4. Update to an ACL: If the ACL for an

object is modified or replaced, the effective

type of every reference to the object must be

recomputed.

Unless one of these events occurs, possession of a

reference with a particular effective type is very

much like having a capability for the referenced

object. Possession of the reference, like possession of

a capability, represents the authority to invoke a

specified set of operations on the referenced object.

In particular, there is no need to consult the ACL

before allowing the invocation to proceed. CACL

treats references like capabilities that are revoked

when the reference’s effective type changes as a

result of one of the four events listed above. CACL

also takes advantage of the fact that even if one of

these events does occur, there is no need to recom-

pute the effective type until just prior to the refer-

ence’s next use.

Our proposed implementation for CACL is derived

from a standard implementation of late binding in

object-oriented systems. Such implementations use a

dispatch vector (DV) to map an invocation in the

user’s program to the address of actual method code

at runtime. CACL augments the role of the DV to

include caching of authorization information. Instead

of one DV per type, as in the standard implementa-

tion, our design requires one or more DVs per pro-

tected object. An entry in a DV may point to method

code, as usual, or to a system procedure called the

Protection Manager (PM). Depending on the con-

tents of the DV, a method invocation will therefore

be dispatched either to the appropriate method or, if

an authorization check is needed, to the protection

subsystem. The PM is responsible for checking the

rights of the caller with respect to the target object,

and will either raise an exception or continue the

original invocation. The only “nonstandard” technol-

269

Figure 2. Overview Example

ogy required by this scheme is a small amount of

assembly code that allows the PM to continue the

original invocation without pushing a new stack

frame.

Each of an object’s DVs contains a combination of

method and PM pointers that reflects a specific effec-

tive type. Object references contain two pointers: one

to the referenced object and one to an appropriate

DV.’ Method invocation follows the DV pointer in

the reference, and thus different references to the

1. One could eliminate the object pointer, and access the

object indirectly through a pointer in the DV, This altema-

tive would save space, but increase the time cost of com-

paring two references to determine whether they denote

the same object.

same object may behave differently, depending on

the access rights granted to the principal holding each

reference. By dynamically altering the contents of a

reference and/or a DV when a reference’s effective

type changes, the system forces subsequent invoca-

tions to be directed to the PM to recheck the caller’s

access rights

An example of these data structures is given in

Figure 2. References X and Y both refer to object A,

which has two dispatch vectors, DVA,, and DVA,,.

However, the principal holding reference X, which

refers to DVA,,, is authorized to invoke any of A’s

methods, while the principal holding Y, which refers

to DVA,+ is only authorized to invoke method M2. If

method MO or Ml is invoked via Y, control is trans-

ferred to the PM.

Although the design described here eliminates many

unnecessary authorization checks, the performance

improvements do not come for free. Using one or

more DVs per object, instead of one per type, and the

expansion of references to two pointers, represent

time-space tradeoffs that increase performance at the

cost of increased use of space.

The next two sections describe the data structures

and algorithm that constitute our design in greater

detail.

5.2 Data Structures

We assume that all data structures used to implement

CACL are persistent, and that a separate mechanism

is used to fault objects and method code into memory

as needed.

5.2.1 Objects

An object consists of references to other objects

(instance variables) plus some auxiliary data used for

protection purposes. Every object has an owner field

(OP), a method principal field (MP), and a pointer to

the list of the object’s dispatch vectors (DVp). The

structure of an object is shown in Figure 3.

270

OP MP DVp Instance Variables

Figure 3. An Object

5.2.2 Keferences

An object reference consists of two fields: a pointer

to the object (OBJp) and a pointer to a dispatch vec-

tor (DVp). An object reference is shown in Figure 4.

OBJp DVp

/ \

OBJ DV

Figure 4. An Object Reference

5.2.3 Dispatch Vectors

A dispatch vector (DV) consists of an array of code

pointers plus two additional pointers. If all of the

code pointers in a DV point to the Protection Man-

ager, we call it a PMDV. One of the extra pointers in

the DV (PMDVp) points to a PMDV, if one has been

created for the object. The other extra pointer

(DVnext) is used to link together all of an object’s

DVs. There is no significance to the order in which

the DVs appear in the list. Figure 5 shows an object

with three DVs. The first contains all method point-

ers, the second contains one method pointer and two

PM pointers, and the third contains all PM pointers

(and thus is a PMDV).

