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Abstract

A vehicular ad hoc network (VANET) is a wirelessly connected network of vehicular nodes.

A number of techniques, such as message ferrying, data aggregation, and vehicular node

clustering aim to improve communication efficiency in VANETs. Cluster heads (CHs),

selected in the process of clustering, manage inter-cluster and intra-cluster communication.

The lifetime of clusters and number of CHs determines the efficiency of network. In this

paper a Clustering algorithm based on Ant Colony Optimization (ACO) for VANETs (CAC-

ONET) is proposed. CACONET forms optimized clusters for robust communication. CAC-

ONET is compared empirically with state-of-the-art baseline techniques like Multi-Objective

Particle Swarm Optimization (MOPSO) and Comprehensive Learning Particle Swarm Opti-

mization (CLPSO). Experiments varying the grid size of the network, the transmission

range of nodes, and number of nodes in the network were performed to evaluate the com-

parative effectiveness of these algorithms. For optimized clustering, the parameters consid-

ered are the transmission range, direction and speed of the nodes. The results indicate that

CACONET significantly outperforms MOPSO and CLPSO.

Introduction

Clustering is a technique for assembling a group of nodes (mobile gadgets, devices, automo-

biles, etc.) inside a geographical locality according to certain regulations. Such regulations vary

from one algorithm to another and, therefore, are the decisive aspect in creating dependable

clusters [1]. Clusters are virtual sets created using a clustering algorithm. Each cluster is com-

posed of cluster nodes (CN), which nominate or elect a single CH. The group of nodes within a

CH’s transmission range is referred to as its neighborhood. In most cases, any CN can be

elected as the CH; however, in several algorithms, some types of nodes possess more effective

properties for becoming the CH. For instance, a CN with a supplemental 3G network connec-

tion is often more desirable than its non-3G peers [2–4]. Cluster size depends on the nodes’

transmission range, and as a result varies from cluster to cluster [4–6].

Ad hoc networks are a vibrant research area, and VANET is a type of mobile ad hoc net-

work (MANET) that transforms automobiles on the roads into network nodes. These nodes

create a dispersed network of automobiles for information exchange [7]. The potential
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applications for VANETs include safety, comfort, and infotainment related applications [8].

One type of VANET communication is vehicle-to-vehicle communication (V2V), an ad hoc

mode that operates in the 75 MHz Dedicated Short Range Communications spectrum. Along

with one control channel, there are six service channels in this spectrum. The topology of

VANET changes rapidly due to a very high-mobility node pattern. Even though a node’s

mobility is predictable, VANET’s lifetime is difficult to extend. Scalability is an essential issue

in VANETs and one solution is clustering; clustering is important for load balancing and effi-

cient resource utilization, and it helps to optimize the network and to make it more scalable.

Clustering entails segregating the network into small logical groups, as shown in Fig 1, which

increase the lifetime of the network. MOBIC [3] is one of the most frequently referenced clus-

tering algorithms, and it focuses solely on MANETs. Relative to MANETs and sensor ad hoc

networks, VANETs are a more recently proposed network type and, as a result, they are an

under explored area of research and extensive efforts are still needed to develop the field. Sev-

eral research studies [9–11] explain the differences between these three types of networks (i.e.,

VANET, MANET, and sensor ad hoc networks) and their respective challenges.

Clusters in which any pair of nodes can either communicate directly or with one hop are

referred to as 1-hop clusters [6]. In this type of cluster, every CN can send messages directly to

its CH, and two CNs can easily "talk" with one another, either directly or through their CH.

Convenience is the primary motive for the use of 1-hop clusters. Other solutions utilize greater

than one-hop communication, and these are termed n-hop clusters. Cluster stability is a key

Fig 1. Clustering in VANET.

doi:10.1371/journal.pone.0154080.g001
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feature of clustering algorithms, and a way of measuring their effectiveness. The cluster stability

is important for the upper and lower communication layers, and can raise their performances

significantly [12]. It simplifies routing, permits spatial reuse of resources, and helps the net-

work to appear more stable to the CNs. The most frequently used parameters of cluster stability

are i) the number of CH changes and ii) the number of CNs switching their CH. By diligently

picking the CH along with the CNs that form a specific cluster, the cluster’s stability is

improved considerably [1]. The CH is responsible for forming the cluster, maintaining the net-

work topology, and distributing resources to all nodes in the cluster. Due to dynamic nature of

VANET, the topology changes very fast and, therefore, the CH’s configuration changes fre-

quently. In this scenario, it is necessary to minimize the number of CHs. The optimal selection

of CHs is an NP-hard problem [13].

