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Abstract 

CACL is a protection scheme for objects that offers a 

simple and flexible model of protection and has an 

efficient, software-only implementation. The model, 

based on Access Control Lists (ACLs) integrated 

with the type system, allows owners to control who 

may invoke which methods on which objects, per- 

mits cooperation between mutually suspicious princi- 

pals, allows ownership of objects to be transferred 

safely, prevents unwanted propagation of authority 

between principals, and allows changes to the autho- 

rization information to take effect on the next method 

invocation. The implementation, based on the inte- 

gration of Capabilities with method dispatch, avoids 

the overhead of access checking in the majority of 

invocations, at the cost of space for extra dispatch 

vectors. CACL offers a viable mechanism for fine- 

grained protection in an object-oriented database sys- 

tem. 

1 Introduction 

For a number of years, object-oriented database sys- 

tems (OODBs) have been an active area of research. 

Most of the attention has been given to traditional 

database concerns, such as defining more expressive 

data models, inventing query languages for objects, 

and devising schemes for concurrency control and 
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recovery. Substantially less attention has been paid to 

the problem of protection. In some systems, e.g., 02 

[8], protection is not addressed at all (at least, in the 

published literature). Presumably, one would protect 

objects by protecting the operating system files in 

which they reside. Many other OODBs protect 

objects at the segment level [1][9]. A user can grant 

(or deny) to other users the ability to read or write the 

objects in his/her segments. One disadvantage of 

these approaches is that the granularity of protection 

is coarse. The entire object-base is partitioned into 

relatively few operating system files or object seg- 

ments. While in theory, individual objects could be 

assigned to individual files or segments, doing so 

would carry sizeable overhead, both in administra- 

tive complexity and in system resources. Another 

disadvantage is that the model of protection is differ- 

ent from the model of the objects being protected. By 

offering only Read/Write/Execute protection, the 

protection model treats all objects as if they were of 

type File. Not only is this counterintuitive for the 

user, but it is probably sufficient only for get- and 

put-style methods. An object usually hides much 

complexity behind a relatively simple interface. 

What may appear to be a retrieval from a given 

object may actually involve “reading” many different 

objects and “writing” others. It appears that any 

assignment of rights to a user either grants too little 

privilege to get the job done or far too much to be 

safe. 

There have been attempts to provide more sophisti- 

cated models of protection for OODBs. For example, 

a recent proposal allows both explicit and implicit 

authorizations[ lo]. An explicit authorization on one 

part of the database implies certain rights over other 



parts, unless overridden by another explicit authori- 

zation. The scope and interaction of authorizations is 

tied to the semantics of the various abstractions 

offered by the model, e.g., classes, objects, compos- 

ite objects, versions, and methods. This protection 

model is certainly integrated with the data model to 

which it applies. However, it is quite intricate, and 

given an arbitrary set of explicit authorizations, it is 

not immediately clear whether a given invocation by 

a given user will succeed. Nor is it obvious what will 

be the overall effect of a given change in authoriza- 

tions. 

Clearly, some form of protection is needed in any 

system that intends to manage objects of value to its 

users. However, we believe that a protection mecha- 

nism must balance the sophistication of its protection 

model against the ability of the users to understand it. 

CACL offers a very simple model. Essentially, the 

owner of an object controls who may invoke which 

of the object’s methods. As we shall see, however, 

this simple model is quite effective in solving some 

interesting protection problems. 

The seamless nature of an integrated object-oriented 

system also forces one to consider the issue of when 

authorization checks should be carried out. In con- 

ventional operating systems, a process’ right to 

access a file can be checked at a distinguished point 

in the process’ execution, i.e., when the file is 

opened. In an integrated object-oriented system, such 

distinguished points do not exist; a program, begin- 

ning at some root of persistence, simply follows ref- 

erences and invokes methods on objects. It may be 

necessary to check authorization at any point in the 

propram’s execution. Furthermore, access rights may 

be revoked or granted at arbitrary times. If such revo- 

cations and restorations are to appear to be “immedi- 

ate,” access rights must be checked (conceptually) at 

every invocation. 

Clearly, the kind of mechanism we are suggesting 

poses major implementation challenges. In particu- 

lar, if we literally place an authorization check in the 

path of every method invocation, performance will 

be severely degraded. Furthermore, we believe the 

vast majority of such checks will succeed because 

they are, in fact, unnecessary. There are three reasons 

for this. First, experience shows that most objects 

exist only to implement a higher-level abstraction. 

Method invocations that occur “inside” the larger 

object should not be subject to access checks. Sec- 

ond, we expect revocation and restoration of rights to 

occur far less frequently than method invocation. 

This means that in most cases, a process’ right to 

access an object will not change from one invocation 

to the next. Third, we expect that a large percentage 

of all invocations will occur because a public method 

invokes a series of other public or private methods on 

self. If the caller has the right to invoke the public 

method, that should imply the right of the method to 

execute without further hindrance. Thus any practical 

implementation must meet the rather severe require- 

ment of doing little or no work on each method invo- 

cation, yet giving the appearance of performing a full 

access check. 