While an object supporting n methods could theoreti-

cally have as many as 2n DVs, we expect that most

objects will be “private” objects used only within the

implementation of some higher-level abstraction.

Such objects will have exactly one DV. Furthermore,

we expect that for most object types, only a small

number of combinations of access rights will corre-

spond to useful abstractions. Hence, even most “pub-

lic” objects will only have a few DVs.

I I
- PMDVp PMDVp

DVnext/ DVnextJ
\ 1

1 PMW 1

Figure 5. An Object and its DVs

5.3 Algorithms

Our algorithms stress fast invocation, based on the

assumption that method invocation occurs far more

frequently than any other operation of concern to the

protection subsystem. Moreover, we also assume that

the vast majority of all invocations are authorized,

and will succeed. Thus, only when one of the four

infrequent events listed in Section 5.1 has occurred

will it be necessary for invocations to be directed to

the PM. In the following subsections, we describe

what processing steps occur for each event of inter-

est.

5.3.1 Method Invocation

Method invocation consists of two steps. In the first

step, the current principal is compared to the method

principal field (MP) of the object that is the target of

the invocation. If they differ, a boundary between

protection domains will be crossed and special argu-

ment processing, described below, will be required.

This step can be eliminated if it is possible to deter-

mine at compile time that the invocation cannot

result in a change of principal. Two simple cases in

which such a determination is possible are: 1) invo-

cation of a “private” method not exported by the

object’s implementation, and 2) invocation of a

method by another method of the same object.

273.

In the second step, after evaluating arguments, the

invocation sequence at the point of call indexes into

the DV denoted by the DVp in the target object refer-

ence, and calls the procedure whose address is

retrieved. This may result in an invocation of either

the target method or the Protection Manager. The

required index is generated by the compiler based on

the method to be invoked, just as it would be in a

standard implementation of late binding.

5.3.2 Crossing a Protection Domain

Boundary

As we noted in Section 5.1, when a reference is

passed across a protection domain boundary, its

effective type may change. Rather than immediately

recalculating the effective type based on the new

principal’s authorization type, CACL delays this

determination until the reference’s next use. As each

reference is copied onto the argument stack, its DVp

is updated to point to a PMDV. If a PMDV already

exists for the object, its address can be obtained from

the PMDVp in the DV associated with the old princi-

pal. If the PMDVp in this DV is null, a new PMDV

must be allocated. Making the reference point to a

PMDV ensures that the new principal’s first method

invocation using the reference will be directed to the

Protection Manager for authorization checking.

5.3.4 Change of Ownership

Change of ownership does not change the effective

type of references, but a check is required to make

sure that the current principal of the process request-

ing the ownership change is the current owner of the

object. This is done by comparing the current princi-

pal to the contents of the owner (OP) field of the

object.

5.3.5 Change of Method Principal

A change of method principal is not permitted unless

the object’s owner (OP) field is equal to the current

principal, in which case the method principal (MP)

field is set equal to the OP. In addition, if the change

succeeds, each reference in the object has effectively

been passed to a new protection domain. Each refer-

ence’s DVp field is therefore updated to point to a

PMDV. The next invocation through each reference

will be directed to the PM, to recompute the effective

type.

5.3.6 Replacement or Modification of an

Object’s ACL

When an object’s ACL is modified or replaced, every

reference to the object is potentially affected. Locat-

This algorithm is used whenever invoking a method
ing all references and recomputing effective types

or returning from one causes a reference to cross a
accordingly is impractical. Instead, the system

protection domain boundary. We feel this lazy
traverses the list of the object’s DVs, and transforms

approach to protection checking will be more effi-
each one into a PMDV by overwriting all method

cient than the eager alternative, because references
code pointers with the address of the entry point of

obtained by a method may not actually be used, but
the PM. Subsequent method invocations through any

rather simply stored or passed on to other methods.
reference to the object will be redirected to the PM.