There are prerequisites associated with clustering in VANETs. The clustering algorithms

need to be dispersed, since every node within the network possesses only local knowledge and,

due to cluster-based routing, communicates out of the cluster via its CH. The algorithm must

be robust as, if the network grows or shrinks, and/or there are any other changes in the net-

work, it needs to adjust to these transformations. The clusters need to be quite effective, i.e., the

determined CHs should handle as many nodes as possible.

Literature Review
Several of the principal techniques proposed by researchers for optimizing network efficiency

are discussed in this section. In a clustering algorithm presented in [14], a unique ID number is

assigned to each node and at any time, the node with the lowest ID is chosen as the CH. A high-

est-connectivity clustering algorithm is proposed by Gerla and Tsai [2]. This algorithm is a

multi-cluster, multi-hop packet radio network architecture for wireless adaptive mobile infor-

mation systems. In this scheme neighbors of a given node are initially identified by calculating

the node degree. Each node announces its identifier for the election procedure. Once the degree

is computed, the node with the highest degree becomes the CH. In [5] the authors proposed a

clustering algorithm to optimize the number of clusters for ad hoc networks. In the Weighted

Clustering Algorithm (WCA) [10], a weight is assigned to each objective by the user. It was one

of the first clustering algorithms developed for MANETs. In this algorithm CHs are elected

according to their weight. The weights are calculated by combining different parameters. The

CH selection process is non-periodic to reduce the communication and computation costs and

the call to CH selection procedure is on demand. The diameter of the basic network is directly

proportional to the time required to identify the CHs. A clustering algorithm based on n-hops

for MANET is proposed in [6]. In this technique the diameter of the cluster is flexible and not

restricted to two hops, and the clusters are formed on the basis of similar node movement pat-

terns. In [15] a clustering scheme is derived mathematically; the parameters of network con-

nectivity, average velocity difference, relative velocity, and average distance are take into

consideration in this scheme.

One real-world influenced, evolutionary approach uses swarm intelligence. This technique

is employed to resolve a variety of challenging optimization problems. It follows the structure

of an insect swarm: many individual insects are contained in an insect nest, and while an indi-

vidual insect is not a highly intelligent being, the communal entity can form a collective intelli-

gence. For example, when bees maintain the temperature in the hive, local stimuli are

responded to by every reactive agent (insect) without any central reasoning. This swarm behav-

ior is evident in social insects such as ants, wasps, bees and termites. Using the artificial bee col-

ony algorithm, a dynamic node clustering technique is proposed in [16]; variants of random

and greedy selection are used in this technique.
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Beneath the umbrella of swarm intelligence there are a couple of key clustering algorithms,

such as ACO and particle swarm optimization (PSO). PSO is an algorithm proposed by [17],

inspired by the maneuvering of a flock of birds. In this algorithm, every individual in the flock is

guided according to the best personal and best global behavior, which converges them into a near

optimal geographical position. For MANETs, Shahzad et al. [18] proposed a Comprehensive

Learning Particle SwarmOptimization (CLPSO) based clustering algorithm. This algorithm

finds the optimal number of clusters in a network, and each particle (solution set) contains the

information for its CH and CN(s). The algorithm assigns a weight to network parameters like

battery power consumption, node transmission power, node mobility, and ideal degree.

The basic parameters for MANETs are not considered in any of these heuristic-based algo-

rithms [18–20]. The WCA does not find the ideal number of clusters in the network; however,

it was one of the first algorithms to include the maximum number of parameters (including the

ideal node-degree, transmission power, mobility and the battery power of the nodes). WCA

provides a single solution by making a multi-objective problem a single-objective problem

through assigning weight to each objective function [10]. Multiple solutions are provided by

the MOPSO based clustering algorithm [19].

In multi-objective optimization problems (MOPs), evolutionary algorithms are a reliable way

of obtaining multiple solutions. These algorithms are designed to get several solutions at a time

rather than just a single solution. Many evolutionary algorithms have been developed to work

with different mechanisms, for instance, the genetic algorithm [21], differential evolution, artifi-

cial immune system, and swarm intelligence [17, 18, 20, 22–26], among others. ACO based tech-

niques for MOPs are also documented in the literature. Most of these documented algorithms

are only applicable to problems where a lexicographic ordering of the objectives is provided, for

instance, where the objectives can be listed according to their significance [27, 28].

ACO is one of the best metaheuristics, and it constructs a graph of the optimization prob-

lem. This graph is then explored by artificial ants for the best possible solution to the given

problem [29]. Initially each ant finds its local solution and then lays pheromone trails over the

search space to encourage other ants to further explore the surroundings of the best solutions

found. The successful implementation of evolutionary algorithms for optimized clustering [5,

11, 18, 30] encouraged us to develop an ACO based algorithm named CACONET.