CACL is a fine-grained protection mechanism for 

strongly-typed, object-oriented programming envi- 

ronments or database systems. In this paper, we will 

discuss the model’s semantics and its efficient imple- 

mentation. The protection model is easy to under- 

stand, yet flexible enough to solve realistic protection 

problems. Our implementation meets the stringent 

performance requirement stated above, paying the 

cost primarily in the space required for additional 

dispatch vectors. The name, CACL, is a combination 

of Capabilities and Access Control Lists, the two pro- 

tection mechanisms whose properties are combined 

in this design. While the semantics of CACL can be 

described in terms of access control lists integrated 

with the type system, the implementation can be seen 

as capabilities integrated with method dispatch. 

The remainder of the paper is organized as follows. 

In the next section, we describe some basic assump- 

tions concerning the object model and runtime envi- 

ronment required by CACL. Section 3 describes the 

CACL protection model, and Section 4 provides 

some examples of its use. Section 5 describes an 

implementation of CACL that does not require spe- 

cialized support from the underlying operating sys- 

tem or hardware, relying instead on cooperation 

between the language compiler and runtime system. 

Section 6 reviews related work, and Section 7 sum- 

marizes the contributions of this work. 
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2 Assumptions tern requires several protection mechanisms in addi- 

tion to CACL. 

The design and implementation of CACL assumes 

certain properties of the object model and runtime 

environment in which it operates. While CACL was 

developed in the context of a specific object model 

(Melampus [2][ ll]), the essential ideas are widely 

applicable. In this paper, therefore, we shall limit the 

set of assumptions to a minimum. 

The first assumption is that every protected object is 

an instance of an abstract type. An abstract type spec- 

ifies an interface and an implementation for its 

instances. An interface consists of a set of signatures 

that syntactically define what operations may be per- 

formed on an instance. The implementation consists 

of a representation for instances and a set of proce- 

dures which implement the operations in the inter- 

face. For the purposes of this paper, the key feature 

of an abstract type is that instances are encapsulated; 

there is no way for a program to access an object 

except by invoking its operations. Note that the 

object model may or may not also support subtyping. 

While such an assumption is made for this paper, it is 

not strictly necessary. 

The first assumption leads to the second, which is 

that all methods and application code are written in a 

strongly typed language. In particular, it must not be 

possible to forge a reference (e.g., by casting) nor to 

invoke any operation on an object that is not sup- 

ported by the object’s implementation. This implies 

that the compiler must be a trusted component of the 

object system; indeed, in Section 5 we shall see how 

the implementation of CACL relies on the type 

checking performed by the compiler. 

The last assumption is that the runtime environment 

is safe from outside attack. CACL is designed to pro- 

vide protection within the confines of a particular 

data model that conforms to the assumptions 

described above, but if the model’s implementation is 

embedded in a hostile environment, additional mech- 

anisms may be required. In particular, we assume 

that all users of the system are reliably authenticated, 

that communication channels are safe from message 

replay and insertion, and that only trusted utilities 

and programs compiled by a trusted compiler can 

access the runtime interface. Clearly, a complete sys- 

3 The Protection Model 

This section describes the CACL model of protec- 

tion. We will describe the basic concepts around 

which the model is built, followed by a description of 

the properties of certain critical events: method invo- 

cation, object creation, and transferral of authority 

between users. 

3.1 Principals 

In CACL, the locus of authority is called a princi- 

pal[ 121. A principal may correspond to a human user, 

a project group, or any other abstract entity on whose 

behalf actions are carried out within the system. We 

make no assumptions as to whether principals are 

themselves modeled as objects in the system, subject 

to protection. We assume only that principals are 

authenticated to the system and that there is some 

representation for a principal’s identity. Principals 

appear in four different roles in CACL: 

1. Each object has an owner, the principal 

responsible for authorizing access to the 

object. For any object O, Owner(o) returns 

the identifier of the principal that owns o. 

2. Each object has a method principal (MP) 

on whose behalf the object’s methods will 

execute. The MP is often, but not always, the 

object’s owner. This point will be explained 

shortly. MP(o) returns the identifier of the 

method principal for u. 

3. At runtime, the MP of the currently exe- 

cuting method is called the current principal 

(0). Since CPs are pushed and popped 

along with activation records, we often speak 

of the principal stack associated with an exe- 

cution thread. CP() returns the identifier of 

the current principal. 

4. Finally, each implementation has an 

implementor, the principal responsible for 

the correctness of the implementation. 

Zmpf(o) returns the identifier of the principal 

that defined the implementation of O. 

265 



3.2 Access Control Lists 

An object’s owner controls which principals may 

invoke which operations by means of an access con- 

trol list (ACL). A default ACL is attached to an object 

when the object is created. Conceptually, the com- 

plete set of ACLs in the system constitutes a map- 

ping: 

ACL(Object x Principal) + {Method) 

That is, p is allowed to invoke method m on object o 

only if m E ACL (0, p) . The primary motivation 

for CACL is to enforce the semantics of ACL-based 

protection for objects, while avoiding the cost of 

checking an ACL on every method invocation. As 

with principals, we do not specify whether ACLs are 

modelled as objects. 

