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INTRODUCTION 

This report emanates from a seminar of the group EEC, held in spring 1972, 

and it reflects our knowledge in the field of automatic wiring design, built 

up during the first months of that year. At the second session the participants 

discussed the schematic overview of page 2. The framed subjects in this scheme 

were pointed out as topics of the sessions to follow. 

In the seminar the simultaneous "placement-and-routing"-part was emphasized, 

so that only the Lee-Akers-algorithm was presented (by Prof. Jess at the 

third session), since it was the most representative and general of all 

routing algorithms. A flaw was elicited during this session and a correction 

seemed to be difficult. Our ideas about this algorithm are more mature now 

and that is why the treatment of the subject is different in this report. 

Starting from a simple "minimum-distance" algorithm we generalize as far as 

possible ending up with an abstract model. 

Next in this report we have a short introduction to notions ~n graph theory, 

although this was a sUbject of the fourth session. This reordering was 

necessary, because of the final description of routing algorithms and problem 

formulations in which some of the notions are employed. 

The mathematical formulation is published as an article in the "International 

* Journal of Circuit Theory and Applications". The fourth and the fifth constraint 

were presented in the formulation for the whirl problem, but the solutions 

given during the session were basically wrong. We added some directives for 

technological modifications. 

Four planarity tests were given then 

1. CEL-algorithm: preceded by the treatment of "drain functions" and "deltas 

and their formulas"; 

2. pseudo-hamiltonian method; 

3. methods using matrices; 

4. whirl method. 

The last session was concerned with planarization of networks. 

It concludes also this report. 

* M.C.van Lier, R.H.J.M. Otten, "On the mathematical formulation of the wiring 

problem ", Int.Journ. of Circuit Theory and Applications, Vol.l,137-147, 

March, 1973. 
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1. GRAPHTHEORETICAL NOTIONS 

.'e sta:ct from a non-eMpty set G, the so-called set of vertices. On ·thi" set 

we define a binary relation: r ~ G x G. The elements of r are called arl_S. 

Our notation of an arc will be [x,y> with x and y as terminal vertices. In 

the fol101.ing the set of arcs will be designated by V. 

The pair consisting of G and V is called a digraph, and lS denoted by (G,\'). 

We assume the relation r to be antireflexive (this means [x,x>ir). A digraph 

is finite, when G is finite. We will restrict ourselves to finite digraphs. 

If the relation r is symmetric ([X,y>Er...{y,X>Er), we speak of a graph, here 

denoted by (G,U) with U = {[x,y]1 [X,y>ErJ. IT is a set of non-ordered pans 

of vertices, called edges. We speak of a multigraph, when U is a family. 

The relation rcan be treated as any other binary relation: 

We wri te yEr (x), when [x,y>Ef. 

The inverse of r is denoted by r-
I

, and is defined by r-
I 

(y) 

We define the powers of r in the following way: 

rO (xl = {x} 

rl(x) rex) 

r(ri-I(x)) (i is a non-negatieve integer) 

The transitive closure r of ris defined by r (x) 

For digraphs we have also the following notions: 

+ 
Ir(x)1 is called the out-degree of x and is denoted by y (x). 

Ir-\x) I is called the in-degree of x and is denoted by y (x). 

+ -
y(x) = y (x) + y (x) is the degree of x. 

-I 
XEG is a source, when r (x) = 0 or equivalently y (x) 0 

XEG lS a sink, when rex) = Iil or equivalently /(x) = 0 

For graphs we have only the degree of XEG: y(x) = l{yl[x,y]su}l. 

Suppose we have two digraphs (GI,V
I

) and (GZ'V
Z
)' and a bijective mapplng 

from G
I 

into G
Z

' Then 4 is called an isomorphic mapping (or an isomorphism), 

if 
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If such a mapping exists, then (GI,V
I
) and (G

2
,V

2
) are called isomorphic. 

F h h "1 f···1 or grap s we ave a S1m1 ar de 1n1t10n. 
1 

I 
A graph (G,U) is called topological if: 

I. G is a set of points in a tOPologilal , space R, and U is a set of open 

Jordancurves in R, I , 

2. the terminalpoints of an edge of U are in G, 

3. the edges of U have no other pOints

l 

in cOmmon than terminalpoints. 

In the case of digraphs we give the JOlrdancurve [x,y> an orientation in the 

direction of y. 

I 
(G',U') is a topological representation of (G,U), if (G,U) and (G',U') are 

I , 
isomorphic and (G' ,U') is a topolog1cal graph. 

I 
I 

A graph is called planar, when it has a topological representation in a 

! plane. : 

I 
The graph (G',U') is a subgraph of (G,U), when G'cG and V U,[uEU]. 

I UE 

The name chain is given to a sequence YI'v2 , •••• , v
k 

of arcs of (G,V) such 

that, if v. = [x.,y.>, then y. = x. II for i = I, 2, •••• , k - I. A chain 
1. 11 1. 1+ 

is simple, if no arc occurs twice in t~e sequence. It is called elementary, 

if it does not contain a vertex twice. We denote a chain by C[x
I

, Yk>' 

A cycle is a chain in which xI = Yk' A cycle is elementary if, apart from 

xI and Yk,'every vertex in it is distinct from the others. 

A digraph is called acyclic, when it hJs no cycles. The length of a chain is 

the number of its arcs. I 

A path is a sequence u
l
,u

2
' ••••• , ~ Jf edges of a graph (G,U) in which 

we have with u. = [x.,y.], that y. = x·1 + I and y. 1= x. for i = 2,3, ... , k - 1. 
1. 1.1. 1. ~ 1- l. 

A path is simple, when all its edges a~e different, and elementary, when every 

vertex in it appears only once. A path liS denoted by P[xI'Yk]' A circuit is 

a path with xI = Yk' and it is called elementary, when all its vertices 

d
. . 1 

xl' x
2

' •... , ~ are l.stl.nct. I 

I 
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A graph (G,D) is connected, if for every pair of vertices in G there is 

a path between them. A component of (G,D) is a maximal connected sub graph 

of (G,D). A vertex x of G is an articulation point of (G,U), if the number of 

components of the sub graph obtained by deleting x and a1l the edges incident 

to x is one higher than in (G,D). 

The 0 rem I: A vertex a is an articulation point of a connected graph, 

if and only if there exist two vertices x and y such that 

every path joining x and y contains a. (x ~ a # y). 

The. proof of this theorem is trivial. 

A graph (G,U) is said to be hiconnected, if it is connected, and it contains 

more than one edge and no points of articulation. 

The 0 rem 2: Given any elementary path P[aO,a
l

, .... , akJ joining two 

distinct vertices a
O 

and "k of a biconnected graph (G,U), 

we can associate \{ith it two elementary paths p' and P" such 

that: 

]. p' and P" join both a
O 

and a
k

, 

2. a
O 

and a
k 

are the only vertices which p' and pI! have 

in common, 

3. if p' or pi' is followed from a
O 

to a
k

, the indices of 

the vertices of P encountered on route are in increasing 

order. 

Proof: The theorem is trivially true, when P has length 1 (P ;[aO,a
IJ ), for 

D contains at least two edges, and neither a
O 

nor a
l 

can be an 

articulation point. 

Let us assume the theorem to be true for all elementary paths of length k, 

and deduce from this that it is also true for the elementary path 
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By hypothesis there exist two dis~oint paths Po and Po joining a
O 

and a
k

, and satisfying the conditions of the theorem. We nOW have 

to show the existence of two pathJ p' and p" between a
O 

and a
k 

+ 1 

with analogous properties. 

From theorem 1 we know that there is a path Q[aO'~ + I]' which does 

not contain ak • Let us denote by ~ the vertex of Q[aO,a
k 

+ I] nearest 

to ~ + I' and which is also in POaO'~] or PO[aO,akJ or PO[aO,ak ]. 

I 
I 

i 
We distinguish four cases: 

1. 

II. 

III. 

q = ao: 

This case is simple: 

P"[ I J Q[ J ao,aki + 1 ao' ak + 1 

I. 

q=ak + l : 1 

This means that q i P[aO,ak].\This leaves two analogous cases: 
I 

qE PO[aO,akJ or qEPO[aO,ak ]. fake for example qEPO[aO,akJ, then 
, 

p'[aO,ak !+ I J = PO[ao,q] 

p"[ao,aki+ I] = p(j[aO,ak ] + [ak , ak + I J 

qiP[aO,ak + I]: I 
This means that either qEPo[ad,a

k
] or qEPO[aO,a

k
]. In the latter 

case (the former isanalogous) ,! we take 

p'[ao'~ + I] Po[aO,~] +[ak,ak + I] 

p"[aO'~ '!+ I] = p(j[ao,q] + Q[q,ak + I] 

IV. qEP[a 1 ,a
k
]: 

Then we can write q = a with m<k. Let p be the highest index with 

apEP[aO,ak + I J , apEPo[:O,ak +11 I] (apEPO[aO,akJ is analogous) 

and pem. I 

In such a case we take ! 

p'[aO,ak l I J = PO[aO,akJ +[~,ak + I J 

p"[aO,ak 1lJ = po[aO,apJ + P[ap,aml + Q[am,ak + I J 

I 

I 
I , 
I 

I 
I 
I 
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The 0 rem 3: Given two arbitrary edges u
l 

and U z of a connected graph, we 

can construct an elementary path, which starts with u
l 

and 

finishes with uZ. 

Proof: If u
l 

= [a,x] and U z = [b,y], then since the graph is connected, the 

vertices a and b can be joined by an elementary path P[a,b] = 

~, aI' aZ' .... ak = b]. 

Again four cases (the required path is denoted by PO): 

I. xiP[a,b], yiP[a,b]: 

Po = [x,a] + P[a,b] + [b,y] 

II. xtP[a,b], y£P[a,b]: 

Po = [x ,a] + P[a,y] + [y,b] 

III. x£P[a,b], yiP[a,b]: 

Po = [a,x] + P[x,b] + [b,y] 

IV. x£P[a,b], y£P[a,b]: 

Po = [a,x] + P[x,y] + [y,b] 

The 0 rem 4: Given two arbitrary edges u
l 

and Uz of a biconnected graph, an 

elementary circuit exists which contains u
l 

and Uz both. 

Proof: P[aO,a
k

] is an elementary path with u
l 

= [aO,a
l
] and Uz = [a

k 
_ l,a

k
]. 

Such a path exists, as is said by theorem 3. From theorem Z we know 

that in such a case there exist two disjoint paths P'[aO,a
k

] and 

p"[aO,a
k

] with the properties advertised there. 

Let us denote by p the first vertex of P[aO,a
k

] after aO' which is 

also in P'[aO,a
k

] or in p"[aO,a
k
] and by q the last vertex before a

k 
with the same properties. 

We have three cases this time: 

I. p=a
k

: 

Necessarily q = a
O 

then. The required circuit is 
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II. p., ak and thus q" ao;lfurther pcP'[aO,akJ and qcP'[aO,akJ. 

(The case pcP"[aO,a
k

] a~d qcP"[aO,a
k

] is analogous)., Now we 

take I 
I 

P[aO'p] + P'[p,q] + P[q,a
k

] + P"[ak,a
O

] 
I 

• J.' J. I " III. Aga1n p r a
k 

and q r aO'1 but now pcP'[a
O 

,a
k

] and qcP [aD ,a
k
]. 

(The case pcpII[aO'~] a'ld qcP'[aO'~] is analogous). , 

P[aO'p] + P'[P,aJ] + P[~,qJ + pII[q,a
O

] 

I 

We have a biconnected graph (G,U). Jet H be a subset with IHI~z. We suppose 

that (G,U) has the following propert~: 
I 

(G, U) has a topological representatibn (G' ,U') in a plane such that H is 

completely contained in a circuit c'l that (of course) divides the rest of 

the plane into two connected open domains and one of these domains contains 
I 

no edge of U'. I 
Such a graph is called H-accessible and the representation (G',U') is called an 

I 
H-periphere representation. Two elem~nts hI and h

Z 
of H are said to be G'-

I 

adjacent, if there is a path P[hi,hif between hi and hi which is on the 

periphery C' of (G',U') and which cottains no vertex of H'\ {h;,hi}. 