Clustering as an Optimization Problem
Optimization challenges are highly significant to scientific engineering models and other deci-

sion-making applications. Optimization is the discovery of several solutions for a problem,

which correspond to the extreme values connected with more than one objective. When an

optimization problem has just one objective, the task of choosing the best possible solution is

referred to as a single-objective problem. With the exception of multimodal functions, the

focus in a single-objective problem is typically on obtaining just a single solution. MOPs are

optimization problems that come with several objective functions. The majority of real-world

problems are MOPs, as they encompass a variety of objectives that have to be optimized con-

currently. Clustering in VANET is an example of a MOP [30]. Many conventional mathemati-

cal programing approaches produce a single solution for MOPs. For that reason, such

approaches may not be appropriate for the optimization of MOPs. Evolutionary algorithm par-

adigms are preferable for MOPs, as they are population based, which enables them to produce

multiple solutions in a single iteration [22], as follows:

f ¼ W1ðf
1
ðdÞÞ þW2ðf

2
ðdÞÞ þW3ðf

3
ðdÞÞ þ � � �WnðfnðdÞÞ ð1Þ
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MOPs contain numerous desired goals which are minimized or perhaps maximized at the

same time [19]. Such problems possess numerous specifications that a solution must satisfy.

The search space is multidimensional in multi-objective optimization. Suppose there are n

objective functions: f1(d), f2(d),. . ., fn(d). The final evaluation f of a solution is based on the

weighted summation of these objective functions as given in Eq 1, where Wi represents the

weight assigned to ith objective function in the range 0 to 1, and d represents the decision vari-

ables. As an example, decision variables for clustering in VANET are: 1) the distance of neigh-

boring nodes from the CH (the less, the better); 2) the speed of the CH and the CNs (the more

similar, the better); and 3) the direction of CH and CNs in a cluster (the more similar, the bet-

ter). It is possible that more than one optimal solution is found for the same values of f. The

variable d� is called the Pareto optimal solution (decision variables) when there is no possible

vector of decision variable d 2D that will reduce some objective value(s) while not increasing

any other objective value(s) at the same time (meaning the final f value remains the same). In

most cases, this specific strategy produces a group of solutions, known as the Pareto optimal

solutions. The curve joining these non-dominated solutions is called a Pareto optimal front

[23]. All solutions on a Pareto optimal front are labeled Pareto optimal solutions. For instance,

Fig 2 shows two objective functions that are contradictory with one another. As multi-objective

clustering is the focus of the proposed technique, two objective functions (delta difference and

distance of CH from CNs) of the VANET environment, with equal weights, are utilized in Eq

(1) for this purpose.

There are two search spaces in MOPs, one is the decision variable space and the other is the

objective space. The range is specified within these spaces. Multiple Pareto optimal solutions

are found only if contradictory objectives exist in f. If the objectives are not contradictory with

one another, then there will be just one search space (the decision variable space). However,

there are two search spaces in MOPs, and for this reason MOPs are considered challenging.

Clustering via PSO. In PSO, each solution to the problem is called a particle. The particles

combined are referred to as a swarm and the swarm is used to find a near optimal solution.

Suppose Xi

!
is the position vector for a particle i, the dimensions of the Xi

!
vector are equal to

the number of parameters/attributes in the problem. Pi

!
is the position of its personal best solu-

tion, and Vi

!
is its velocity at this point. The local best solution is known to each particle.

Fig 2. Non-dominated solutions for two contradictory objective optimization problems.

doi:10.1371/journal.pone.0154080.g002
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Particle positions and velocities are initially generated randomly and then updated iteratively.

In each iteration of the algorithm, the new positions and velocities are calculated as follows:

Vid ¼ WVid þ ðpid � xidÞðc1Þðr1Þ þ ðpgd � xidÞðc2Þðr2Þ ð2Þ

xid ¼ Vidþxid ð3Þ

WhereW is the inertia weight; i = 1, 2,. . ., N, for a population size N; r1 is the first random

number generated by a uniform distribution in the interval [0, 1]; and r2 is the second random

numbers generated by an uniform distribution in the interval [0, 1]. The variable d = 1, 2,. . .,

D, where D is the maximum number of iterations. The variables c1 and c2 are first and second

positive constants respectively. For the ith particle, current velocity is computed using Eq (1).

This is done while considering three terms: i) the particle’s best personal position, ii) the global

best position, and iii) the particle’s previous velocity.