3.3 Typed References 

Objects are accessed by means of typed references. 

The effective type of a reference is the interface 

described by the intersection of the following three 

components: 1) the interface of the declared type of 

the variable containing the reference (the reference’s 

static type), 2) the interface of the type of the object 

denoted by the reference (the object’s creation type), 
and 3) the interface specified in the object’s ACL for 

the current principal (the principal’s authorization 

type). The relationship between these types is illus- 

trated in Figure 1. Static type checking ensures that 

Statically Typed Reference 

Figure 1. Types Associated with an Object 

the static type of the reference is always a subset of 

the creation type of the object to which it refers, 

Likewise, the authorization type (by definition) must 

always be a subset of the creation type. The relation- 

ship between the static type and the authorization 

type, however, depends on the principal who is 

accessing the object and the permissions given to that 

principal in the object’s ACL. In this example, the 

effective type is narrower than the static type, as indi- 

cated by the shading. 

3.4 Method Invocation 

From the point of view of protection, an execution 

thread is simply a sequence of method invocations. 

CACL focuses on this event and maintains the fol- 

lowing invariant: 

A method invocation succeeds if and only 

if that method is part of the eflective type of 

the reference at the time of the invocation. 

Conceptually, the maintenance of this invariant 

requires an access check with every method invoca- 

tion. As we will see, however, the implementation of 

CACL maintains the invariant in a way that stresses 

fast invocation for those cases (expected to be the 

majority) in which access checks are not needed. 

Although we have described protection in terms of 

type checking, there is an important difference for 

the programmer between the assurances provided by 

static type checking and those provided by the pro- 

tection mechanism. In a conventional statically-typed 

programming language, the programmer is assured 

that a program which compiles without type errors 

will be free from type errors during execution. Pro- 

tection violations, however, by their very nature, can- 

not be detected at compile time. Access permissions 

vary from instance to instance within a class, and the 

specific objects to which a method will be applied are 

not known until runtime. Furthermore, access per- 

missions may be changed at any time, and our desire 

to make such changes take effect on the next invoca- 

tion further constrains any attempt to do protection 

checking in advance of method invocation. 

We wish to stress, therefore, that although protection 

violations appear as runtime type errors in CACL, 

the runtime nature of such errors is inevitable and 
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does not represent any loss of type safety. Any type 

errors that would be detected in a conventional 

approach will be detected by static checking, as 

usual. 

3.5 Object Creation 

Principals create objects with a system operation, 

new, which requires its caller to designate an imple- 

mentation to be used for the new object. The current 

principal becomes the new object’s owner and the 

implementation’s implementor becomes the object’s 

method principal. The reason that the object’s initial 

MP is the implementor (and not the CP), will be dis- 

cussed shortly. The object’s initial ACL grants all 

rights to the owner, and none to any other principal. 

Object creation is summarized in Table 1. 

Owner(o) t CP 

MP(o) t Impl(o) 

ACL(o, p) = 4. if p z Owner(o) 

ACL(o, Owner(o)) = CreationType 

TABLE 1. Object Creation 

3.6 Changing the Owner and Method 

Principal 

The owner of an object can transfer ownership to any 

other principal by means of the operation Change- 

Owner(o, p). In so doing, the former owner transfers 

the right to manipulate the object’s ACL to the new 

owner. However, the object’s method principal does 

not change. The current owner of an object can set 

the object’s method principal to him/her self, but not 

to any other principal, with the operation Set- 

MethodPrincipal( Together, these two operations 

provide for controlled transfer of an object between a 

donor and a recipient in a way the exposes neither 

party to involuntary risk. In the first phase of the 

transfer, an owner delegates the ability to update the 

object’s ACL to another principal. This unilateral 

action does not pose a risk for the recipient, since the 

object’s methods still execute with the authority of 

the old MP, i.e., it is not possible for an attacker to 

create an object of his/her choosing, “give” it to an 

unsuspecting user, then invoke the object’s methods 

with the authority of the victim. In the second phase 

of the transfer, the recipient agrees to accept respon- 

sibility for the object’s behavior by becoming the 

method principal. Here, the recipient accepts some 

risk, but only voluntarily. It is assumed that the recip- 

ient will first verify that the object is not a Trojan 

Horse, before agreeing to become MP 

4 Discussion and Examples 

In this section, we discuss the features of the CACL 

protection model and show how they can be used to 

solve several important protection problems. 