I 
The 0 rem 5: If (G' ,U') and (G",y") are both H-periphere representations 

of an H-accessible graph (G,U), then every G'-adjacent pair 

is also a G"-adjace~t pair. 

Proof: If IHls3, then there is nothilg to prove. Thus, suppose IHI>3 and that 
I ,. 

hI, and h
Z 

(both elements of H~ are G -adjacent and not Gil-adjacent. 

Th'i,s means that there is a path P'[h' h'] on e' in which no element 
I I' Z 

of H'\{hj ,hi} appears. PIlCh'; '~2] is the corresponding path in (G" ,U") 

and this path contains at least one edge which is not on e". 

I 
Let P~[hi' ,hZ] and Pt:[h'; ,hZ] b~ two disjoint paths, together covering the 

whole e". On P~[h'; ,hZ] there ,ust be an h~ not equal to h'l' or hZ• On 

Pt:[h'I' ,hZ] there must be an hi;" which ,is also unequal to hi' or h
2

• From 

the Jordancurves-theorem we kJow that there is no path from h" to hb not 

containing a vertex of P"[h';'~2J in (G",U"). In (G' ,U') howev:r, there 

i~' clearly a path from h~ to ~i, which contains no vertex of P'[ hi ,hiJ • 

Tnis is a contradiction. 
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II. ROUTING ALGORITHMS 

I. SIMPLE CONNECTION ALGORITHM ON A GRID 

Consider two sets of natural numblrs: R = 

K = 

{ ninE N 1 A (0< n'; r) } 

{nl nENI A (O<n';k)} 

We define the set C as being RXK and we call its elements "cells". On this 

set we define a relation ncCxC inithe following way: , 
I 

Vc.<C V C [(c., c.)En++(lr.-r.!I+Ik.-k.I = IJ 
l' C.E 1 J 1 J I' 1 J 

where c. : (r., k.) and c. = (r.,ik.). By c.n we mean {cl (c., c)EnL Clearly, 
1 1 1 J J IJ 1 1 

n is symmetric, and it is easy to ,see that 

V [2,;lc.nl,;4J I 
ciEC 1 I 

At the initialization of the socaIled "connection"-procedure, we suppose that 

C is partitioned into two subsets IA and B. A is called the set of admissible 

cells, while B consists of these cells which are "prohibited". Further two 

I f 'd ! • h .. * e ements 0 A are p01nte out: one as be1ng t e or1g1n c , the other as the 
I 
I 

** target c 

The procedure is a search routine followed by a trace-routine: in the first 

routine we split A in three sets: P, Q and A\(puQ); in the second step we 
I 

select a sequence S of elements of P and Q which are added to B. This sequence 
I 

is called "the shortest path from c* to c**" 

~~es::ocedure is built in such a lay that 

* I ** 
2. S =. (c I ' c2 ' ... ,cm)->(c I=c II cm=c IIV

c
. ES [(ci ' ci+I)El)J) 

3. For every sequence S' that sati1sfies 1. 1and 2., we have 1 S 'I" 1 S 1 

W ' h' h h 1·1 . e must emp aS1ze t at t e so ut10n need not be un1que. In the blocks 
I 

marked by an asterisk the determinktion of the new C may give some 

difficulties. We can meet here two! situations: 

I • 1 Pnen 1 = 

IQnenl = 

2. Ipnenl " 
1 Qncn 1 " 

2 

2 

the procedure clin proceed in a unique way. 

the procedure 
the next e. 

a rule to decide which cell will be 
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For the missing rule in the second case one may take the following one: 

if possible, do not change the coordinate that was changed in the preceding 

step; 

if possible, make the coordinate that must be changed as low as possible. 

The procedure gets stuck in the block marked by two asterisks when this set 

is empty: this means that no solution exists. (Fig.2.) 

As an application of the described procedure we consider the rectangular grid 

of fig. la. The cells are here the little squares of the grid determined 

by the coordinates at the top and at the left side. The cells belonging to 

B are shaded. 

Let the origin be (1,6) and the target (7,5). 

After the first part of the procedure the partition gives the result as given 

in fig. lb. The set P consists of the cells containing the character "p" and 

the set Q is the set of all cells containing the "q". 

During the "trace-routinell, the second step, we meet only the situation 

iPncni oriQncni = I, and thus, the solution is unique. 

However, when we choose (1,3) instead of (1,6) as the origin, a rule like 

the one given above is necessary to obtain a unique solution. The results 

are depicted in fig. Ie. 

3 ~ 5 6 7 8 1 !2. .3 '1 '5 6 "1 

1 

2 

3 

~ 

s 

6 

"7 

8 

8 

P 

'1 

9 

p 

p 

q 

q 

p 
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3 It 5 6 l' e 

p 'i 'i P 

P 

Fig. 1 : Example of a routing algorithm 

on a grid. 

P 

'1 Cf 

q 

c:: 
1. 

I 
2. SIMPLE CONNECTION ALGORITHM ON A GRAPH 

I 

The connection algorithm on a gJaPh 

d . 'b d' h d' ,I escrl e 1n t e prece lng sectlon, 

however, is still the same. 

has a more general nature and the procedur 

must be modified. The main principle, 

The set C is nOw equal to the set of vertices G, while the relation n is now t 

same as the relation f .• Again, c( is partitioned into two sets A and B, and an 

origin and a target are pointed Out. 

However, the first step splits A in four sets: P, Q. Rand A\(PuQuR). 

\ 
Again, the blocks marked by an asterisk make uniqueness uncertain. One has to 

add ~ "decision-rule" to eliminade this flaw, e.g. when the vertices are , 

labeled with different integers dine may demand that the vertex with the lowest 

label of all possible vertices isl taken. But when th~ labels were not assigned 

in a,special way, this will be aJ arbitrary choice. 
I 
I 
i 
I 

~, II 
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>-~=-------~c~:=J(-*~(-~-p--n~c~~~* 
.-::-..1......:----::;-:,,-, * 

no 

Fig.2. 

Connec.bon proc.eduv-e for the. grid problem 
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P: =: PI)L 

nO 

f'\: R\(c."·] 

no 

r.c~·-.=~~-~-c-~~p~n~z~~--'* ~-===4=t:~~ __ ,~i;~-:~=-~c-~~~~~C~~~~R~~n~~~c~~~~~-_"J* 
"?:=1>'(e.} c.:=c~ eQ n c'1 R=R\(c] 

B'=SV(c.) I 

I 
i 

no I 

I 
I 

ri g.\3 
I 

Connec.\:ion procedure fo~ the '3raphpro6lern 
! 
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3. SIMPLE MULTILAYER r:oNNECTION ALGORITHM 

In the preceding section we generalized the algorithm of section 1 by 

admitting an arbitrary relation n. In this section we want to generalize 

not on the relation n, but on the number of "layers". Every layer has the 

same II gr id structure". In every layer we have a partition of C into two 

sets: for layer i f.e. A. and B .• Again, we have in C an origin and a 
1 1 

target. The procedure consists also of a search routine and a trace routine. 

In the first one C is partitioned into four sets P, Q, Rand T and in the 

second part the sequence S is selected where ScCXL (L is the set of "layers", 

In the description of the algorithm the following arrays are used to store 

the sets: 

F[ I: r, I: k, 1 :tJ is an array which is not changed during the connection 

procedure. It is only changed after such a procedure to add the cells of 

S to the proper B. 's. 
1 

During the procedure the array F is as follows: 

Fe i, j, hJ = x~ «i, j) ) d w z FCi, J , hJ = +-+ (i, j)E~ 

FCi, j , hJ 0 -<-+ (i, j)EBh 

The array E[ 1 : r, 1 :kJ keeps track of the partition of C into P, Q, Rand T 

E[i, jJ = 0 -<-+ (i, j) ET 

E[i, jJ ++ (i, j )EP 

E[i, j J = 2 -<-+ (i, j)EQ 

E[i, jJ = 3 +-+ (i, j)ER 

At the initialization of the procedure all cells are lTI T and thus all 

E[i, jJ are zero. 

t is an variable, which can take the values I, 2 and 3. 

Further we have two "projection"functions: 

The search procedure can be described as follows: 

Step 1 : D:= {c*}, * E[lf
l 

(c ), lf
2

(C*)J:= 3; t:=3 

Step 2: t:= t+ 1 (mod 3) 

Step 3: DD:= U {CTj} 
CED 

= i ++ a. K[c = (i, j)J 
JE 

j -<-+ aiER[c (i, j)J 
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, 

Step 4: For every c in the set DD wb determine whether E[IT
1 
(c), ITZ(c)J 0 

and whether there is an h srCh that 

FL 7f 1 (c) , IT Z (c) ,hJ = 1 All c ' E cn [f [ IT 1 (c I ) ,IT Z (c ' ) ,hJ= 1 AE [ IT 1 (c ' ) , IT Z (c ' ) JF 0 J 

If both conditions are sati~fied, then E[IT1(c),7fi(c)J:=t 

else DD:= DD\{c} 

Step c. D: = DD 

I ** search outine is completed, Step 6: If c E D then the else go back 

to step 2. 

After the search routine we have some data for the trace routine available, 

i.e. t, F and E. With these data we ctn determine the sequence S, but in 

general this sequence will not be uniiuelY determined, SO that additional 

decision rules h~ve to be app~ied: I. f' 4 

An example of th1s procedure 1S g1ven,1n 19. • 

I 

The array E does not supply all the iJformation necessary for the trace 

routine. Suppose we have reached cellic and E[IT1(c),ITZ(c)J=t. 

The next cell c' must be chosen such that 
I 

1. e'Ecn 

2. E[1T
1
(C') ,1T

Z
(c')J=t-1 (mod 3) 

3. Il
hEL

[F[1T 1 (C)'1T2(C)'hJ=IAF[ITI(C')'IT~(C')'hJ=IJ 

\ 
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3 :2 3 1 

2 1 2 

... 
1 3 1 

212 

3 2 3 1 

1 

1 3 

1 

2 3 4 5 

F] F2 E F] F2 E F] F2 E F] F2 E F] F2 E 

] 3 2 0 3 0 2 

2 2 0 2 3 0 

3 0 2 0 3 

4 0 2 0 0 2 0 3 0 

5 3 2 3 0 0 2 

6 3 (I 2 0 3 

7 0 0 0 0 0 0 c' 0 0 

8 0 t 0 3 2 

9 0 0 0 3 

]0 0 

Fig.4: Example of a multilayer problew. 
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4. GENERALIZATIONS 

In the two preceding sections we have ~eneralized the procedure of section 

in two different ways. In section 2 thi n-relation became unrestricted 

(except for finiteness, of course); in
l 
section 3 we introduced a multilayer 

procedure. Another possibility is to allow for a more complex optimality , 
I 

criterion. The criterion was up to now: "the shortest path between the origin 

and the target", where shortest mean~: "passing through a minimum number 

of cells" . One could solve the prOblet also by assigning "cell masses" 

instead of partitioning into sets P, Q (R) and D. The "cell mass" of c is 

in such a case the smallest number of cells one has to pass through before 

.. * .1 II " 
reach~ng c started ~n c • By allow~ng ~ more general cell mass one may 

think to have improved the procedure gheatly. One can take for example as a 

"cell mass" a weighed sum of penalties~ 

fCc) = f. (c) 
~ 

f. (c) are the penalty functions, 
~ 

number of cells one has to pass 

through to reach c from c*, the number of crossings one has met, etc •• 

Two complications are then introduced. Firstly, our strategy has to be 

changed (one must assign "cell masses" only to those cells that obtain the 

lowest possible mass, which means that one has to remember all neighbour 

cells which didn't get a mass) and secbndly, the penalty function has to 

satisfy special conditions (the minimul corner problem is not solvable 

by this algorithm). We will give the dlscription of the algorithm, and then 
I 

these difficulties will be apparent. I 
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b b is a symbol, the socalled prohibition symbol 