The next section describes how references are revali-

dated, so that there is no permanent penalty for

5.3.3 Widening a Reference changing authorization information.

Widening a reference requires a runtime inspection

of the referenced object to determine its creation
5.3.7 Processing in the Protection Manager

type, regardless of any protection concern. One could

recompute the effective type at this time, but to be
We have previously described several situations in

consistent, we take the same lazy approach used
which a method invocation is redirected to the Pro-

when a reference is passed across a protection
tection Manager. This section describes how the PM

domain boundary. That is, the reference is copied and
handles these invocations. The PM must perform two

the new reference’s DVp is set to point to a PMDV,
tasks: 1) compute the reference’s effective type,

The first method invocation through the widened ref-
check whether the invocation is allowed to proceed,

erence will be intercepted by the PM.
and either continue the invocation in a manner that is

272

transparent to the method’s caller or raise an excep-

tion, and 2) modify the reference that was used to

perform the invocation so that future invocations

compatible with the reference’s effective type are no

longer intercepted by the PM.

In order to perform the first task, the PM must be able

to ascertain which method is being invoked on which

object, and on which principal’s behalf. This is

accomplished by suitable calling conventions imple-

mented in the compiler, and will vary from system to

system. Similarly, the mechanics of transparently

intercepting and continuing a procedure call will vary

from system to system. These aspects will not be dis-

cussed further in this paper.

To prevent future invocations using the reference

from being redirected to the PM, the PM scans the

list of the object’s DVs for one that corresponds to

the reference’s (newly-computed) effective type. If

none is found, a new DV is created and linked into

the list. The reference’s DVp is then updated to point

to this DV. Note that in order for such modification to

be useful, the method calling convention must permit

the PM to locate the actual reference that was used to

perform the invocation, rather than a copy of the ref-

erence.

Since references are often copied to temporary vari-

ables before being used to invoke methods, the

scheme described above may not discover and con-

vert all outstanding references that point to a PMDV.

A special process that runs in conjunction with the

garbage collector can be used to locate and update

such references. Garbage collection must also be

used to reclaim unreferenced DVs and PMDVs.

6 Related Work

Protection mechanisms have received considerable

attention in both experimental and commercial sys-

tems, and we cannot possibly review all of this work

here. However, we know of no prior work that is both

as flexible and as efficient as CACL. Object-oriented

databases, and other systems that require method

invocation to be extremely efficient tend to offer rela-

tively simple protection mechanisms. Conversely, the

most flexible and sophisticated protection mecha-

nisms are typically found in operating systems, file

systems, and distributed systems, in which the opera-

tions to be performed are relatively complex, and

hence the need for an extremely efficient authoriza-

tion mechanism is reduced. We give some represen-

tative examples of both types of systems below.

Traditionally, protection mechanisms have fallen

under the purview of operating systems. Two notable

examples of systems that use Access Control Lists

are Multics[121 and the Andrew File System[141. In

both systems, the ACL associated with an object

(segment or file) specifies the permitted access in

terms of Read/Write/Execute permissions. One can

view these systems as providing type-specific protec-

tion for a small, fixed set of data types, while the

CACL mechanism supports an extensible set. A

major difference between Multics, AFS, and CACL

is the frequency of access checking and its effect on

the semantics of revocation. When Multics maps a

segment to a process’ address space, it performs a

(long) access check and sets the appropriate permis-

sion bits in the process’ descriptor word for that seg-

ment. Thereafter, the hardware performs an access

check on every machine reference. If the segment’s

ACL is changed, Multics updates the segment

descriptor word for that process (and for any other

process that has the same segment mapped). Thus

revocation in Multics is truly immediate. In AFS, a

process requests certain access modes when it opens

a file, and its permissions are checked at that point.

Subsequent access to the opened file is not checked,

except that the access must be one of those requested

in the open call. If the file’s ACL is changed in the

meantime, the process will not observe the change

until (and unless) it again opens the file. Thus revoca-

tion in AFS may take arbitrarily long to take effect.