4.1 Trust Among Principals 

CACL was designed with the assumption that differ- 

ent levels of trust exist between the principals who 

implement, administer, and use objects. In order to 

accomplish any cooperative work in a computer sys- 

tem, some mutual trust is obviously necessary. The 

client of a document editor entrusts the editor to 

make changes to a given document. Users of a mail 

system trust that mail will be delivered to all of (and 

only) the named recipients. All users trust the kernel 

to implement its abstractions correctly. However, 

“some trust” is not the same as blind faith. Allowing 

the document editor to update a particular document 

should not (necessarily) imply the granting of rights 

to any of the client’s other objects. Furthermore, 

while the client may trust the editor, he/she may not 

trust the owner of the editor. Thus, allowing the edi- 

tor to read a document should not imply the right of 

the editor’s owner to read the document. These argu- 

ments led to the explicit support in CACL for the role 

of the implementor and to the separation of owner 

and method principal. 

When a method executes, code written by the imple- 

mentor executes on behalf of the method principal. 

Any client that invokes the method, passing it object 

references as parameters, must therefore grant to the 

MP enough rights over the parameter objects to allow 

the invoked method to execute properly. The set of 

methods required by the invoked method is likely to 

be advertised to the client as the static type of the 

parameter. If the client is unwilling to grant that 

many rights to the MP, then he/she cannot use the 
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service (and is free to go elsewhere). There is a moti- 

vation here, familiar to software engineers, for an 

implementor to declare parameter types that are no 

more specific than necessary to perform the service. 

Even though a client may trust a particular imple- 

mentation to perform some function, the method 

principal may not be the implementor, but some other 

principal. In this case, the client still has a measure of 

protection in using the service, even though the MP 

may not be trusted in general. The reason is that pass- 

ing the object to the method is not equivalent to sim- 

ply handing the reference to the method principal; his 

ability to use the reference is constrained by the 

implementor’s design, If the MP has no other access 

to the client’s object, and if the implementation is 

sufticiently trusted, then the client can grant the 

required rights to the MP, even if the MP is not 

trusted. 

4.2 Examples 

4.2.1 Mutual Suspicion 

Consider a scenario in which two mutually suspi- 

cious principals wish to cooperate to accomplish 

some task. Neither principal wishes to grant the other 

more than the minimal authorizations needed to 

accomplish the task. The fine-granularity protection 

supported by CACL makes this possible. Each prin- 

cipal need only authorize the other to perform exactly 

those operations on exactly those objects that are 

necessary to get the job done, and this authorization 

can be revoked immediately once the need for coop- 

eration has ended. Furthermore, because references 

are unforgeable, neither principal can even attempt to 

invoke operations on objects that were not explicitly 

given to them. 

For instance, suppose Joel wishes to print one of his 

documents using a printer owned by Peter. For the 

moment, let us also assume that Peter is the method 

principal for the printer’s methods. Joel obtains a ref- 

erence to the object that represents the printer, and 

invokes the Print method. If Peter has agreed to let 

Joel USC his printer, the authorization type for Joel in 

the printer’s ACL will include this method and the 

invocation will succeed. Once invoked, the Print 

method invokes various methods on Joel’s document 

object to extract the document’s text for printing. 

Since Peter is the method principal, these invocations 

will only succeed if the authorization type for Peter 

in the document’s ACL includes these methods. 

Note, however, that the printer software has no need 

to update the document, and hence Peter need not be 

authorized to do so. Furthermore, by granting Peter 

access to this document, Joel does not grant Peter 

access to any of his other documents. Likewise, Peter 

does not need to grant Joel authority to use any other 

printer. 

4.2.2 Trusted Implementations 

In some cases, a principal may own, and wish to con- 

trol access to, a resource which requires authority 

exceeding his own in order to operate correctly. For 

instance, the printer owned by Peter in the preceding 

example may require access to a proprietary font 

database in order to print documents. Only the imple- 

mentor of the printer software, Acme Software, 

should be permitted to access this database. CACL 

provides the tools to solve this problem. As the 

implementor of the printer software, Acme Software 

is (by default) the method principal of the Print 

method when Peter instantiates a new printer object. 

The printer object will be owned by Peter, who can 

therefore control which other users may print on it, 

but Peter need not be authorized to access the font 

database because the CP during execution of the 

Print method will be Acme Software. As owner of 

the printer, Peter can make himself the method prin- 

cipal at any time, but thereafter the software will sim- 

ply cease to work because he is not authorized to 

access the font database. 

Note that in our revised example, Joel must authorize 

Acme Software, but not Peter, to access his docu- 

ment. This represents an additional reduction in the 

amount of trust Joel must place in Peter in order to 

use his resource. Joel must simply trust the (immuta- 

ble) implementation of the Print method supplied by 

Acme Software. 

Finally, we note that a considerable amount of 

mutual protection can be obtained even when the 

method principal is not a trusted third party, as in the 

example above. Suppose the Print method requires 

access to an audit file proprietary to Peter, instead of 
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the font database, and therefore the method principal 

must be Peter. If Joel trusts Acme Software’s imple- 

mentation sufficiently, he will be willing to authorize 

Peter to read his document even though he doesn’t 

trust Peter. This is because, as long as Peter cannot 

obtain a reference to the document through some 

other means, his ability to access the document is 

constrained by Acme’s trusted implementation. 