R+ R+ is the set of non-negative real numbers 

C C is a finite set of "cells" 

S' S' is a finite set, the socalled cell alphabet 

CnS' = 0 

bES' 

S S = S'\{b} 

n ncCxC A V V, c[(c,c)in A «c,c')€n++(C',C)En)] 
C€C c E 

n is called the neighbour relation 

a acCxS' A V a! s,[(C,S)EO] 
CEC SE 

a is called the labeling relation 

llcR+ xSXR+ 

V(n,s)ER+x S a!mER+[(n,s,m)E)J] 

V V V R [(n,s,m)Ell~n$m] 
nER+ SES mE + 

V V V S[n$n' ~ (n,s)~$(n',s»)J] 
nER+ n' ER+ SE 

)J is called the weighing relation 

A A~C A VCEC[CEA ++ (c,b)ia] 

A is the set of admissable cells 

* P is the set of paths 

* o5cP xR 
+ 

V A V R [«c),n)Eo5~=O] 
CE nE + 

V( ) p*[«ct,cZ, ••• c ),m)E<I ...... «c
t 

,cZ,···,cn_ t )o5,cno,m)E)J] 
c

1
,c

2
, ••• ,c

n
E n 

c' 
p 

c 

a is called the cellmass relation 

c' 
p 

c 

* * 

= c'} 

T TcAxP xp 

(pEP*AP=(C1,cZ, ••• ,cn)Acip ACEc1n) ~ (c,p)T=(c,c1,cZ'···'cn) 
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Find a path P such that: 