The new position of a particle is calculated using Eq (2). Inertia weight is introduced to con-

trol the impact of the previous velocities on the current velocity. If inertia weight is eliminated,

it means there is no previous history of a particle’s velocity. To ignite the process, PSO is initial-

ized with a collection of random solutions, or particles, after which PSO explores for the best

possible solutions in each generation. In each iteration, each particle updates its personal best

value achieved and the global best position obtained by any particle in the population up until

that time.

CACONET: An ACO Based Clustering Algorithm for VANET
A VANET is made more stable with an optimal number of clusters because the network

resources are efficiently utilized. In this scenario, for instance, the job of routing network pack-

ets within the cluster or to the nodes of other clusters can be done by the CHs alone rather than

by each node in the cluster. The evolutionary capability of ACO enables our proposed algo-

rithm to optimize the number of clusters in the network.

In ACO based techniques, one solution is called an ant and the group of ants form a swarm,

which looks for the best solution. These techniques work very efficiently and are suitable for

continuous and discrete variable problems. Although their implementation is comparatively

difficult, these techniques are computationally inexpensive, especially when compared to the

situation in which an exhaustive search to identify the best solution is performed. These fea-

tures mean that ACO based techniques are very effective for clustering in ad hoc networks,

especially in VANETs. CACONET is the first attempt to achieve efficient clustering in

VANETs using ACO. The algorithm initially finds the CH, and then neighborhood for this

CH.

The ACO metaheuristic usually models the real-world environment of ants in the form of a

graph. The vertices of the graph represent the components of a candidate solution. Ants tra-

verse the edges to create trails. While traversing different paths, ants mark the route taken with

a chemical substance called a pheromone. The artificial pheromone values are associated with

the edges and updated based on the quality of the trail. The higher the quality of a trail, the

higher the concentration of the pheromone, and this makes the trail more attractive to the

ants. An artificial ant constructs a candidate solution to the problem by adding solution com-

ponents one by one. Before the construction of a complete candidate solution, a problem

dependent heuristic is usually used in collaboration with the pheromone values to guide the

ants’movements. Subsequently, as time passes, ants construct their solutions one by one and

guide each other to find better and better solutions. The components with higher pheromone

concentrations are thus identified as contributing to a good solution and repeatedly appear in
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the solutions. Usually, after sufficient iterations, the ants converge towards a very good, if not

the optimal, solution.

The application of ACO to a problem requires the following (28):

• The ability to represent a complete solution as a combination of different components.

• A method to determine the fitness or quality of the solution.

• A heuristic measure for the solution’s components (this is desirable but not essential).

The pseudo code for CACONET is presented in Table 1 and the major stages of the pro-

posed algorithm are discussed below.

Search Space Construction. The ACO algorithm based solution to a particular problem

starts with the design of a problem search space in which the ants conduct the search to find

the candidate solutions. The search space for CACONET is a mesh topology based graph as

described in Table 1. The labels of the vertices in the graph represent the IDs of vehicles/nodes

in the VANET. For example, to perform clustering of a VANET environment with 30 vehicles,

the search space will consists of 30 vertices each connected via mesh topology. The edges

Table 1. Proposed CACONET algorithm.

Pseudo code for proposed CACONET algorithm

1: Initialize all vehicles’ positions randomly on the highway

2: Randomly initialize each vehicle’s direction

3: Initialize the speed/velocity of each vehicle

4: Create a mesh topology among nodes/vertices, where each vertex represents a vehicle ID

5: Initialize the same pheromone values for each edge in the above mesh topology

6: Calculate the distance of each vehicle from the others, normalize and associate these distance values
with the corresponding edges in the above mesh topology

7: WHILE (Iteration = = Total Iterations OR Stall Iteration = = 20) (no improvement in last 20 Iterations)

8: {

9: FOR Anti = 1 to Swarm size

10: Anti.tour = = empty, and cost = = infinity

11: Vertices or Nodes–Available for clustering = {All Nodes}

a: WHILE (Nodes Available for clustering! = empty)

b: END WHILE

c: Anti.cost = evaluation (Anti.tour)

IF (Anti.cost < Best Ant.cost)

Best Ant = Anti
d: Anti ++

e: END FOR

12: FOR Anti = 1 to Swarm size

i. Update Pheromone (Anti.tour, Anti.cost)

a. Evaporate

b. IF (BestAnt.cost = = Last iteration Best.Ant.cost)

ii. Stall Iteration ++;

c. ELSE

iii. Stall Iteration = 0;

d. END IF

e. Iteration ++;

13: END WHILE

14: CHs = Best Ant.tour;

doi:10.1371/journal.pone.0154080.t001
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between the vertices are associated with two values: 1) pheromone value, and 2) heuristic value.