5 An Implementation Design for 

CACL 

5.1 Introduction 

A naive implementation of the CACL protection 

model would simply check the ACL of the target 

object before each method invocation. As we noted 

in Section 1, such an implementation would be pro- 

hibitively and unnecessarily costly. In designing a 

practical implementation for CACL, we sought to 

take advantage of the observation that the effective 

type of a reference can only change as a result of cer- 

tain relatively infrequent events: 

1. Crossing a Protection Domain Bound- 

ary: If a method executing with pl as current 

principal invokes a method that will execute 

on behalf of principal ~2, the effective type 

of each reference passed as a parameter must 

be recomputed based on ~2’s authorization 

type for each referenced object. A similar 

recomputation must be performed for each 

reference that p2 returns to ~1. 

2. Widening: Object models that support 

subtyping often allow assignments in which 

the static type of the destination variable is a 

subtype of the static type of the source vari- 

able, provided that the creation type of the 

referenced object (as determined by a runt- 

ime check) is a subtype of the type of the 

destination variable. If a method executing 

with pl as current principal holds a reference 

of static type T, and tries to widen its view to 

type T2, the effective type must be recom- 

puted based on both the referenced object’s 

creation type and its authorization type for 

PI* 

3. Changing an Object’s Method Princi- 

pal: Each instance variable in an object is a 

reference whose effective type is limited by 

the method principal’s authorization type for 

the referenced object. If the method principal 

changes from pI to ~2, the effective type of 

each instance variable must be recomputed 

based on p2’s authorization type for the ref- 

erenced object. 

4. Update to an ACL: If the ACL for an 

object is modified or replaced, the effective 

type of every reference to the object must be 

recomputed. 

Unless one of these events occurs, possession of a 

reference with a particular effective type is very 

much like having a capability for the referenced 

object. Possession of the reference, like possession of 

a capability, represents the authority to invoke a 

specified set of operations on the referenced object. 

In particular, there is no need to consult the ACL 

before allowing the invocation to proceed. CACL 

treats references like capabilities that are revoked 

when the reference’s effective type changes as a 

result of one of the four events listed above. CACL 

also takes advantage of the fact that even if one of 

these events does occur, there is no need to recom- 

pute the effective type until just prior to the refer- 

ence’s next use. 

Our proposed implementation for CACL is derived 

from a standard implementation of late binding in 

object-oriented systems. Such implementations use a 

dispatch vector (DV) to map an invocation in the 

user’s program to the address of actual method code 

at runtime. CACL augments the role of the DV to 

include caching of authorization information. Instead 

of one DV per type, as in the standard implementa- 

tion, our design requires one or more DVs per pro- 

tected object. An entry in a DV may point to method 

code, as usual, or to a system procedure called the 

Protection Manager (PM). Depending on the con- 

tents of the DV, a method invocation will therefore 

be dispatched either to the appropriate method or, if 

an authorization check is needed, to the protection 

subsystem. The PM is responsible for checking the 

rights of the caller with respect to the target object, 

and will either raise an exception or continue the 

original invocation. The only “nonstandard” technol- 
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Figure 2. Overview Example 

ogy required by this scheme is a small amount of 

assembly code that allows the PM to continue the 

original invocation without pushing a new stack 

frame. 

Each of an object’s DVs contains a combination of 

method and PM pointers that reflects a specific effec- 

tive type. Object references contain two pointers: one 

to the referenced object and one to an appropriate 

DV.’ Method invocation follows the DV pointer in 

the reference, and thus different references to the 

1. One could eliminate the object pointer, and access the 

object indirectly through a pointer in the DV, This altema- 

tive would save space, but increase the time cost of com- 

paring two references to determine whether they denote 

the same object. 

same object may behave differently, depending on 

the access rights granted to the principal holding each 

reference. By dynamically altering the contents of a 

reference and/or a DV when a reference’s effective 

type changes, the system forces subsequent invoca- 

tions to be directed to the PM to recheck the caller’s 

access rights 

An example of these data structures is given in 

Figure 2. References X and Y both refer to object A, 

which has two dispatch vectors, DVA,, and DVA,,. 

However, the principal holding reference X, which 

refers to DVA,,, is authorized to invoke any of A’s 

methods, while the principal holding Y, which refers 

to DVA,+ is only authorized to invoke method M2. If 

method MO or Ml is invoked via Y, control is trans- 

ferred to the PM. 

Although the design described here eliminates many 

unnecessary authorization checks, the performance 

improvements do not come for free. Using one or 

more DVs per object, instead of one per type, and the 

expansion of references to two pointers, represent 

time-space tradeoffs that increase performance at the 

cost of increased use of space. 

The next two sections describe the data structures 

and algorithm that constitute our design in greater 

detail. 

5.2 Data Structures 

We assume that all data structures used to implement 

CACL are persistent, and that a separate mechanism 

is used to fault objects and method code into memory 

as needed. 