** 
** c 

pcP * 
c 

A V C 
p' oF * 

c 

I 
[«p,mo )c6 A (Pi,m)c6) -+ mo~mJ 

I 
~~~_~!g~!i!~ II 

* * * L:-{c },L' :-L":-I:-~,f(c ):-I7.(C ):-9, vccC\{c*}[f(c):=l(c) :=ooJ,l:=o I. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

II. 

12. 

13. 

I:~, Z:-Z+I 

V [V [f(c')=oo -+ (c':cL' A (f(c),c'o)~:cI)JJ eEL c t EcnnA 

m : -+(m cI A III I[m<m J) 
o 0 mE 0 I 

V L'[;\' AL[(f(c'),co,m )c~J -+ (f(c):=m AC: L"Al(c):=l)J 
CE C Eenll 0 0 

L:=(LUL")\{clccA A V, [f(c'),Ioovc'o=bJ} 
** ' C Een I 

L=~ + P~* =~ (no sOlution) 

** I fCc )=00 -+r.2 i 
** 'V ** 

~:=(c'O).:.c:=c J 
c: -+«c.c)cnA V '0 [l(c)~l(cDJ) 

p:=(c,p)-r 
'0 
c:=c 

'OJ. *. 
CrC -+ r. 10 

CECfl I 

I 
I 
I 

I 
I 
I 
I 
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III. THE MATHEMATICAL FORMULATION OF THE WI INC PROBLEM 

I. INTRODUCTION 

The wiring problem which occurs in the esign of printed boards and integrated 

circuits, arises from the restriction 0 the number of wiring layers. In many 

cases this number will be one. The probtem is usually translated into a graph

theoretical formulation [I, 2, 3J in such a way that a certain graph has to 
I 
I 

be tested for planarity. When the result of such a test is negative, technical 
I 

modifications should be applied in order to obtain a planar graph. 
I 

Besides the one layer constraint there are other requirements. They are listed 

I below. , 

I 
The terminals of the circuit are to be placed on the periphery 

i 

of the chip or the board. 
, 

The connection of the printed board wit~ the other parts of the system is 

simplified by satisfying this requiremedt. In the case of circuit integration 
I 

the same applies for the bondation of tHe circuit to its package, but here we 

have the additional advantage of keepinJ the bonding pads out of the region 
i 

in which the elements are placed (thermal effects). 

I 
C

2
: The terminals are to be positioned on the periphery in a previousZy 

specified sequence. I 
I 

This constraint is dictated by standardrzation rules and the desire to avoid 
I 

special precautions for isolation. ! 

With C
1 

and C
2 

a practical layout algori1thm for integrated circuits is possible. 

The formulation for printed boards, howe~er, is not complete. It should be 

. .I ( C ) extended by the follow~ng three constra~lnts C3 ' C4 ' 5' 

C
3

: The contacts of a certain corronent must appear in a given 

sequence. I , 

As to its treatment this constraint is e~uivalent to a combination of C
1 

and 

C
2

• Components with more than three pinsj in a fixed order make the implementation 
• I 

of C
3 

necessary. However, ~n order to mafch the pins of the components to the 

contacts on the board, the sequence of the contacts has to have a specific 
I 

orientation, namely clockwise or counterblockwise. Therefore we introduce 
I 

the following constraint. I 
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C 4: The orientation of the contacts on the board must be the same for 

all the components with more than two pins in a fYxed order. 

The last requirement makes an a priori choice of the side on which the 

components are to be placed, possible: 

c
5

: The orientation of the components described in C
4 

is defined with 

respect to the orientation of the terminal sequence at the periphery. 

In order to adapt our notions to those in literature we will start section 2 

with some definitions and statements whose proofs are either trivial or to be 

found in books on graph theory and analytic topology [4, 5, 6J • Section 2 

ends with the statement and the proofs of the five crucial theorems necessary 

for the justification of the mathematical formulation of the problem with the 

above-mentioned five constraints. This formulation is described in section 3, 

and in section 4 an example is presented for printed board layout. The last 

section contains some concluding remarks. 

2. THE GRAPHTHEORETICAL BASE 

A graph (G, U) consists of a finite set of vertices G and a finite family 

of edges U such that GnU = ~. G and U define an incidence relation which 

associates with each edge [x, yJ two vertices, x and y, called its ends. 

Parallel edges are associ.ated with the same pair of vertices. A loop is an 

edge of which the associated vertices are not distinct. The number of edges 

incident with vertex x is called the degree y(x) of x. We call a graph simple, 

when there are no vertices of degree less than 3, no parallel edges and no loops. 

With every graph we associate a simple graph by applying the following rules 

as many times as possible: 

I. Delete a loop 

2. Delete a vertex of degree 1 with its incident edge 

3. Replace two parallel edges by one edge in such a way that every pair 

of vertices which was associated with an edge remains so 

4. Replace a vertex of degree 2 and the two edges incident with it by 

one edge in such a way that the degree of the other vertices is not 

changed. 



A path P[x l , YkJ is a sequence [xI' ylJ, [x2 ' Y2J, •.•. [x
k

' ykJ of edges 

in which we have 

VI:;i<k \f1<j:5k [(xi = Xj ++ i = j)lA(Yi = xi + I)A(Xj " yk)J 

A circuit is a path with xI = Y
k

• A grap, is called connected, when there is a 

h b 0 f 0 I. pat etween every palr a vertlces. The maxlmal connected subgraphs of a graph 

are called components. The intersection I of two graphs consists of all the 

edges they have in common and their associated vertices. The union of two graphs 

is the graph consisting of all the edgesj and vertices of the original graphs. 

Two graphs are said to meet each other, tOf they have an edge in common. Otherwise 

they are called disjoint. The complement of a subgraph (H, V) in the graph 

(G, U) is the graph consisting of all th edges in U\V and all their associated 

vertices, denoted by G1H. The set Hn(G1Hr is called the attachment set of 

(H, V). The number of elements in this set is called the attachment number. 

I 
Let (C, W) be a circuit of~, U). We cal!l a subgraph (H, V) of (G1C, U\W) 

I 
C-hounded, when all its vertices of attafhment are vertices of C. It is clear 

that (G1C, U\W), the complement of any Cibounded subgraph in (G1C, U\W) , and 
I 

the intersection of any two C-bounded sUrgraPhS, are all C-bounded. A C-bounded 

subgraph of (G1C, U\W) is called a bridge of (C, W) if nene of the subgraphs of 

this graph is C-bounded. In other words k bridge of (C, W) is a minimal C-bounded 
I 

subgraph of (G1C, U\W). When [x, YJEU\W'I then the intersection of all the 

C-bounded subgraphs of (G1C, U\W) containing [x, yJ, is a bridge. (G1C, U\W) 
I 

is thus the union of all the bridges Of(r' W). Clearly, a bridge is connected, 

because it is minimal [7J. 

A graph is called n-separable, where n is a non-negative integer, when it can 

b OO dOdo.. hi • 1 e part1tlone 1nto two lS]Olnt subgrap s, each havlng at east one vertex 

which is not a vertex of the other, SUCh! that the attachment number is not more 

than n. A graph is properly n-separable,!when its simple graph is n-separable. 
I 

The graph is n-connected when it is not properly m-separable for any m<n. An 
I 

articulation set is a set of n vertices reing the vertices of attachment of 

a subgraph of an n-separable and n-connected graph. In a 2-connected graph a 

.. b f h h' .1 b' d ( ) [7 8 9 J Clrcult can e ound suc t at lt contalns an ar ltrary e ge or vertex " • 

I 
A graph is called planar, when it has a hopological representation in a plane 

(or equivalently on a sphere). This defihition is the link between graph theory 
1 

and analytic topology. For the details we refer to the literature [4, 5, 6J. 
I 
: 
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Here we confine ourselves to some facts from these areas. 

A graph is planar if and only if its simple graph is planar. Further, every 

subgraph of a planar graph is planar. The most famous criterion for the 

planarity of a graph is due to Kuratowski [IOJ: A graph is planar if and only 

if it has nO subgraphs whose simple graphs are isomorphic to({x.ll~i~5}, 
1 

{[x., x.J, l,;b5Ai<j~5}) or ({x.ll~i~6), {[x., x.JII~L3A4~j~6}). 
1 J 1 1 J 

A planar 2-connected graph (G, v) is called H-accessible where H c G, when there 

exists a circuit (C, W) in (G, V) such that H c C and there is a planar 

representation (G', V') of (G, V) in which every point of C'uW' can be connected 

with a point xiG'uv' by disjoint Jordan curves without intersecting G'uv'. 

(G', V') is called an H-periphere representation of (G, V). It is clear that 

one of the regions in which C'uW' divides the plane, contains no edges of V'. 

We call this region a face in this particular representation. The circuit 

C'uW' forms the boundary of this face. Two elements hI and h
Z 

of H are called 

G'-adjacent in H when they can be connected by a Jordan curve 1n this face 

without intersecting other Jordan curves in this face connecting two elements 

of H. The notation for this relation will be: hl~hZ' Every planar representation 

automatically defines an adjacency relation on H, when it is H-periphere. In 

a planar representation every vertex and every edge is on the boundary of sorre 

face. The whole graph is contained in the interior region of one of the boundaries. 

This boundary is called the outer boundary. For every face there can be found 

a planar representation on a plane such that its boundary is the outer boundary. 

Suppose namely that the graph is mapped onto the surface of a sphere. Call an 

arbitrary point of the face in question the north pole P. Stereographic projection 

from P on the tangent plane through the south pole will project the north pole 

on the infinite of the plane and the projection of the face concerned will form 

the outer region of the plane. 

Suppose we have a simple closed Jordan curve C (dividing the plane into two 

regions; Jordan curve theorem) on which two pairs of distinct points C
I

' Cz and 

C
3

' C
4 

are selected (C
I 

~ C
2 

and C
3 

~ C
4
). These pairs are said to alternate 

when there is no section of C connecting C
I 

with Cz without containing C
3 

or 

C
4

• It is possible to connect C
I 

with Cz and C
3 

with C
4 

by disjoint Jordan 

curves in one region if and only if (C
I

' C
Z

) and ~3' C
4

)do not alternate [&J. 

An equivalent definition of G'-adjacent in H is now: two vertices hI and hZ 
of Hare G'-adjacent in H if they do not alternate with any other pair of 

vertices of H on C'uW'. 
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From now on in this section (G, U) is a 2-connected graph. In the case of 

I-connectedness the according statements are easy to derive from the results 

below. Only theorcm 3 undergoes a Slightl modification. 

I 
lhecrem 1., H. c G, x. ;( G'uV' 

1.. 1.. 

(G, V) has a planar represertation (G', V') that is Hi-periphere 

for l~i~m if and only if thr graph 

(K, V) = (Gu( I[J. Lx,.}), Vu(l.'[j ([x., hiJlhiEH.})) 
i=l 1.. 1.=1 1.. 1.. 

is planar for some {xl' x2 I'" xm} 

Proof: Suppose (K, V) is planar, then it: has a planar representation (K', V') 

We consider a face with x. on its! boundary. Since x. is only connected 
. 1 . I 1 

wi th elements of H., h 11 and h21 mus t also be on this boundary. Thus the 
1. I' .. 

boundary consists of.[h~~ xiJ, [xli' h~J and PI[h~, h~J. None of the pairs 
111 

(Xi'.y) ~here YEP1[h
l

, h
2
J, are mutually alternating, so every point of 

PI[h~, h~J can be connected with li by a Jordan curve in the face without 

meeting one of the other connectibg curves. The same applies for the 

points ~f P2[h~, h~J, P}h~, h!J ,I etc. The curves connecting the points 

of P.[h~, h7 IJ with x. are in another face as the curves belonging to 
J.J.J+ 1 1 . 

P
k 

[I~, ~+IJ (k # j). The Jordan curves [hj , xiJ are disjoint from each 

other because (K', V') is a Planar representation, and disjoint from the 

constructed curves, because they are on the boundary of the faces. 

So we.con~lude that every point o~ the circuit PI[h~, h~JUP2[h~, h~JU 
[ 

1 . 1
J 

I. h . 
uP

k 
hk' hI uH. can be connected w1th t e p01nt xi by disjoint Jordan 

curves. This means that . I. . 
(K'\(~ {x.}), V'\(~ {[x., h

1
]\h

1
EH1})) is a H.-periphere representation 

1= 1 1 1= I 1 l 1 
of (G, U) for all I~i~m. 

Conversely, when (G, U) has a pla ar representation which is H.-periphere 

for 1:5 i ~m, then every hiEH. caJ be connected to an x. with m~tuallY 
1. I. . 1 1 

disjoint Jordan curves, and w1thort 1utersect1ng any edge. We on y have 

to consider the points xi as new rertices, and the connecting Jordan 

curves as new edges, and we have a planar representation of 
m m iii 

(Gu(u {x.}), Uu(u {[x., h Jlh EH.})) 
i= I 1 i= 1 1 : 1 

I 
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HcG, x/G H = {h
1
, h2 ..• h

k
} 

(G, U) has an H-periphere representation (G', U') with the 

proper"y 

V1~i<k [hi~i+1J 

if and only if 

(K, V) =(Gu{x}, Uu{[x,hJlhEH}u{[h
1
,h

k
J}u{[h.,h. 1J1 hi<k}) 

. 1- 1-+ 

is planar. 

Proof: For IHI:<;;3 the theorem reduces to theorem I. So we suppose !H!;"4. 

For the first part of the proof we start from the planar H-periphere 

representation (G', U') with the proposed properties. We can connect 

hi with hi+1 and hI with \. by disjoint Jordan curves in the face with 

H on its boundary. The new edges form together a circuit containing H 

completely and being the boundary of a new face. The new represented 

graph is thus H-periphere. From theorem I we know that the graph (K, V) 

is planar. 

Now we suppose we have anH-periphere representation (G', U') but with a 

wrong adjacency relation on H. This means that there is a subset 

{ha , h
b