In the subsequent subsections, more detail is provided about these two values.

Pheromone Initialization. The edges in the search graph are initialized with low phero-

mone values. The initial pheromone τij over the edge between two vertices i and j is laid down

based on the following equation:

tij iter ¼ 1ð Þ ¼
1

jVehiclesj
ð4Þ

Where |Vehicles| represents total number of the vehicles in the network.

Solution Construction. In each iteration of the FOR loop (line #9) of the algorithm in

Table 1, each ant constructs its solution. An ant starts its tour by randomly selecting a vertex in

the search space. Later, the ant selects and incorporates more vertices into its tour, taking into

consideration pheromone and heuristic values over the edges subject to some constraints. The

vertices in an ant tour are the CHs for clustering. So, each ant tour is a collection of CHs for the

given VANET environment. The constraints for the selection of a vertex to be incorporated

into the tour are given as:

1. A vertex can only be added to the tour if it is not already present in tour. This constraint

makes it sure that a vehicle cannot be selected as CH more than once in a tour/solution. The

tour consists of uniquely labeled vertices that represent the CH vehicles in the VANET.

2. A vertex cannot be added into the tour if it is in the transmission range of a vertex already

present in the tour. Once a CH is selected, all the vehicles in the transmission range of the

CH become a member of the cluster. This constraint ensures that a cluster is controlled by

only one CH.

In the proposed algorithm, the probability of a vertex (from the search space) being added

into the tour of the current ant is calculated using Eq 5:

Pi;j ¼
Pheromonei;j � Heuristici;j

P

k2S Pheromonei;k � Heuristici;k
ð5Þ

Where i is the label of the vertex last added into the tour of the current ant, j is the label of next

candidate vertex which can be selected by the ant, and Pi,j is the selection probability of the

edge between vertices i and j. S is the set of all vertices available for selection subject to the two

constraints detailed above. Pheromonei,j and Heuristici,j are pheromone and heuristic values

associated with edge between vertices i and j, respectively. The selection probability of an edge

is divided by the sum of the selection probabilities of all the edges available for traversal. The

higher the pheromone and heuristic values of an edge, the better its chances of selection are. In

order to make sure that the algorithm doesn’t become stuck in local optima, the selection of an

edge is performed by roulette wheel selection [31]. In other words, the edge with lowest selec-

tion probability still has a chance of selection and the selection of edge is not based on greed.

Once an edge is selected, the current ant moves over the edge and reaches a new vertex in the

search space. So, the selection of an edge is actually the selection of next vertex to be added to

the tour of the current ant.

The tour of an ant is completed when the above-mentioned constraints mean that there are

no more vertices available to be added to the tour. It is important to note that the tour lengths

are variable. A tour with a lower number of CHs or clusters is usually preferable as this lowers

the communication overhead.

Evaluation of Solution and Heuristic Value Calculation. The tour/solution of an ant is

then evaluated to determine its worth. Due to the multi-objective nature of VANET clustering,
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the following modified version of Eq 1 is used to evaluate the tour of ant t:

ft ¼ W1ðf
1
Þ þW2ðf

2
Þ ð6Þ

WhereW1 =W2 = 0.5 represents the equivalent weights assigned to two objective functions f1
and f2, respectively. For CACONET, f1 is the delta difference value of the clusters in t, and f2 is

the summation of the distance values of all CHs from their cluster members. The delta differ-

ence value d of the clusters in a tour can be calculated by employing Eq 7:

d ¼
Pjtj

i¼1
ABSðD� jCNijÞ ð7Þ

Where D is a constant value and represents the ideal degree of clusters. The value of D is

assigned by the user. For example, if the user needs dense clusters, Dmay be assigned a high

value and vice versa. |t| is the length of the tour or, in other words, the total number of clusters

formed. |CNi| is the total number of vehicles in cluster i, excluding CH. The ABS function

returns the absolute value of the given value. The lowest value of d represents the formation of

clusters almost equivalent to the user-specified ideal degree. If value of d is zero, the clustering

is optimal in terms of the user’s ideal degree requirements.

The value for objective function f2 can be calculated based on the Euclidean distance (ED)

between the cluster members and the CHs for all the clusters. Distance between the CH and all

of its member nodes can be calculated using Eq 8:

distCH i ¼
PjCNi j

j¼1
EDðCHi;CNj;iÞ ð8Þ

Here CHi represents the coordinate position of the ith CH. CNj,i is the coordinate position of

the jth CN which is the member of cluster i. Similarly, the f2 objective value is calculated using

Eq 9:

f
2
¼

Pjtj

i¼1
distCH i ð9Þ

Again, |t| is the tour length or, in other words, the total number of clusters. Similar to f1, the

lowest possible value for f2 is preferable. The shorter the distance between CH and its cluster

members, the less the energy will be required to transfer the data.