CACL takes an intermediate approach by checking

access at every method invocation. As in AFS, revo-

cation may take arbitrarily long to take effect, since a

process may already be executing a method at the

time its permission to that method is revoked. In this

case, however, the implementor’s code, not the cli-

ent’s, determines the length of the delay. Finally, by

assuming a tight integration with an object-oriented

data model, CACL’s access checking can be done

very efficiently, essentially by avoiding checks in

most cases.

Many object-oriented database systems, including

Gemstone[l] and ObjectStore[B], offer protection for

273

objects that is reminiscent of file protections in Unix

or AFS. In these systems, users partition their objects

into segments or “databases” and control Read/Write

(and in ObjectStore, Execute) access at the partition

level. In fact, ObjectStore provides a model of pro-

tection and associated administration tools that

closely resemble Unix; the name space is a hierarchy

of directories and databases, both owners and groups

are recognized, and there are ObjectStore analogues

to the Unix commands chown, chgrp, chmod, etc.

The SORION (Secure ORION) system1131 allows

both principals and objects to be assigned security

levels. SORION grants or denies access (in terms of

Read and Write operations) based on the relative

security levels of the requesting principal and the tar-

get of the operation. Neither of these approaches is as

flexible as CACL, which allows individual objects to

be protected, and grants or denies the right to invoke

specific methods on a principal-by-principal basis.

The Itasca object-oriented database[4] allows princi-

pals to be authorized to execute specific methods or

to examine specific attributes, but, at least according

to available product descriptions, such authorization

applies to entire classes of objects, as opposed to

individual instances. Authorization to instances is in

terms of Read and Write.

The fine-grain, type-specific protection supported by

CACL is more common in capability-based operat-

ing systems, such as Hydra[lS] and, more recently,

Amoeba[6][7] and ICAP[3]. Classic capability-based

systems such as Hydra do not support changes to

authorization information. Once a capability for an

object has been given out, the authorization it repre-

sents cannot be revoked. In fact, the capability can be

replicated or passed on to other principals without

restriction. By contrast, CACL retains the ability to

invalidate all outstanding references to an object and

force access permissions to be recomputed. In so

doing, CACL gives the owner of an object complete

control over propagation of access rights, but does

not allow an owner to delegate to another principal

the authority to grant or revoke access. Some capa-

bility-based systems, like Amoeba and ICAP, support

revocation mechanisms that are more flexible than

CACL. Both systems rely on encryption schemes

using random numbers to prevent forgeries. When a

capability is presented for use, the server responsible

for the named object validates the capability, either

by decryption (Amoeba) or by re-encryption (ICAP).

Both systems support revocation by allowing the

owner of an object to interact with the server and

change the server’s internal key. One difference is

that in Amoeba, revocation is universal, while in

ICAP, revocation can be targeted to specific princi-

pals.

Recently, Luniewski, Stamos and Cabrera[S]

described an access control mechanism for Melam-

pus with properties similar to CACL. There are

important differences, however, particularly in the

implementations. The mechanism described in [5]

depends on support from the underlying operating

system and paging hardware, while CACL was

designed to have an efficient, software-only imple-

mentation.

Finally, we should note that the manner in which

CACL transparently intercepts procedure invocations

is not itself new. For example, similar techniques are

used, to implement dynamic linking. However, we

know of no system in which this technique is used to

implement an authorization mechanism.

7 Summary

Issues of data security, and hence access control

mechanisms, will be of critical importance in future

object-oriented programming environments and data-

bases. This paper presented a software mechanism

for fine-grained access control, called CACL, appli-

cable to such systems. CACL combines the proper-

ties of two traditional access control mechanisms:

capabilities and access control lists. The result is that

CACL allows the owner of an object to control the

ability to invoke individual methods on a per-princi-

pal, per-object basis. Our mechanism is based on the

use of object-specific customized dispatch vectors

that, once established, encode authorization informa-

tion so that the system can directly invoke methods

without explicit authorization checking. Neverthe-

less, the mechanism retains the ability of a principal

to change authorization information at will, with

such changes taking effect on the next method invo-

cation. Our mechanism requires support from the

language compiler and runtime system, but no sup-

port from the underlying hardware or operating sys-

tem.