, hc' hd} of H with a<b<c<d and ha~hc and hb~hd in {ha,hb,hc,hd}· 

Further, we suppose that (K, V) is planar, and thus we have a planar 

representation of 

(M, W) = (G, Uu{[h
l

, \.J}u{[hi'hi+lJll~i<k}) 

since this is a subgraph of (K', V'). From the first part of this proof we 

also know that this representation is still H-periphere with the same 

adjacency relation. 

From theorem 1 and the first part of this proof we conclude that the graph 

(MU{x}, Wu{[ha,hcJ, [hb,hdJ, [ha,xJ, [hb,xJ, [hc,xJ, [hd,xJ}) 

must also be planar. 

However this graph contains the sub graph 

(HU{x} , ([ha,xJ, [~,xJ, [hc,xJ, [hd·,xJ, [ha,hcJ, [~,hdJ, [h1,\.J}u 

U{[hi,hi+1Jll:<;;i<k}) 

whose simple graph is isomorphic to one of the graphs in the theorem 

of Kuratowski. So (K, V) cannot be planar, which implies a contradiction. 
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When a graph (G, U) is H-accrSSible, there is only one adjacency 

relation on H possible. 

I 
Proof: Again we suppose that IHI~4. I 

Since (G, U) is H-accessible it hJs an H-periphere representation (G', U'). 

Suppose it has another H-periphere! representation (Gil, U") such that there 

is a pair hI' h
Z 

in H, which is G'~adjacent and not Gil-adjacent. This 

means there is a path P'[hl,hZJ id (e', W') in which there is no element 

of H\{hl,h
Z

}. PII[hl,hZJ is the co+esponding path in (Gil, U"), and this 

path contains at least one edge not in (e", W"). Let P~[hl,hZJ and 

Pi;[hl,hZJ be two disjoint paths, tlogether covering the whole ·(e", W'.'). 

On P~[hl,hZJ there must be an hati and not equal to hI or hZ' and on 

Pi;[hl,hZJ there must be an ~EH, Jot equal to hI or hZ' In (G', U')we 

can easily find a path P'[ha,hbJ not containing a vertex of P'[hl,hZJ 

(for example in (e'UW~\P'[hl,hz]).~owever, in (Gil, U") there is not such 

a path, since ha'~ and hI ,hZ are lalternating on e"uw". 

Theorem 4: 
I 

A planar graph (G, U) is prrrerly 2-separable if and only if there 

is at least one face boundary in an arbitrary planar representation 

of its simple graph which hds more than one bridge. 
I 

I 

Proof: There is a planar representation ~f the simple graph of (G, U). Suppose 

one of the face boundaries has mote than one bridge. Bridges are connected. 
I 

thus attachment vertices of a bridge B cannot alternate with vertices of , 

attachment of another bridge B'. SO all the vertices of attachment of 
I 

B are on a path P[cl,cZJ of the boundary and none of the attachment 

vertices of B' is. Then the graph lis separated by c
I 

and c
z

• 

Conversely let the planar graph (G, U) be properly Z-separable with 
I 

articulation set {cl,cZ}.Then se~arate the graph at c
I 

and cz. We have 
I 

now two components: (H;, U;) and (Hi, Ui)' since c
I 

and Cz are connected 

in (Hi, Ui), (H;, Ul) must be {CI,!cZ}-periPhere (apply theorem I after 

choosing an arbitrary point on a path PZ[cl,cZJ in (Hi, Ui», so we can 

connect c
I 

and C
z 

by a Jordan cur~e in the new face. The same is possible 

in (Hi, Ui). After identifying [cl,czJ in both components we have a 

Jordan curve between c
I 

and C
z 

inl(G', U') and from theorem f we know that 

c
I 

and Cz must be on the same boundary (e',W').(This fact is obvious from a 

picture, but as many theorems of Jnalytical topology hard to prove). 

I 
I 

i 
I 
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The theorem is usually referred to as the Jordan-Schonflies theorem [6J) 

Since the graph (G. D) was properly 2-separable. there must be 

a vertex not in C in HI as well in H
2

• This means that (H
l
lC, DI\W) and 

(H
2
1C, D

2
\W) contain each at least one bridge of (C, W), since they are 

not empty. 

Theorem 5: A graph (G. U) has a unique planar representation (i.e. the 

boundaries of the faces consist of the same edges for every planar 

representation of (G. U))if and only if (G. U) is planar and not 

properly 2-separable ([11. 12J). 

Proof: The necessity is easy to see., for one can, without spoiling the planarity, 

obtain the mirror -image of every subgraph with attachment number two, by 

twisting it around its attachment vertices. 

The sufficiency follows from theorem 4: 

Suppose we have two planar representations(G ' , U' ) and (Gil, U") of (G, D). 

(C ' , W·
,
) is the boundary of a face in (G I, U ') and (C", W"), the corresponding 

circuit in (Gil, U"), is not the boundary of a face. In (Gil, U"), (e", w") 

must contain inner and outer bridges, so at least two bridges. Thus the 

corresponding circuit in (G ' , D'), (C ' , W') must also have at least two 

bridges. Since (C ' , W') was the boundary of a face. The graph (G, D) must 

be properly 2-separable. 

. . 

3. THE MATHEMATICAL FORMULATION 

In this section we want· to construct a graph from a given network and some 

additional design data (constraints) such that it is suitable for a number 

of tests which are necessary and sufficient to yield C
I 

to C
S

' and a practical 

implementation on a computer is possible. In the case of integrated circuits 

where C
4 

and C
s 

have lost their relevance a planarity test proves to be 

efficient. However, with printed board layout we have chosen for a combination 

of two tests, a planarity test followed by a connectivity test. Of course it 

will be advantageous that the output of the first test is adapted to the other. 

We will come back to these subjects in section 5. 
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The starting point 1S the schematic dia ram of the network consisting of components 

and conductive interconnections. In the set of components we distinguish between 

components that can be crossed by wires and those that cannot be crossed. 

Resistors on a printed board are usuall~ big enough to allowfor one or more 

crossings. In IC-technology a diffusion !resistor of more ,than 1 kQ can also 

be crossed without difficulty. These cOrrWonents belong to the first set. A 

transistor is an example of the second Jind of components. Its contacts are too 
I 

close to each other to permit a crossing! (In IC-technology the distance between 

the contacts is sometimes big enough, bult here we want to avoid crossings too, 

since parasitic capacitors are introduce~ then). With every component of the 

second kind we associate a vertex in thei graph to be constructed. We refer to such 

a vertex as a c-vertex. The conductive interconnections in the diagram form a set 
I 

of "trees'!. These trees can never be crossed without special measures ("jumpersll 
I 

for printed boards, "cross-under resistots" for Ie's). With every conductive 

tree we associate a vertex, called a t-vbrtex. Whenever a component belonging to 

a c-vertex c of the graph has one of its! contacts on a conductive tree associated 

with t-vertex t we connect c with t by ah edge [c,t]. Note that the graph so 

constructed is bipartite. This means thah the set of vertices can be partitioned 
I 

into two subsets, such that every edge of the graph connects a vertex of one 
i 

subset with a vertex of the other. 

Remark:Some components with a special shilpe (f.e. IC with a "dual 1n line"-package) 
I 

should be implemented in a special way. 

The graph generated by the described proiedure is called the potential graph. 

We assert that, when the potential graph I is planar, then there exists a planar 

wiring and a non-overlapping component p}acement. It is easy to get a layout 

~ith these properties by "growing" the ctvertices until they have reached the 

size of their components. The wiring bet~een the components is (for example) . , I 

the rest of the graph. Of course this isinot a practical layout. In one of the 

subsequent stages of the program one has Ito minimize the chip area or to place 

;verything on a board (mostly with standtrdized dimensions). These procedures are 

not the subject of this paper. I 

After the construction of the potential graph we have to implement C
1 

to C
S

' 

rne treatment of the first constraint is immediately clear from theorem I. 

There are several conductive trees which contain terminals. The set of vertices 

H is the set of their t-vertices. What in fact we want to know now is whether 

the graph is H-accessible. We therefore ~onnect every vertex in H with a new 
I 

vertex x. (The graph is still bipartite; !we consider the vertex x as a c-vertex). 

Planarity of the graph thus obtained is 

H-accessihility. 

necessary 

I 

and suffi'cient for the 
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The introduction of Cz seems to be obvious from theorem Z. Acting in the sense of 

this theorem we connect every pair of "adjacent l1 terminals by a new "adjacency 

edge" (bipartiteness is preserved by laying a vertex on every new edge; these 

vertices can be considered as c-vertices). The potential graph is now extended 

by a so-called wheel (the "terminal wheel" in this particular case): the 

adjacency edges form together the "rim" of the wheel, x is called the IIhub" and 

the edges inddent with x are called the "spokes". Planarity of the obtained 

graph is necessary and sufficient for a planar potential graph constrained by 

C
I 

and C2," However, theorem 3 makes the usefulness of the implementation of Cz 
questionable. (We will explain this in section S). Nevertheless we maintain the 

addition of the adjacency edges, because most planarity tests yield directives 

as to the set of edges whose deletion planarizes the graph and then the adjacency 

edges may be useful. Besides the implementation of C
4 

becomes easier as we will 

see later in this section. 

C
3 

is treated in an analogous manner. Here the hub is the c-vertex associated with 

the respective component. The set H is formed by the t-vertices directly connected 

with the hub. We only have to add new edges between adjacent contacts, and again 

a complete wheel is introduced. We can make the same remarks on the introduction 

of C
3 

as we did with C
Z

• The graph so obtained is called the extended potential 

graph. 

The question now is, whether this graph is planar or not. In case of planarity 

a layout constrained by C
I

' Cz and (eventually) C
3 

exists. Otherwise the graph 

should be modified by using possibilities given by the technology until planarity 

is obtained. The problem which is left now can be formulated as: "Does a planar 

representation of the (eventually modified) graph exist in which C
4 

and Cs are 

satisfied?II.This is very unlikely to occur, and thus in most cases modifications 

should be carried out. It is immediately clear that methods searching all planar 

representations(Le. by applying the theory described in [IZJ, [16J or [17J) 

are not recommendable. Firstly because of the computational effort involved, and 

secondly because we don't obtain any indication for executing the necessary 

modifications. The next thought can be to invalidate these objections by using 

a "constructivel1 planarity test. By constructive we mean that the starting point 

is a planar subgraph which is extended until the graph at hand is obtained. 

The extension-steps consist of transformations, which do not spoil the planarity 

and take the orientations into account. Nevertheless we prefer a connectivity test 

(subsequent to the planarity test) on a planar representation of the (eventually 

modified) extended potential graph which accounts for C
4 

and C
S

. The reason 

for this choice will be given in section 5. The connectivity test implies a 

partitioning of the graph into maximal not properly Z-separable subgraphs. 

Before executing the test we add the three adjacency edges of each component 

with three pins whose orientation has to be considered. They may not 
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I 

have been inserted into the extended pbtential graph, since they are not 

essential for the sequence of the cont~cts (it always is the same in the case 

of three contacts) and they may complibate the modification steps. 
. • • I 

Yet, 1n the connect1v1ty test, these edges are important, because the graph has 

to be subjected to a simplification pr~cedure in which a c-vertex associated 

with an orientated three-Pin-component!may disappear. 

Furthermore, wheels are clearly not properly 2-separable. This means that its 
I 

hub cannot be in an articulation set with less than three elements. Thus wheels 
I 

will not be split apart by the connectivity test procedure. 

According to theorem 5 the subgraphs glnerated by the test have unique planar 
I 

representations. So the orientations of the components in such a subgraph are 
1 

fixed with respect to each other. Cons~quently, a necessary condition for 

satisfying C
4 

is that the orientationslof the components in such a subgraph are 

all clockwise or all counterclockwise. IThis is also sufficient, because some 

subgraph with all its wheels oriented in the same way may be adjusted with 

respect to the orientation in another Jubgraph by twisting it around its 

articulation points. I 
The orientation of the "terminal wheel'f referred to in constraint CSJ can 

easily be incorporated into the procedure to check C
4

• 

4. EXAMPLE I 

In this section the described method il demonstrated with a printed board 

layout design. 

The circuit diagram is given in figure 1 (voltage stabilizer). The components 

are numbered (1) up to (12) inclusivel~, and the conductive trees 13 up to 23 

inclusively. The constraints are speci~ied as follows: 

I 
C

1
: The terminals 13, 14, 15 and 16 ,,;re to be placed on the periphery of the 

1 

board. I 
C

2
: The following sequential position, of the terminals around the periphery 