Having discussed solution/tour construction, a discussion of the heuristic value calculation

over an edge follows here. Suppose the ant is over vertex i and has to calculate the heuristic

value over the edge between vertex i and j; Eq 6 can be used for this purpose. Eq 6 is used for

evaluating the completed tour; however, the same equation is also used for the heuristic calcu-

lations for an incomplete tour (i.e., there are still vertices available that can be added into tour).

For incomplete tours, every single available vertex is added in the tour, one at a time, and its

worth is calculated using Eq 6. In this way, the available vertices are assigned heuristic values in

accordance with their worth as determined by Eq 6.

Update Pheromone in Search Space. Pheromone values on the edges are an important

learning dynamic for the CACONET. To make efficient use of pheromone values, the quality

of ant tours is employed. The pheromone values on the edges constituting the trail are updated

in proportion to the quality of the trail and so define the learning directions for the subsequent

transitions of the entire swarm. Eq 10 is used to update the pheromone values over the edges

between the vertices in the trails constructed by ants.

tik t þ 1ð Þ ¼ 1� rð Þtik tð Þ þ 1�
1

1þ fn
tik tð Þ ð10Þ

�

Where τik(t) is the pheromone value encountered in iteration t of the outer most WHILE loop
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PLOSONE | DOI:10.1371/journal.pone.0154080 May 5, 2016 9 / 21



(line #7, Table 1) between vertexi and vertexk. The pheromone evaporation rate is represented

by ρ and ft is the worth of the tour of the nth ant.

Eq 10 updates pheromones by first evaporating a percentage of the previously seen phero-

mone and then adding a percentage of the pheromone depending on the quality/worth of the

trail constructed by the nth ant. This pheromone update is carried out for all tours constructed

Table 3. Simulation parameters for CACONET.

Parameters Values

Population size (ants) 100

Maximum iterations 150

Evaporation rate 0.05

c1* 2

c2* 2

Vehicle velocity range 22 m/s—30 m/s

Simulation area 1 × 1 km2, 2 × 2 km2, 3 × 3 km2, 4 × 4 km2

Maximum acceleration m/s2 1.5

Minimum distance B/W Vehicles 2 m

Maximum distance B/W Vehicles 5 m

Lane width 50 m

Total lanes 8

Transmission range 100 m–600 m

Mobility model Freeway mobility model

Simulation runs 10

W1 (weight of first objective function) 0.5

W2 (weight of second objective function) 0.5

doi:10.1371/journal.pone.0154080.t003

Table 2. Simulation parameters for MOPSO and CLPSO.

Parameters Values

Population size (particles) 100

Maximum iterations 150

Inertia weight W 0.694

c1
1 2

c2
1 2

Vehicle velocity range 22 m/s—30 m/s

Simulation area 1 × 1 km2, 2 × 2 km2, 3 × 3 km2, 4 × 4 km2

Maximum acceleration m/s2 1.5

Minimum distance b/w Vehicles 2 m

Maximum distance b/w Vehicles 5 m

Lane width 50 m

Total lanes 8

Transmission range 100 m–600 m

Mobility model Freeway mobility model

Simulation runs 10

W1 (weight of first objective function) 0.5

W2 (weight of second objective function) 0.5

1Learning Factor

doi:10.1371/journal.pone.0154080.t002
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by all the ants. If the tour corresponds well to the clustering requirement (based on Eq 6), a

greater quantity of pheromone is added than is evaporated and the vertices found in the tour

become more attractive to the ants in subsequent iterations. Evaporation improves exploration;

in the presence of a static heuristic function the ants tend to converge quickly on the terms

selected by the entire swarm during the first few iterations of the first inner repeat loop [32].

Stopping Criterions. In this section, different criterions to stop the execution of the CAC-

ONET algorithm are discussed. The first criterion to stop the execution of CACONET is the

completion of the total number of iterations specified by user (line #7, Table 1). The second cri-

terion occurs when the stall iteration count reaches 20 (initially started at 0). An iteration is

considered to stall if there is no improvement in the quality of best trail found in outermost

WHILE loop as compared to the quality of best trail found in previous iteration of outermost

WHILE loop. Finally, after stopping the execution of CACONET, the best tour found so far is

used for the clustering of the VANET.