5.2.1 Objects 

An object consists of references to other objects 

(instance variables) plus some auxiliary data used for 

protection purposes. Every object has an owner field 

(OP), a method principal field (MP), and a pointer to 

the list of the object’s dispatch vectors (DVp). The 

structure of an object is shown in Figure 3. 
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OP MP DVp Instance Variables 

Figure 3. An Object 

5.2.2 Keferences 

An object reference consists of two fields: a pointer 

to the object (OBJp) and a pointer to a dispatch vec- 

tor (DVp). An object reference is shown in Figure 4. 

OBJp DVp 

/ \ 

OBJ DV 

Figure 4. An Object Reference 

5.2.3 Dispatch Vectors 

A dispatch vector (DV) consists of an array of code 

pointers plus two additional pointers. If all of the 

code pointers in a DV point to the Protection Man- 

ager, we call it a PMDV. One of the extra pointers in 

the DV (PMDVp) points to a PMDV, if one has been 

created for the object. The other extra pointer 

(DVnext) is used to link together all of an object’s 

DVs. There is no significance to the order in which 

the DVs appear in the list. Figure 5 shows an object 

with three DVs. The first contains all method point- 

ers, the second contains one method pointer and two 

PM pointers, and the third contains all PM pointers 

(and thus is a PMDV). 

While an object supporting n methods could theoreti- 

cally have as many as 2n DVs, we expect that most 

objects will be “private” objects used only within the 

implementation of some higher-level abstraction. 

Such objects will have exactly one DV. Furthermore, 

we expect that for most object types, only a small 

number of combinations of access rights will corre- 

spond to useful abstractions. Hence, even most “pub- 

lic” objects will only have a few DVs. 

I I 
- PMDVp PMDVp 

DVnext/ DVnextJ 
\ 1 

1 PMW 1 

Figure 5. An Object and its DVs 

5.3 Algorithms 

Our algorithms stress fast invocation, based on the 

assumption that method invocation occurs far more 

frequently than any other operation of concern to the 

protection subsystem. Moreover, we also assume that 

the vast majority of all invocations are authorized, 

and will succeed. Thus, only when one of the four 

infrequent events listed in Section 5.1 has occurred 

will it be necessary for invocations to be directed to 

the PM. In the following subsections, we describe 

what processing steps occur for each event of inter- 

est. 

5.3.1 Method Invocation 

Method invocation consists of two steps. In the first 

step, the current principal is compared to the method 

principal field (MP) of the object that is the target of 

the invocation. If they differ, a boundary between 

protection domains will be crossed and special argu- 

ment processing, described below, will be required. 

This step can be eliminated if it is possible to deter- 

mine at compile time that the invocation cannot 

result in a change of principal. Two simple cases in 

which such a determination is possible are: 1) invo- 

cation of a “private” method not exported by the 

object’s implementation, and 2) invocation of a 

method by another method of the same object. 
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In the second step, after evaluating arguments, the 

invocation sequence at the point of call indexes into 

the DV denoted by the DVp in the target object refer- 

ence, and calls the procedure whose address is 

retrieved. This may result in an invocation of either 

the target method or the Protection Manager. The 

required index is generated by the compiler based on 

the method to be invoked, just as it would be in a 

standard implementation of late binding. 

5.3.2 Crossing a Protection Domain 

Boundary 

As we noted in Section 5.1, when a reference is 

passed across a protection domain boundary, its 

effective type may change. Rather than immediately 

recalculating the effective type based on the new 

principal’s authorization type, CACL delays this 

determination until the reference’s next use. As each 

reference is copied onto the argument stack, its DVp 

is updated to point to a PMDV. If a PMDV already 

exists for the object, its address can be obtained from 

the PMDVp in the DV associated with the old princi- 

pal. If the PMDVp in this DV is null, a new PMDV 

must be allocated. Making the reference point to a 

PMDV ensures that the new principal’s first method 

invocation using the reference will be directed to the 

Protection Manager for authorization checking. 

5.3.4 Change of Ownership 

Change of ownership does not change the effective 

type of references, but a check is required to make 

sure that the current principal of the process request- 

ing the ownership change is the current owner of the 

object. This is done by comparing the current princi- 

pal to the contents of the owner (OP) field of the 

object. 

5.3.5 Change of Method Principal 

A change of method principal is not permitted unless 

the object’s owner (OP) field is equal to the current 

principal, in which case the method principal (MP) 

field is set equal to the OP. In addition, if the change 

succeeds, each reference in the object has effectively 

been passed to a new protection domain. Each refer- 

ence’s DVp field is therefore updated to point to a 

PMDV. The next invocation through each reference 

will be directed to the PM, to recompute the effective 

type. 