is required: 13, 14, 15, 16. I 
C

3
: The contacts of component (1) (t~e operational amplifier) must appear in 

the following sequence: 16, 19, 1!3, 21, 20, 14. 

C
4

: The orientation of the componentsl (1), (3), (4) and (9) has to be the same: 

when walking along the rim of th~ respective wheels in clockwise direction 
I 

the hub has to be in the region at the right. The t-vertices on the rims 
I 

I 
i 
I 
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then have to occur in the following sequence: 

a) for the operational amplifier ((1»: 

16, 19, 13,21, 20, 14 

b) for the transistors ( (3) respectively (4» 

(3): 15, 23, 16 (emitter-base-collector) 

(4) : 16, 20, 23 (idem) 

c) for the potentiometer ((9»: 

17, 18, 19 

C
S

: When walking along the rim of the "terminal wheel" in the sequence 13, 16, 

15, 14, the hub has to be at the right. 

The potential graph can easily be constructed by connecting the c-vertices 

((1)-(12» with the t-vertices (13-23) according to the schematic diagram of 

figure 1. For the moment we consider all the components to be non-crossable. 

If necessary all the components may be crossed except the transistors, operational 

amplifier, and the potentiometer. (The op-amp has a TO-S-TYPE package; see 

bottomview) • 

We take care of constraint C
I 

and C
2 

by adding a new vertex ((24); c-vertex) 

and adding the edges [24, 13J, [24, 14J, [24, ISJ, [24, 16J and the edges 

[13, 14J, [14, ISJ, [15, 16], [16, 13]. 

The treatment of C
3 

requires the addition of the edges [16, 19], [19, 13], 

[13,21], [21, 20], [20, 14], [14, 16]. The graph obtained now, is the extended 

potential graph and has to be tested on planarity. The test discloses the 

extended potential graph to be non-planar. Planarity can be obtained by deleting 

two edges. A possible choice can be: 

a) edge [4, 20] (the base of transistor (4»; Technologically this connection 

can be established as a"jumper". 

b) One of the edges [14, 10] and [10, 18]; In this case, the modification 

is simple, since vertex (10) is associated with a component (resistor) 

that may be crossed. 

Since the planar representation in figure 2 does not satisfy the constraints 

C
4 

and C
S

' the connectivity test has to be executed. 

The starting point for this test is the extended potential graph (figure 2, 

without dotted lines) with addition of all the "adjacency edges" of each 

3-pin-component whose orientation has to be considered. The first thing to do is 

simplifying this graph. The result is depicted in figure 3. 

Theorem 4 indicates that we have to determine which faces of this graph have more 



than one bridge. The following faces Qshaded in figure J) have this Frop~rcy; 

- 19 - 13 

17 - 13 - 19 articu at ion points 13 and 19 

16 - 13 - 18 - 19 

16 - 14 - 15 - 23 

16 3 15 articu]ation points 15 and 16 
I 

16 - 15 - 24 

Faces with two vertices in common are Igrouped together and enclose a maximal 

subgraph of the simple graph, that is linot properly 2-separable. The orientations , 
of the components that are placed in the same subgraph, are fixed. If these 

I 
relative orientations are not accordin$ to the constraints C

4 
and C

S
' some 

additional modifications have to be cirried out to satisfy the constraints. 
I 

If the (relative) orientations of the II components in distinct subgraphs are not 

according to the constraints, then the
l 
orientations in some subgraph may be 

changed by twisting the subgraph arounr its eventual articulation points. In 

our case we have 3 maximal subgraphs tfat are not properly 2-separable: 

a) ({13, 17, 19, 18, 9}, {[13, 1r J , [17, 19J, [18, 19J, [13, 18J, [9, 17J, 

[9, 18J, [9, 19J}). 

This sub graph contains the wherl associated with the potentiometer (9). 

b) ({16, 23, 15, 3}, {[16, 23J, [f3, 15J, [3, 15J, [3, 23J}). 

This subgraph contains the wheel associated with transistor (3). 

c) The subgraph containing all th~ edges of the graph in question except 

those edges that are contained: in the graphs a) and b). 

This subgraph contains two Wherls, namely the terminal-wheel (hub 24) 

and the wheel associated with the operational amplifier (1). 

I 
The orientation of transistor (4) is of course always ensured since one of 

I 
its pins is connected with a jump~r. Tge relative orientation of the two wheels 

in c) is according to the constraints Iso no additional modifications have to 

b
' )1 

be carried out. The subgraphs a) and have to be rotated to get the planar 
I 

representation of the graph as given i~ figure 4. From this graph it is easy 
I 

to construct the planar representationiof the modified potential graph that 

satisfies the given constraints. 
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5. CONCLUDING REMARKS 

In the preceding sections we have shown how the wiring problem in a general 

form (taking into account the five design requirements C
I 

tot C
S

) can be 

formulated in a graph theoretical way such that implementation on a computer 

is possible. 

The construction of the potential graph as described here is in fact the same 

as in [13], but we do not want to adopt the cumbersome notion of the generalised 

graph [14], which is only a bipartite graph from the topological point of view. 

Of the five constraints the first two did appear in literature before [IS, 16, 13, IJ. 

The step to C
3 

is then evident. In [13, I] the implementation was also the same 

as described here but the actual content of theorem 3 is not noted. From this 

theorem it is tempting to conclude that the adjacency edges are superfluous, 

and indeed, in the planarity test they are. The planarity test on the graph 

extended with adjacency edges even yields less information than the test on 

the graph that does not contain these edges. However, when the graph turns out 

to be non-planar modifications have to be applied. The importance of the 

adjacency edges at this stage depends on how these modifications are carried out. 

Of course the potential graph need not be biconnected, but separability only has 

influence on the preceding when an articulation point is in one of the sets H .. 
1 

In practice this case will not occur; besides this influence can easily be seen 

from the planar representation. 

In the construction we indicated how to preserve the bipartiteness of the graph. 

This only is advantageous when this property is used in the operations carried 

out on this graph, for example in the planarity test. 

After the planarity test a connectivity test is necessary for treating the 

orientations of the components as fixed in C
4 

and C
S

' In the case that such a 

test has to be carried out it is recommendable to apply a planarity test that 

gives adequate output for the connectivity test. We have at our disposal a 

planarity test that yields the planar representation in a face-oriented way. 

After the planarisation a check on the orientations can be executed very easily. 

Another advantage is that th9 terminal wheel need not be added since C
I 

and C2 
can be taken care of by starting the procedure with a face that contains the 

terminals in the required sequence. 

More facts about splitting a graph in not properly 2-separable subgraphs are 

given in [17J. This paper, however, does not contain an algorithm for the splitti"g 

procedure in spite of Weinbergs statement [16J that it does. 
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Tn section 3 we mentioned as a thought Ithat a constructive searching for a 

planar representation could solve the ~roblem. Then , one can investigate the 

graph upon the requirements C
1 

to Cs b~ one test. However the problem remains 

to find a practical implementation. Weibbergs algorithm [16J for example 
I 

can be alterned easily for this purpos~, .but is as planarity test already 
I 

difficult to implement. Several other "ronstructive" algorithms have a simpler 

implementation, but the required alterations are complicated. This is the 
I 

reason of preferring the method presented in section 3. 
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IV. MODIFICATIONS FOR MONOLITHIC IC'S 

From the modifications we demand that 

a. they do not increase the number of masks 

b. they do planarize the extended potential graph. 

The following modifications are used to obtain the modified potential graph 

of fig. 3 from the extended potentialgraph of fig. 2: 

Ml: When the collectors of some npn-transistors are connected with the same 

"potential tree" they may be placed in the same isolated region. This 

means that we need only one contact between this region and the conductive 

interconnection. In the graph this is reflected by a possible deletion of 

all the corresponding edges except one (arbitrary chosen) edge. 

The disadvantages of this modification are not very important: 

- restriction of the "layout-freedom" 

- parasitic capacitance between the isolators and connections crossing 

the region 

- field effects (when there is no buried layer, the expected decrease 

of the collector resistance is often held off because of these effects. 

In the example the deletion of [45,7J is necessary for planarization, 

but also [43,12J and [44,8J are deleted. 

,M2: For pnp-transistors the same possibility occurs, when their bases are 

connected with the same potential tree. In the graph all the correspond

ing edges except one arbitrary edge can be deleted. In the example no pnp

base-contacts are connected with each other, so in this case M2 cannot 

be applied. 

M3: The "lateral" realization of a pop-transistor is the most common and better 

one, but in case the collector is connected with the lowest potential in 

the circuit one may choose for the substrate-pop-transistor, since the 

substrate is always on the lowest potential. However, there are severe 

objections against this modification, which causes a deletion of the 

corresponding edge in the graph. Normally the p-diffusion is so undeep 

that the current gain is too low. Making the diffusion deeper causes 

many other components to have a parasitic pnp-transistor which is almost 

always disadvantageous. Besides the depth of the diffusion is difficult 

to handle. 

Using this modification,[51,4J is deleted in fig. 3. 



Fig.1 Schematic diagram. 

Fig.2 Extended potential 
graph (constructed 
from fig.1 by the 
method of Chapter 
III) . 
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Fig.3 Modified extended potential graph. 

Ad fig.3: 

The following modifications have been applied: 
MI: 7,45, 8,44 , and 12,43 are deleted; 
M3: 4,51 is de Ie ted; 
M4: 27, 28, and 33 are deleted; 
M5: 7 is doubled; 
M6: emitter contact (9) of TI (39) is doubled; 

base contact (5) of TI2 (50) is doubled. 
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M4: The greater the resistance, the lar er is the possible distance between 

its contacts. When this resistorle gth is large enough conductive 

interconnections may cross the reSittor between its contacts. Their 

number is limited by the distance 0 the contacts. In this stage of the 

design, however, we make this numbe unlimited for resistors with a value 

greater than five times the "squarel resistance". In a later stage we 

incorporate the resistors taking info account their length and other 

criteria using the algorithm of Charter II section 4. (When problems arise 

by the number of crossing connections, this can always be solved by a 

MS: 

I 
n+-diffusion series resistor (ca. ]O~)). In the graph the modification 

I 
is effected by deleting the corresprnding vertex and its associated edges. 

The only objection is the restriction of the "layout-freedom". 
I 

In fig. 3 the vertices 27, 28 and 33 with their associated edges are 

deleted. In fig. 4 they are introdu~ed again. 
I 

The same modification is possible in case of capacitors, but the series 
I 

resistance of a Si0
2
-capacitor will increase. 

Beside deleting edges a graph 

of vertices by doubling: this 

vertices t] and t2 such that: 

{cl [c, t] JEu' }v{cl [c, t
2

]EU'} 

and 

may be planarised 

means I replacing a 

I 

I 
= {cl rC' t]EU} 

by increasing the number 

t-vertex by two new 

The number of "potential trees" is increased, but both new "trees" should 
I 

have the same potential. Therefore they are connected by a crossunder 

resistor ~which is an as small as p~ssible n+-diffusion resistor permitting 

a crossing) or by a connection Withlthe same isolated region. Of the 

last kind is the modification to obtain a doubling of vertex 7 in fig. 3. 

The n+ diffusion resistor must be aJplied only when it is absolutely 

neeessary, because: . I 
- its value is not always neglect~ble (ca. ]O~) and depends on the 

I 

potential difference I 
- parasitic capacitance is introduced and we have field effects that may 

increase the resistance I 

a separate isolated region may belnecessary. 
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M6: Another is the doubling of a transistor contact. In the graph this is 

\ 

\ 
I 

I 

a doubling of a t-vertex as described above. Both new vertices, however 

must be connected with the c-vertex corresponding with the transistor. 

When a contact of a transistor is doubled no other contact of the same 

transistor can be doubled. Transistor TI2 of fig. I has got a double 

base contact and transistor TI a double emitter contact, which means 

a doubling of vertex 5 and vertex 9. 

A disadvantage is the increase of the capacitance between the base- or 

emitter lead and the collector region and - in the latter case -