Implementation and Results
Experimental setup is described in this section along with a comparison of the results for our

performed experiments. Results from our proposed CACONET algorithm were compared

Fig 3. Transmission range vs number of clusters in MOPSO and CLPSO in the 1 km × 1 km grid size with nodes ranging from 30 to 60.

doi:10.1371/journal.pone.0154080.g003
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with those from two other popular clustering algorithms, i.e., MOPSO [11] and CLPSO [18]

based clustering. The experimental results demonstrate that the proposed technique addresses

the entire network with a minimum number of clusters, which can reduce the routing cost of

the network. This allows a decrease in the number of hops and packet delays in the cluster-

based routing. Typically there will be more clusters when the transmission ranges of the nodes

are small. The final results indicate that the proposed clustering technique is effective and

adaptable in comparison to other techniques and functions more effectively than the other

algorithms in a VANET environment. The algorithm optimizes the parameters associated with

Fig 4. Transmission range vs number of clusters in MOPSO and CLPSO in the 2 km × 2 km grid size with nodes ranging from 30 to 60.

doi:10.1371/journal.pone.0154080.g004
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the vehicular nodes in order to seek the optimal solution. The parameters used in simulations

are presented in Tables 2 and 3.

Experimental Setup. MATLAB version 8.5.0 is used for implementation purposes. The

experiments are conducted on a machine with 8 GB of RAM and a 2.5 GHz core i5 processor.

The experiments are performed by varying the number of nodes from 10 to 60. Four sizes of

road segment were used for performing these experiments: 1 km × 1 km grid, 2 km × 2 km

grid, 3 km × 3 km grid, and 4 km × 4 km grid. The movement of all nodes is bi-directional

along the X-axis, with velocity varying uniformly between 80 km/h (22 m/s) and 120 km/h (30

m/s). For each node the transmission range is also varied from 100 m to 600 m. For load bal-

ancing in the ad hoc network the degree difference value is set to 10. In this research, along

with CACONET, two well-known evolutionary algorithms are implemented for clustering in

VANET, namely CLPSO and MOPSO. All the values of different parameters are kept same for

the three algorithms. Ten simulations are performed for each algorithm and their average is

presented in results/graphs.Transmission Range vs Number of Clusters

Fig 5. Transmission range vs number of clusters in MOPSO and CLPSO in 3 km × 3 km grid size with nodes ranging from 30 to 60.

doi:10.1371/journal.pone.0154080.g005
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The transmission range of each node is varied from 100 m to 600 m and the number of

nodes vary as 30, 40, 50, and 60. As a result four diverse solutions were produced. Results were

generated by varying the size of road segment to 1 km × 1 km, 2 km × 2 km, 3 km × 3 km, and

4 km × 4 km. The proposed algorithm finds the optimized solutions against each transmission

range, which is exhibited in Fig 3. These solutions cover the entire network, in contrast with

CLPSO and MOPSO. The average number of clusters is used as a performance metric, shown

in Fig 3. For the 1 km × 1 km grid size our proposed algorithm produces less clusters for each

transmission range to cover the whole network, as compare with the CLPSO and MOPSO algo-

rithms. The number of clusters produced by CACONET is less than the number produced by

CLPSO and MOPSO in most cases. Although MOPSO does produce multiple solutions, the

number of clusters generated by CACONET is better optimized than MOPSO.

After these initial experiments, the size of road segment is changed to a 2 km × 2 km grid.

The results of this setup are displayed in Fig 4. The results show that there are more clusters

when the transmission range is low. This is because nodes are inaccessible to each other, and so

there are fewer nodes in each cluster. As the transmission range rises, the number of nodes in a

Fig 6. Transmission range vs number of clusters in MOPSO, and CLPSO in 4 km × 4 km grid size with nodes ranging from 30 to 60.

doi:10.1371/journal.pone.0154080.g006
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cluster increases, and number of clusters in each solution decreases. CACONET outperforms

CLPSO in all experiments in providing improved solutions. In Fig 3(D), at transmission ranges

200 and 450, the results of MOPSO and CLPSO are almost same, but CACONET produces less

clusters.

At this point we changed the grid size to 3 km × 3 km as shown in Fig 5. The total number

of clusters in Fig 5(A) is almost equal to the total number of nodes. This is because the network

area is very large and the node transmission range is comparatively small. So there is direct

relation between node transmission range and road segment size. It is also evident that, in the

case of MOPSO, the number of solutions increases as the transmission range increases.

Now the grid size is changed to 4 km × 4 km. In Fig 6(D) MOPSO shows the same number

of clusters as the number of nodes due to the small transmission range, and this decreases grad-

ually downward to 29 as the transmission range is increased. In CLPSO the trend is same. For

CACONET the graph shows 49 clusters initially which lowers to 15 when the transmission

range is increased.