274

Finally, we should point out that there are many pos-

sible variations to our implementation. For example,

when a reference is passed across a protection bound-

ary (Section 5.3.2), we could set the DVp field in the

reference to NULL instead of retrieving the PMDVp.

Doing so would require some cooperation from the

operating system (to catch the null pointer derefer-

ence) as well as additional convention in the calling

sequence (to determine whether a null pointer deref-

erence should trap to the PM or signal an error). Fur-

thermore, the model itself can be improved. For

example, CACL does not include a notion of protec-

tion groups, i.e., an aggregation of objects (of the

same type) that share the same ACL. Such an

abstraction would be quite useful and could be imple-

mentcd (in part) by sharing the list of DV’s among

the objects.

8 Acknowledgements

We would like to thank the other members of the

Melampus group, especially Alan Luniewski and Jim

Stamos, for numerous discussions and helpful com-

ments.

9 References

[I] R. Bretl, D. Maier, A.Otis, J. Penney, B. Schucha-

rdt, J. Stein, E. H. Williams and M. Williams. “The

Gemstone Data Management System” in Object-

Oriented Concepts, Databases, and Applications, W.

Kim and F. Lochovsky, eds., ACM Press, 1989.

[2] L.F. Cabrera, L. Haas, J. Richardson, P Schwan,

and J. Stamos, “The Melampus Project: Toward an

Omniscient Computing System,” IBM Research

Report #RJ 75 15, June 1990.

[3] L. Gong. “A Secure Identity-Based Capability

System” in Proc. 1989 IEEE Computer Sot. Sympo-

sium on Security and Privacy. Computer Society

Press, Oakland CA, 1989.

[4] Itasca Systems, Inc. Itusca Technical Summary.

June 1990.

[5] A. Luniewski, J. Stamos, and L.-F. Cabrera. “A

Design for Fine-Grained Access Control in Melam-

pus” in Proc. of 1991 International Workshop on

Object-Orientation in Operating Systems, Palo Alto

CA, October 1991.

[6] S.J. Mullender, G. van Rossum, A.S. Tanenbaum,

R. van Renesse, and H. van Staveren, “Amoeba: A

Distributed Operating System for the 1990s” in

IEEE Computer, 23(5), May 1990.

[7] S.J. Mullender and A.S. Tanenbaum, “The

Design of a Capability-Based Distributed Operating

System,” in The Computer Journal, 29(4), 1986.

[8] 0. Deux, et. al., “The Story of 02,” in IEEE

Transactions on Knowledge and Data Engineering,

2(l), March 1990.

[9] Object Design, Inc. ObjectStore User’s Guide.

[lo] F. Rabitti, E. Bertino, W. Kim, and D. Woelk, “A

Mode1 of Authorization for Next-Generation Data-

base Systems,” in ACM Transactions of Database

Systems, 16(l), March 1991.

[111 J. Richardson and P. Schwarz, “MDM: An

Object-Oriented Data Model,” in Third Znt’l Work-

shop on Database Programming Languages, Naf-

plion, Greece, August 1991. Also available as IBM

Research Report #RJ 8228, July 1991.

[12] J.H. Saltzer, “Protection and the Control of

Information Sharing in Multics,” in CACM, 17(7),

July 1974.

[131 M. B. Thuraisingham. “Mandatory Security in

Object-Oriented Database Systems” in Proc. Conf.

on Object-Oriented Programming: Systems, Lan-

guages and Applications. ACM Press, New Orleans

LA, October 1989.

[141 Transarc Corp. AFS 3.0 User’s Guide. Pittsburgh

PA, 1990.

[15] W. Wulf, R. Levin, and S. Harbison. Hydra/

C.mmp: An Experimental Computer System.

McGraw-Hill, 1981.

275