the base region. 

/ 

/ 
/ 

-1.-, /n 
26 

4"3r----_--{ 

I~r------__l 

45 

1-------1115 

':I''j-----_--f 

Fig.4 Embedding of the resistors. 
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Ad fig.4 and fig.S: 

In fig.4 one can see which poten ~ials cross the deleted resistors. 
The resistor are embedded such tl ~at they only cross t-vertices 
taking into account optimalizati, pn criteria e.g. the least possible 
number. In fig.S a symbolic layol It of the schematic diagram of fig. I 
is depicted in correspondence ~i' :h the modifications of fig.3. 
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V. THE "CEL"-PLANARITY ALG ORITIIM 

We have a graph (G,U) with n vertices (iGi = n). Of course we can define 

a bijective mapping f from G into the set { I, 2, 3, ••.• n}. This means 

that every vertex XEG is associated with an integer f(x). We can use 

this fact in giving the edges of (G,U) an orientation. The result is a 

digraph (G,V), called the f-oriented digraph of (G,U) and defined by 

V G V G [[X,y>EV+-+ [X,yJE U A f(x)<f(y)J 
XE yE 

Every function f which is conform the description above, points out one vertex 

SEG with f(s) = 1 and one vertex tEG with f(t) = n. A function f is called 

a drain function of (G,U) when it possesses the additional property 

[(x " S A X " t)+-+ II ' 
[X,yJEU 

Cf(y»f(x»f(z)] ] 

A digraph (G,V) is called a drain if it is acyclic and it contains exactly 

one source and exactly one sink. 

The 0 rem I: Every f-oriented digraph (G,V) for whic.h f is a drain function, 

is a drain. 

Proof: First suppose that (G,V) possesses a cycle. C[a
O

,a
l
,a

2 
.•.• , a

k
> with 

a
O 

= ~. From the definition of f-oriented we conclude 

This is contradictory, since f is bijective and thus a
O 

= ak + f(aO) = f(~) 

1 is the smallest number in the range of f. The graph is f-oriented 

thus s must be a source. n is the highest number in the range of f, 

and so t is a sink. 

There are no other sources,because for every x " s there is a yEG 

with f(y)<f(x). (f is a drain function !) 

Analogously, t is the only sink. 
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Now we have a drain (G,V). Let U be the1set {[x,y]I[X,y>EV v [y,X>EV} 

Suppose that f is such a drain function lof (G,U), that the associated 

f-oriented digraph of (G,U) is equal to (G,V). Then we call f a natural 

drain function of (G,V). 

The 0 rem 2: With every drain (G, V) 

function associated. 

, 
:there 
I 
I 

is at least one natural drain 

Proof: We have a drain (G, V) with the 

Let us construct the following 

I 
I 

source s, and the sink t. 
! 

subdigraph of (G,V): 

I 
G 

n -

V 
n -

V' 
n -

=,~ {t} 
i 

= IV \ V' 
i n - 1 

= i{[x,t>1 [X,t>EV} 

I 
I 
I 

By deleting arcs we cannot get extra cycles so (G
n 

_ l' Vn _ 1) is 

I also acyclic. 

I 
I 

Clearly, every source of (G,V) i~ a source in (G
n 

_ l' Vn _ 1). 

Furthermore, G
n 

_ 1 does not con4ain more sources, since r only changes 

for vertices in the set G~ _ 1 = !(xl [x,t>EvL If such a vertex x is 
I -1 -1 

a source of (G l' 
n -

-1 
every x in G, r (x) 

Vn _ 1) thaI) rn_1(x)= 16. Since t i r (x) for 

= 16, and x Jould be a source of (G,V). 
I , 
I , 

We conclude thus that (G l' V I 1) has also one unique source. 
n - n -

We now state that (G l' V 11) is connected, in other words, t 
n - n -

is not an articulation point of ~G,V). We prove this statement by 

reducing its negation to an absurdity. 

I 
When (G I'V 1) is not con~ected, it consists of more than one 

n - n - I 
component. We consider one of th~se components (G',V') of (Gn _ I'Vn _ 1) 

and prove that it must contain 4t least one source. Since (Gn _ I,Vn - 1) 

has only one source, it can haveiat most one component, which means that 
, 

it is c'onnected. 
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The outline of this part of the proof is: 

we prove that t is a partial ordering for G' 

every chain has an upper bound 

according to Zorn's lemma we conclude that there 1S a minimal element 

which is a source in our case. 

~ 

ris reflexive, because (x,x).r .,. xcr(x) 

ris transitive: (x,y)d i .,. eyer (x)] ycr(x) .,. /l. N ,£ 

(y,z)d [zEf
j 

(y)] 
+ j(x) -+ 

.,. z£r (y) .,. /lj£N 

ris antisymmetric: (x,y)£r -+ 

(y,x)Ef .,. 

-+ z£r(x) -+ (x,z)cr 

y£r(x) -+ /l. N 
,£ 

xcr(y) .,. /l. 
J£N 

[Ydi(X)]! 

[xEfJ (y)] 
-+ xE:f 

i + j(x) 

This means that there is a chain e'[x,y> and there is 

a chain e"[y,x>, which form together a cycle. However 

(G',V') is acyclic, thus i = j = 0 or x = y. 

These three properties of r make it a partial ordering. 

For every chain e in (G',V') we have V eVe [(x,y),r v(y,x)£r1 
XE y£ ... 

which means that e is a linearly ordered subset of Go.. 

Every chain in (G', V ') has a lower bound gEG' : for take g in the 

following way 

g£e ",/ly£e [(y,g)£r "y 10 g ] 

then 

V [(g,c)£f] 
e£e 

Finally, a minimal element in G' is an element so' such that 

-+ S 
o 

= x ] 

or in our terminology: s is a source (for r-
1
(s ) = 0) 

o 0 

We use now the famous lemma of Zorn: 

Every partially ordered set in which every chain has a lower bound, 

has a minimal element. 
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From this lemma we conclude that ~very component of (G
n 

_ I'V
n 

_ I) 

contains a source, and since therf is only one source in G
n 

_ l' 

(G
n 

_ I'V
n 

_ I) must consist of 0rlY one component, which means that 

(G V I) is connected. I 
n - I' n 

I 
I 

Analogously, we can find upper bornds for chains and then, again 

according to Zorn's lemma, there e1xists a maximal element, for us 

a sink. 

We delete one of these sinks, say t 
I n -

to it. So we get (G
n 

_ 2' Vn _ 2)\ and 

I' and all the arcs incident 

the whole process is repeated. 

We proceed in this way until we have G
I 

= {s}. 

i 
I 

The drain function becomes f(t
k

) ~ k, I skSn with s = tl and t = t • 
n 

The 0 rem 3: We have a biconnected 
I 

g~aph (G,U) and a subset G
I 

of G with 

a:path P[x,y] = [x,I,y] in (G,U) with IGII~2. There exists 

XEG
I

, YEG
I 

and InG
I 

= 0: When GlcG, then I '" 0. 

I 

f b · d h h . I I .. Proo : In a 1connecte grap t ere eX1s~s an e ementary C1rcu1t which contains 
I 

two given edges. Because (G,U) is ,biconnected we can find two edges [x,z] 

and [x',z'] with x and x' in G
1 

aq z and z' in G\G
1

• 

C is a circuit containing these t~o edges. We consider the path P'[X,x'] 

on C consisting of x,I' and x', while II has z as its first vertex. 

Let y be the first vertex next to Iz in P'[x,x'] which belongs to GI • 

P'[x,y] is the required path. I '" 0, because z EI. 
I 

We call a graph (G,U) x-y-biconnected, whe~ xEG, YEG and (G,U u {[x,y]}) 

is biconnected. 

The 0 r e ill 4: A connected graph (G,U) 

and f(t) = n for given 

s-t-biconnected. 

I 

[possesses a drain function with f(s) 
I 

sl and t, if and only if (G,U) is 

I , 

Proof: Assume that (G,U) is not s-t-bico~ected. This means that (G,U u {[s,t]}) 

contains an articulation point a. [f there exists a drain function for 
I 

(G,U), then this function will alsr be a drain function for (G,U U {[s,t]}). 
, 
I 

I 

I 
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1. a = s: 

G1 = {xl 'Op [aEP[x,t]]} 
[x, t] 

It is certain that G
1 

# 0, s # y and t ¢ G
1

• Further, every vertex 

adjacent to y is an element of G
1

, thus 

3: 
..., zEG 

But then f is not a drain function 

ll.a#s: 

G1 = {xl 'OP[ [aEP[x,s ]J} 
x,S] 

3: 3: '0 [f(x) ~f(w) A f(y)~f(w)J 
xr.G

1 
YEG

1 
wEG

I 

Now G
1 # '" and siG 1• 

x = a-> -.3: 
ZEG 

[[y,Z]EU A f(z»f(y)] 

x # a-> .-,3: 
ZEG 

[[X,Z]EU A f(z)<f(x)] 

Again f is not a drain function. 

The second half of the proof is by construction: 



J 
ii." {~I v I. v~tl 

... := I ".I 
I 

f.(~):=1 

I 
y:= 

yE Io A (X,y)E -rr.,l] 
L 

~tV):= L(x) t 1 
• 

I k:=1J 

I 
-$4-

I 

i 

I 

F;~d ~ P"~~ 'PkL"k'Ykl • .r-k.1 .. !.y,,1 
wit.... "".y, ~ Sk A fr") '" f,,(Yk i A I"n~,,: ~" 

... :; I I"I I 
<;" .. :. f,,, vI" I 

I I 

IZ::VkJ 
yo': YI< 

!"" ( ... ):: ~y)-l 
~:=y 

.r.::'J( 

1(; ~y 

I 
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A digraph (G, V) is called a delta D, if it satisfies the following conditions: 

1. (G, V) is acyclic, 

2. a! -I 

st, 0 G 
[r (st,) = 0J 

3. "toG [r(t) 0- Ir-I(t) I = 1 J 

4. (G, V) has a topological representation in a plane conform the following 

description: a is a given straight line in that plane, 

all the vertices of G are on one side of a, 

d(a, x) is a distance between a vertex XEG and the line a, 

VXEG "YEG [[x, y> oV -> d(a, x)<d(a, y) J 

V
tEG 

V
ZEG 

[r(t) = 0 -> d(a, t)~d(a, z) J 

In the described representation we can take: 

All sinks are then on a line cr parallel to the linea.ois called the sink line. 

d(a, 0) is the distance between a and o. 

A connected graph is called separable, when it has at least one articulation 

point. 

The definitions relating to connectivity are given only in the case of graphs. 

With respect to digraphs we use these words, when the graph which is left 

after replacing every arc by an edge, possesses the corresponding properties. 

A section is a maximal subdigraph of a delta which contains the source st, , 

in such a way, that st, is not an articulation point. Clearly, a section is 

a delta. 

The maximal non-separable subdigraph S of a section S containing the source, 
c 

is called the core of S. A maximal connected subdigraph of the digraph obtained 

by deleting all the arcs of S and the isolated vertices formed thereby, is 
c 

called a shell of S. 

Of course, every section with more than one edge has at least one shell and 

every shell is a delta. 
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Having a plane representation as descriped in condition 4., we can give the 

sections of a delta an ordering acCOrdi~g to the incidence at s~ (f.e. from 

the left to the right): [Sl * s2 * ... i SP]. A similar ordering for the shells 

of a section, taking into account the spell-at-core incidence order, is 

possible :[T
1
T

2 
••• TqJ. i 

, 

Two deltas are called similar, if they ~re isomorphic and if for every pair 

of corresponding subdeltas the same ord~rings have been taken. A permutation 

of a delta is a transformation into an ~somorphic delta under preservation 

of the similarity of the corresponding bections. A reflection of a section is 

a transformation which is not trivial ahd results with an isomorphic section 
I 

under preservation of the similarity of~ corresponding shells. 
i 
I 

Theoreml: The reflection of a '. [IT2 q].. 
se~twn T ••• T H glven by 

Proof: 

, q q-I I 
[TT ••• T]. 

~:tssS::hat:::~i:n=a~;,s~l~t:2:0r~:.~ ~:}aw:~:S:ta:ft::es::;c:fo:e:tices 
h. as the source of T1. Clearly ~ is H-accessible. The plane 

1 ' c 
representations of S satisfying! condition 4. must be H-periphere. 

Theorem 5 in "Grapht~eoretical nbtions" gives directly the rest of 
I 
I 

the proof. I 

i 

From now on in this paper we assume th~t with every vertex x there is associated 

a label Z(x). The mapping l from G in s~me label alphabet L is not injective; 

this means that the labels of distinct vertices can be the same. Two digraphs 

are called L-isomorphic, if they are islomorPhic and the corresponding vertices 

possess the same labels. In our case wJ take for the elements of L positive 

integers. I 
I 
i 

The sinks of a delta possessing the loJest label are called index sinks. Their , 

labels are called index labels. A deltJ D is called normalisable, if it may 

be transformed into an L~isomorphic del4a D' such that all the index sinks 

are together on the sink line without another sink in between. D' is called the 

I normal form of D. 
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r h e 0 rem 2: Every normalisable delta may be normalised by a successive 

application of permutations and reflections. 

Proof: When D is a normalisable delta, then there exists a delta D' which is 

L-isomorphic to D and which is in normal form. Consider any pair of 

corresponding sections, and if the shell ordering is not the same, 

then make it so by reflection (theorem 5 in "Graphtheoretical notions"). 

Next consider any pair of corresponding subdeltas, and if the section 

ordering is not the same, then make it so by permutation. After noting 

·that the transformations do not impair each other, the theorem will 

be clear. 

Consider now a delta which is in normal form. On this delta we perform the 

following reductions: 

I. identify all index sinks with one new vertex r for which dCa, r)<d(a,o), 

without introducing crossings, 

2. add a new vertex t' to the delta on the sink line in such a way that not

neighbour-sinks in the original delta are not neighbours after adding t'. 

3. adjoin a new arc [r, t'> between the new vertices, 

4. assign the index label of the original delta to r and to t'. 

The obtained digraph is again a delta, and it is called the reduced form of the 

original delta. 

Elements of L, parentheses and asterisks are the symbols in the formula ~ of 

a delta which can be defined recursively: 

1. the formula of a section consisting of one arc is equal to the label of 

the sink: 

s = ({x, y}, {[x, y>}) + ~ = Z(y) 

2. the formula of a delta with p sections is as follows 

D = [SI ~ S2 ~ ••• ~ SPJ + ~ = (~1) ~ (~2) ~ ••• ~ (~p) 

i . Si. . 1 2 P where ~ 1S the formula of ~ 1S called the product of ~ , ~ , •.• ~ . 

(~i) is called a factor of ~. 

3. the formula of a section with q shells is as follows 

12 q 1 2 q 
S = [T T .•• T J + ~ = (~ ) (~ ) ••• (~ ) 
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I 

I 

i 
I 