Number of Clusters vs Network Nodes. The number of nodes in a network is varied from

30 to 60 and the transmission range was set to 100, 200, 300 and 400 to conduct the

Fig 7. Network nodes vs number of clusters in CACONET, MOPSO and CLPSO in 1 km × 1 km grid size with transmission range varying from
100m to 400m.

doi:10.1371/journal.pone.0154080.g007
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experiments for finding the number of clusters against the number of nodes. Results were pro-

duced by varying the grid size from 1 km × 1 km to 4 km × 4 km, as shown in Fig 7.

The results in Fig 7 are produced by fixing the grid size to 1 km × 1 km and using the follow-

ing transmission ranges 100, 200, 300, and 400. Based on the performance of the three algo-

rithms (MOPSO, CLPSO and CACONET), by keeping the transmission range constant and

increasing the number of nodes, it is evident that the transmission range increases as the num-

ber of clusters decreases. Fig 7(C) shows that for CACONET the number of clusters remain

same for all network nodes. The proposed algorithm works better than the other algorithms in

terms of the average number of clusters. This shows the robustness and flexibility of the algo-

rithms in terms of the parameter setting. Fig 7(D) shows that CACONET produces four clus-

ters initially, but with 60 nodes there are three clusters. By analyzing these results it is observed

that CACONET performs better in dense traffic areas.

Then the grid size is increased to 2 km × 2 km as shown in Fig 8. By evaluating the overall

results of MOPSO, CLPSO and CACONET, it is determined that CACONET gives better solu-

tions. Fig 9 shows the results for a grid size of 3 km × 3 km, and the transmission ranges 100,

Fig 8. Network nodes vs number of clusters in CACONET, MOPSO and CLPSO in the 2 km × 2 km grid size with transmission range varying from
100m to 400m.

doi:10.1371/journal.pone.0154080.g008
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200, 300, and 400. If we compare Figs 8 and 9, we observe that as the grid size increases, the

number of clusters also increases, which shows the direct relation of the network size with the

number of clusters.

Fig 10 shows the results in the case of the 4 km × 4 km grid size with transmission ranges of

100, 200, 300 and 400. The grid size is directly proportional to the distance between nodes. As

the grid size increases, the distance between the nodes also increases, which leads to the isola-

tion of the nodes from each other. If all nodes are isolated from each other then all the algo-

rithms must produce the maximum number of clusters. By observing Fig 10(A), 10(B) and 10

(C), it is evident that MOPSO and CLPSO produce almost same number of clusters, whereas

CACONET generates much better results. In Fig 10(D), when there are 60 nodes in the net-

work, CACONET produces ((38–26) / 38) × 100 = 31% less clusters than the other two

algorithms.

Number of Clusters vs Grid Size. In Fig 11 the relationship between different grid sizes

and the number of clusters is displayed. The number of nodes are fixed at 40 and the transmis-

sion range is varied from 300 m to 600 m. Fig 11 shows that the grid size is inversely propor-

tional to the number of clusters because in a large grid size the nodes are more scattered, and

therefore a greater number of clusters are required to cover the entire network and vice versa.

Fig 9. Network nodes vs number of clusters in CACONET, MOPSO and CLPSO in 3 km × 3 km grid size with transmission range varying from 100m
to 400m.

doi:10.1371/journal.pone.0154080.g009
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Manifestly CACONET provides fewer clusters compared to other algorithms, which leads to

efficient clustering. Moreover it is determined that CACONET performs better in dense

environments.

Conclusion and Future Work
This paper presents a detailed analysis of multi-objective evolutionary algorithms in VANETs.

In the proposed scheme, the node clustering is done efficiently, and near optimal solutions are

generated by the proposed algorithm. This makes it best suited among the three algorithms for

employment in VANET clustering in the experiments. By minimizing the total number of clus-

ters in the network, the packet routing cost is minimized. Due to the evolutionary capability of

these algorithms larger search spaces can be processed, and objective function values can be

adjusted dynamically. The flexibility and effectiveness of the approach are exhibited with the

help of simulated results. Result comparisons with other well-known algorithms (MOPSO and

CLPSO) are also presented here. The optimal number of clusters is found with the help of the

proposed CACONET algorithm. Researchers can enhance the list of objectives and make the

Fig 10. Network nodes vs number of clusters in CACONET, MOPSO and CLPSO in 4 km × 4 km grid size with transmission range varying from
100m to 400m.

doi:10.1371/journal.pone.0154080.g010
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number of nodes dynamic in future to extend this work. Other evolutionary algorithms can

also be implemented, for instance, the Gray Wolf Optimizer, for further extensive comparative

studies.
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