5.3.6 Replacement or Modification of an 

Object’s ACL 

When an object’s ACL is modified or replaced, every 

reference to the object is potentially affected. Locat- 

This algorithm is used whenever invoking a method 
ing all references and recomputing effective types 

or returning from one causes a reference to cross a 
accordingly is impractical. Instead, the system 

protection domain boundary. We feel this lazy 
traverses the list of the object’s DVs, and transforms 

approach to protection checking will be more effi- 
each one into a PMDV by overwriting all method 

cient than the eager alternative, because references 
code pointers with the address of the entry point of 

obtained by a method may not actually be used, but 
the PM. Subsequent method invocations through any 

rather simply stored or passed on to other methods. 
reference to the object will be redirected to the PM. 

The next section describes how references are revali- 

dated, so that there is no permanent penalty for 

5.3.3 Widening a Reference changing authorization information. 

Widening a reference requires a runtime inspection 

of the referenced object to determine its creation 
5.3.7 Processing in the Protection Manager 

type, regardless of any protection concern. One could 

recompute the effective type at this time, but to be 
We have previously described several situations in 

consistent, we take the same lazy approach used 
which a method invocation is redirected to the Pro- 

when a reference is passed across a protection 
tection Manager. This section describes how the PM 

domain boundary. That is, the reference is copied and 
handles these invocations. The PM must perform two 

the new reference’s DVp is set to point to a PMDV, 
tasks: 1) compute the reference’s effective type, 

The first method invocation through the widened ref- 
check whether the invocation is allowed to proceed, 

erence will be intercepted by the PM. 
and either continue the invocation in a manner that is 
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transparent to the method’s caller or raise an excep- 

tion, and 2) modify the reference that was used to 

perform the invocation so that future invocations 

compatible with the reference’s effective type are no 

longer intercepted by the PM. 

In order to perform the first task, the PM must be able 

to ascertain which method is being invoked on which 

object, and on which principal’s behalf. This is 

accomplished by suitable calling conventions imple- 

mented in the compiler, and will vary from system to 

system. Similarly, the mechanics of transparently 

intercepting and continuing a procedure call will vary 

from system to system. These aspects will not be dis- 

cussed further in this paper. 

To prevent future invocations using the reference 

from being redirected to the PM, the PM scans the 

list of the object’s DVs for one that corresponds to 

the reference’s (newly-computed) effective type. If 

none is found, a new DV is created and linked into 

the list. The reference’s DVp is then updated to point 

to this DV. Note that in order for such modification to 

be useful, the method calling convention must permit 

the PM to locate the actual reference that was used to 

perform the invocation, rather than a copy of the ref- 

erence. 

Since references are often copied to temporary vari- 

ables before being used to invoke methods, the 

scheme described above may not discover and con- 

vert all outstanding references that point to a PMDV. 

A special process that runs in conjunction with the 

garbage collector can be used to locate and update 

such references. Garbage collection must also be 

used to reclaim unreferenced DVs and PMDVs. 

6 Related Work 

Protection mechanisms have received considerable 

attention in both experimental and commercial sys- 

tems, and we cannot possibly review all of this work 

here. However, we know of no prior work that is both 

as flexible and as efficient as CACL. Object-oriented 

databases, and other systems that require method 

invocation to be extremely efficient tend to offer rela- 

tively simple protection mechanisms. Conversely, the 

most flexible and sophisticated protection mecha- 

nisms are typically found in operating systems, file 

systems, and distributed systems, in which the opera- 

tions to be performed are relatively complex, and 

hence the need for an extremely efficient authoriza- 

tion mechanism is reduced. We give some represen- 

tative examples of both types of systems below. 

Traditionally, protection mechanisms have fallen 

under the purview of operating systems. Two notable 

examples of systems that use Access Control Lists 

are Multics[ 121 and the Andrew File System[ 141. In 

both systems, the ACL associated with an object 

(segment or file) specifies the permitted access in 

terms of Read/Write/Execute permissions. One can 

view these systems as providing type-specific protec- 

tion for a small, fixed set of data types, while the 

CACL mechanism supports an extensible set. A 

major difference between Multics, AFS, and CACL 

is the frequency of access checking and its effect on 

the semantics of revocation. When Multics maps a 

segment to a process’ address space, it performs a 

(long) access check and sets the appropriate permis- 

sion bits in the process’ descriptor word for that seg- 

ment. Thereafter, the hardware performs an access 

check on every machine reference. If the segment’s 

ACL is changed, Multics updates the segment 

descriptor word for that process (and for any other 

process that has the same segment mapped). Thus 

revocation in Multics is truly immediate. In AFS, a 

process requests certain access modes when it opens 

a file, and its permissions are checked at that point. 

Subsequent access to the opened file is not checked, 

except that the access must be one of those requested 

in the open call. If the file’s ACL is changed in the 

meantime, the process will not observe the change 

until (and unless) it again opens the file. Thus revoca- 

tion in AFS may take arbitrarily long to take effect. 

CACL takes an intermediate approach by checking 

access at every method invocation. As in AFS, revo- 

cation may take arbitrarily long to take effect, since a 

process may already be executing a method at the 

time its permission to that method is revoked. In this 

case, however, the implementor’s code, not the cli- 

ent’s, determines the length of the delay. Finally, by 

assuming a tight integration with an object-oriented 

data model, CACL’s access checking can be done 

very efficiently, essentially by avoiding checks in 

most cases. 

Many object-oriented database systems, including 

Gemstone[ l] and ObjectStore[B], offer protection for 

273 



objects that is reminiscent of file protections in Unix 

or AFS. In these systems, users partition their objects 

into segments or “databases” and control Read/Write 

(and in ObjectStore, Execute) access at the partition 

level. In fact, ObjectStore provides a model of pro- 

tection and associated administration tools that 

closely resemble Unix; the name space is a hierarchy 

of directories and databases, both owners and groups 

are recognized, and there are ObjectStore analogues 

to the Unix commands chown, chgrp, chmod, etc. 

The SORION (Secure ORION) system1131 allows 

both principals and objects to be assigned security 

levels. SORION grants or denies access (in terms of 

Read and Write operations) based on the relative 

security levels of the requesting principal and the tar- 

get of the operation. Neither of these approaches is as 

flexible as CACL, which allows individual objects to 

be protected, and grants or denies the right to invoke 

specific methods on a principal-by-principal basis. 

The Itasca object-oriented database[4] allows princi- 

pals to be authorized to execute specific methods or 

to examine specific attributes, but, at least according 

to available product descriptions, such authorization 

applies to entire classes of objects, as opposed to 

individual instances. Authorization to instances is in 

terms of Read and Write. 

The fine-grain, type-specific protection supported by 

CACL is more common in capability-based operat- 

ing systems, such as Hydra[lS] and, more recently, 

Amoeba[6][7] and ICAP[3]. Classic capability-based 

systems such as Hydra do not support changes to 

authorization information. Once a capability for an 

object has been given out, the authorization it repre- 

sents cannot be revoked. In fact, the capability can be 

replicated or passed on to other principals without 

restriction. By contrast, CACL retains the ability to 

invalidate all outstanding references to an object and 

force access permissions to be recomputed. In so 

doing, CACL gives the owner of an object complete 

control over propagation of access rights, but does 

not allow an owner to delegate to another principal 

the authority to grant or revoke access. Some capa- 

bility-based systems, like Amoeba and ICAP, support 

revocation mechanisms that are more flexible than 

CACL. Both systems rely on encryption schemes 

using random numbers to prevent forgeries. When a 

capability is presented for use, the server responsible 

for the named object validates the capability, either 

by decryption (Amoeba) or by re-encryption (ICAP). 

Both systems support revocation by allowing the 

owner of an object to interact with the server and 

change the server’s internal key. One difference is 

that in Amoeba, revocation is universal, while in 

ICAP, revocation can be targeted to specific princi- 

pals. 

Recently, Luniewski, Stamos and Cabrera[S] 

described an access control mechanism for Melam- 

pus with properties similar to CACL. There are 

important differences, however, particularly in the 

implementations. The mechanism described in [5] 

depends on support from the underlying operating 

system and paging hardware, while CACL was 

designed to have an efficient, software-only imple- 

mentation. 

Finally, we should note that the manner in which 

CACL transparently intercepts procedure invocations 

is not itself new. For example, similar techniques are 

used, to implement dynamic linking. However, we 

know of no system in which this technique is used to 

implement an authorization mechanism. 

7 Summary 

Issues of data security, and hence access control 

mechanisms, will be of critical importance in future 

object-oriented programming environments and data- 

bases. This paper presented a software mechanism 

for fine-grained access control, called CACL, appli- 

cable to such systems. CACL combines the proper- 

ties of two traditional access control mechanisms: 

capabilities and access control lists. The result is that 

CACL allows the owner of an object to control the 

ability to invoke individual methods on a per-princi- 

pal, per-object basis. Our mechanism is based on the 

use of object-specific customized dispatch vectors 

that, once established, encode authorization informa- 

tion so that the system can directly invoke methods 

without explicit authorization checking. Neverthe- 

less, the mechanism retains the ability of a principal 

to change authorization information at will, with 

such changes taking effect on the next method invo- 

cation. Our mechanism requires support from the 

language compiler and runtime system, but no sup- 

port from the underlying hardware or operating sys- 

tem. 
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Finally, we should point out that there are many pos- 

sible variations to our implementation. For example, 

when a reference is passed across a protection bound- 

ary (Section 5.3.2), we could set the DVp field in the 

reference to NULL instead of retrieving the PMDVp. 

Doing so would require some cooperation from the 

operating system (to catch the null pointer derefer- 

ence) as well as additional convention in the calling 

sequence (to determine whether a null pointer deref- 

erence should trap to the PM or signal an error). Fur- 

thermore, the model itself can be improved. For 

example, CACL does not include a notion of protec- 

tion groups, i.e., an aggregation of objects (of the 

same type) that share the same ACL. Such an 

abstraction would be quite useful and could be imple- 

mentcd (in part) by sharing the list of DV’s among 

the objects. 
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