and now ~i is the formula of Ti. ~ i~ 
¢I, ~2, ... ,~q. 

(~1) is called a component in ~. 

called the concatenation of 

I 
I 

Remark: It is obvious that only sink larels enter the formula, and that 

they appear in the same order aF the corresponding sinks on the 

sink line. 

I 

Sometimes (not always) we can drop somel of the parentheses in a formula without 

loosing information: I 

I. «~» can be replaced by (~), 

I 
2. (~) where ~ is a single label, can be replaced by ~, 

I 
3. (~) where (~) is a factor in a product, and ~ is a concatenation, can be 

I 
I replaced by ~. 

The meaning of the transformations permltation and reflection for the formula 
I 
I 

is clear. Permutation is effected through a permutation of the factors in 
I 

some product. Reflection is effected through a reversing of the order of the 
I 
I 

components in a concatenation which is either a factor in some product or a single 
I 

component in some other concatenation. 

I 

A formula is in normal form, if all of its index labels are together only 

interlaced with asterisks and parenthes~s. It is easy to see that the formula 

of a delta is in normal form if and only if the delta is in normal form (see 
I 

the remark at the end of the definitionlof a formula). 

A formula is called normalisable, if it may be transformed into a normal form 
I 

by a successive application of permutations and reflections. Knowing the effect 

of the transformations on formulas and eltas it is also clear, that a delta 
I 

is normalisable.if and only if its form?la is normalisable. 

We now want to define the reduction of ~ formula in normal form in such a 

way that for any delta in normal form tie reduced form of its formula is 

equal to the formula of its reduced for~. This means that we have to translate 

the identification of the index sinks i~ a proper way. First we give a 
I 
I 

gradation to the parentheses of a formula. 
i 
I 

I 
I 
I 
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A parenthesis is called weak, if it is placed between two index labels 

(ignoring asterisks and other parentheses).A weak parenthesis which is not 

enclosed by a pair of parentheses of which one parenthesis at least is weak, 

is called a main weak parenthesis. 

The reduction rules become: 

1. If ~. contains an index label, and it is the first or the last factor 
l. 

of a product bordered by a pair of parentheses, at least one of which is a 

main weak one (marked by an apostrophe), then 

( ... * ~.)' + ( .... ) ~. 
l. l. 

'(</>. * ... ) + ~.( .... ) 
l. 1. 

2. if 4>i contains an index label and it is a concatenation bordered by a pair of 

parentheses, at least one of which is a main weak one (marked by an 

apostrophe), then 

'(4).)'+ 
1. 4>i 

(4) • ) , + 4> . 
1. 1. 

, (4) . ) + </>. 
l. 1. 

3. apply 1. and 2. recursively until all index labels are no longer interlaced 

with parentheses t 

4. replace.all the index labels by one single index label. The resultant 

formula is the reduced form of the original normal form. 
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3 , £!:!~UZ!H;:~lfl9.!:i:!P.!! I 

, 

From theorem 4 in "Assigning a drainlfunction to a graph" we know that it 

is no restriction on the generality, I when we assume that a biconnected graph 
I 

which is to be tested for planarity, I is a drain with the source and the sink 

connected by an arc. In such a graPhiwe define a basic set of ( n - I) 

deltas: I 

Dk = ({l-I(k)}ur(l-I(k)), {tZ-I(k), x>1 x£r(Z-I(k))}) for I~k<n 

following rules we generate! from the basic set a set of deltas, With the 

and we give the p a value 0 or I: 

r-__________ ~n~o~~D normalisabl 

yes 

I 
?:l-

I 
Transform D into 

I 
a normal form Dr 

I 

I 
I 

Replace [r, tl>lbY Dk 

with r as the source 
I 
I 

of Dk' This graph 
I 

becomes the newlD 
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since we are dealing with deltas, the described procedure must have an 

analogue for formulas. First the basic set of formulas: 

with 

for I,;k<n 

-I 
x.Ef(Z (k» 

1 

i ;. j .,. X. ;. X. 
1 J 

m = Ir(Z-1 (k» I 

The generation of the formulas declines as follows 

no 

Transform ~ into 

a normal form n 

Replace the sinkindex 

in p by 8
k

• This for

mula becomes the new 

no 
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I 

I 
1 

At this point we emphasise the fact tha~ the generation procedure for a given 

drain is not unique, simply because the Inormalisation need not be unique. 

A delta may possess several normal form~. The following theorem states 

that, no matter how the normalisation is. done, this will have no influence 
I 

on the value of p at the end of the generation. 
I 

The 0 rem I: Given an arbitrary draJn, then every geni!ration gives 
I 

the same value to the 11anaritY-bit. 

I 
Proof: Suppose that there is a generati~n R' which gives p the value 0 and 

h · . h' h .1 1 ' t ere 1S a generat10n R, w 1C g1ves p the va ue I, both belong1ng 
I 

to the same drain. This means tha:t we meet in the procedure R' a 

non-normalisable formula ~' and J corresponding non-normalisable 

delta D'. There must be an L-isoJorphic delta D in the generation R 

with its formula ~. These are h01ever normalisable, since the procedure R 

ends with p = I. This is a contraaiction. 

I , 
I 

Finally we have to give a proper interprrtation of the planarity-bit. 

Doing this the next lemma turns out to bf helpful. 

Consiaer a planar drain D = 

D'(k) = (Gk, Vk) is defined 

I 
I 

(G, V), D' ijs a planar representation of D; 

I 
1 

by: 

D' (k) = ({xl xEG' A l(x),;k}, {I[x, y> I (x, y>EV' A Z(x),;k A Z(y),;k}) 

By a face of a planar representation of ~ graph we mean a set of points 

in the plane that can be connected to ea,ch othe;: by a Jordancurve, disjoint , 
from the graph. 

, 
I 

The 0 rem 2: For any plane representrtion D' of a planar drain D, and 

k 11 ,I b l' G\ G' ' d every 0< ~n, a vert1cis e ong1ng to k are conta1ne 

in the same face of D'(k). 

I 
Proof: The theorem is trivial for k,;2 an~ k2:n - I. Suppose the theorem is 

I 
not true for some k 2<k<n - I. Thfs means that the sink t of the drain 

is in one face and there are othe" vertices in G'\Gk in another face. 

Among these there has to be a ver~ex with a maximal label, and this 

vertex has to be a sink. Since thfre is only one sink in a drain, 

our assumption must be false. 

I 

I , 
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The 0 rem 3: Given a drain D, then this drain is planar, if and only if 

there is a generation R for D which gives the planarity

bit the value 1. 

Proof: That D is planar when p = I, is clear from the generation, for the 

last generated delta is equal to the given drain, when we remove the 

last formed arc [r,t'>. 

Now suppose that D is planar and D' is a planar representation of it 

such that [s,t> is on the boundary of the outer face. We assume that 

v [d(a,t»d(a,x) A d(a,s)<d(a,x)] 
xe:D'\~s,t} 

According to theorem 2 all vertices of G' \Gk are lying in the outer 

face of D'(k). Under this condition all the successive D'(k) in the 

generation can be drawn on the plane in a way that condition 4 of the 

delta definition is fulfilled. They form the whole set of deltas of 

the generation procedure, so the theorem follows. 

The GEL-algorithm can be given in the following schematic way: 

Take two vertices sand t in G 

such that [s,t]e:U 

Assign to (G, U) a drain function 

such that f(s) = 1 and f(t) = n 

Determine the basic set of formulas! 

Start the generation process! 

no p = 1 ? 
yes 

. 

kG,u) is not planar I i(G,U) is planar I 
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1 

.4. Two eXampZes 

(A,: :tlfr1 .. " 

132: 3 II 't lfr 6 

~3='" lfr:' 

/-3~: 10 .. " 

fo~:6 '* 9.,0 

.,t36= 1 

/-3J=8* g 

foB: 'llii 11 

In this section we give two examples, one planar graph and one non

planar graph. 



1 

A=':J2.;2.*Pill'~1· f~ 

\ 

SI..=(C'-t¥S) .... 4 ¥6) _7 '" \1 

5 10 6 7 

7 

:SS'(S(Io\,")*6)ll<1 *H=yZ; : ~S 
6 9 6 7 

1 

~6' (t. 6" 9s10) (IOM11) *6)oI! 1 '" 11 

1 

'S7: «10 JOH) (io ... g)1).1 *11 = '17 

" 3 ~ 6 7 12 

t 1 

:s'?>= (3 "Lo~6) * 7 "'" ~Tt~ ~ S3 

5 6 " 
3 

1 1 1 

17~; ((s*"i~ ... 6)*1 *" 
10 " b 7 11 

1 

S,,· (5'< III 6) 1r.1 If 11 

1 

Sf> -= (10"',)(IO*9) 6)-7_ " 

i 1 
i ~1 = 00 'to 11)60*9)1 '.1111 , 
1
10 , 
I 
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10 

" 
10 

" '0 9 " " 

1 I 

j' '3 "Go .'1)60" 9)((9* ,,)* S) ." 't'3" (10 'If 1') 60* ca) (':I *(<:1 lit 1 V) 'It " 

10 " 10 

" " 

1 

)'3 "c.o '* ,,) 10'3" .'1 .:flO' CIO lit 11) 10 10 "*",, 

" 11 

1,,,=(,,.<10) 10 10 "*,, 
11 , , , , 



1 

3 

5 

6 

'3 

2 6 :t 

1 

(3, = ~2. : 2 • .3 * 6 = 5'~ 

1 
~-a:(".s).3 *6 = '1~ = ga 

1 

j'~=~.5).( ... s)*6 

5 6 

5 

I . 

(J~I= ..., ¥- 5 
, 
I 

p~~ It- * 5 

! 
i 

fJl= 6 
. 

I t: 6 

The non-planar example 

I 
I 
I 

3 I 
I 
I 

I 6 
I 

I 
I 

I 
I 

~ 

5 6 
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VI. OTHER PLANARrTY ALGORITHMS 

I. !U?l~!!~Eg:t::l:~~L!?~~~~L~!!_~!!_jl:!:E~£~~!:,_~~£~~E~il:i~!!_~~l:b~~_i:E~~!!~~: 

!!,!;!!lg£~!!i:~!!_!!l~Eb~~:2· I 

I 

Our starting point is the (connected!and) nonseparable graph (G, V) . 
, 

SeU is a segregate set, which divide1 G into two disjoint proper subsets Gr 

and G
rr 

. lSi} is a set of disjoint 4utsets such that SIuS2u .•• u Sn = S 

The subgraph (Gr,V
r

) exists such thai: V
XEGr 

v
YEGr 

[[X,Y]EUr+[X,Y]EV] 

Define a set of subgraphs (G., V.) of I' (G, V) such that: 
1 1 

I 

I) GIl = G
1

UG2 U ••. U Gn ; GilGj = 0 

2) U = VI uD uS UVIUV2U ... UVn;VinVj=~;vinS=¢;VinVr=¢;Vr ns=¢;u i nID=¢ 

v G V G [[X,Y]EU A [x,y]lVI ~ [X,Y]ED] 
XE'I Y< r ,. I 

3)v G V G [[X,Y]EV + [X,Y]EVJ I xc:. YE. 1 
1 1 I 

4)V [ ] S [XEG. v 
X,Y E • 1 

. 1 

YEG.] 
1 

5) (G.,U.) is connected. 
1 1 

I 
1 

I 
I 
I 

The subgraphs (G.,U.) can be 
1 1 

i 
constructed by deleting all the vertices G

r 

and all the edges which are incident to these vertices. 

, 
Let (G,V) and (H,C) be graphs and let ~ be a mapping from G onto H: 

$ is called a homomorphic mapping or a homomorphism if: 

-I -I I 
I) V

h 
H [($ (h.), ([x,yJ IXE$ (h.) AYE$-I(h.)A[x,Y]EU}) is connected] 

iE 1 11 1 

2) [hi'hjJEC++ "xE$-l(h.) "YE $-I(h.t [[X,Y]EU] 
1 JI 

"(G, U) is homomorphic to (R, C)" ifi there exists a homl!lmorphism from 

G onto H. 

Notation: (G, U) » (H, C) 

For example (H, C) can be 

(G., U.) of the original 
1 1 

created byl "contraction" 

graph (G, U

r 

of some subgraphs 

Consider the homomorphic mapping fror (GruGrI ) onto (GrUH): 

I 

(G, U) ~ (GIUH, UI uS UD) 
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Theorem I: 

rn a connected nonseparable graph (G, D) let a segregate set S and two 

associated subsets of G, G
r 

and G
rr

, be chosen such that (G
r

, Dr) defined 

above, is a (chordless) circuit, C. Then, necessary and sufficient conditions 

for (G, D) to be planar are that (GrUH, Dr uS uD) and {(GrUG
i

, Dr USiUD
i

)} are 

planar. 

Proof: I) Assume (G, D) is planar. Then all its subgraphs are planar. Thus 

(HUGr,SUD
r 

UD) and {(GrUGi,D
r 

USiUD
i
)}, which are subgraphs of (G,U) 

are planar. 

2) Assume that (HuG
r

, SUD
r 

uD) and {(GrUGi,D
r 

USiUD
i

)} are planar (Note 

that form the definition each (GrUG., DrUS.UD.) and each (G., D.) 
1. 1. 1. 1. 1. 

is connected). Since all (G., D.) have no edges incident to each 
~ ~ 

other, the addition to the planar graph (HUG
r

, SUD
r 

uD) of each 

(G., D.) will remain planar if each (GrUG., DrUS.UD.) is planar. The 
1. 1. 1. 1. 1. 

latter is one of our starting points. Therefore (G, D) is planar. 

rn the literature the graph (HuGr,SUD
r 

uD) is often called "pseudo-Hamiltonian 

graph" 

set of 

and each (GruG., DrUS.UD.) "decomposed subgraph" of (G, D). Deleting the 
~ ~ ~ 

edges Dr decomposes the graph (G, D) into a union of edge-disjoint 

subgraphs"denoted as the "bridges" of C in (G, D). The above-mentioned 

(decomposition) theorem suggests an iterative algorithm ,for testingiwhether a 

graph is planar or not. Given a graph (G, D), we find a circuit C, form the 

corresponding pseudo-Hamiltonian graph and test the planarity of the latter 

graph. The planarity of each decomposed subgraph (i = I, 2, .•• , n) is then 

tested by the decomposition theorem in a subsequent iteration (see fig.2). 
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to theorem 1. 



Planarity-test by iterative decomposition: 

[GraPh (G, U) I , 
Construct (optimal) circuit C in 
the graph (G, U) 

I 
G = Gr + GIl; GrnGIl = 0 

gEG
r 

++ g is vertex on C 

GIl = G1UGZU ... uG 
n 

S is a segregate set: 

V[X,y]ES ~x, yJEUA«XEGr AyEGIl)V 

v (YEGrAxEGn » ] 
{S.} = set of disjoint cutsets such 

1 
that: 

S = SluSZU" . US A 
n 

AV[ ].s[ (XEGrAYEG.)V 
X,y j J 

V(YEGrAXEG
j
)] 

I 
create (GruH,Ur uS UD)by contraction 
of all (G; ,Uj) j=l, ••• m 

-
.J. 

(GrUH uS UD) 
ria 

(G, U) s ,Ur 
planar? not planar 

lY~s 

For j = 1 , • . . •. m: create 
(GrUG. , 
whethJr 

UfiUS'UU') and test 
t esJ gtaphs are 

planar using all abovementioned 
steps (same procedure) 
rf all planar .. (G, U) planar 

Fig. Z. 

, 
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I 

I 
I 

Thus the problem of testing the PlanarJy of an arbitrary graph can be reduced 

essentially to the problem of testing t~e planarity of a pseudo-Hamiltonian 

graph. The requirements that the latter igraPh is planar,is equivalent to the 

requirement that its bridges can be map~ed on the inside and the outside of 
, 

C in such a manner that no two edges onlthe same side cross. The vertices of , 
a bridge which are common to C will be 1a11ed· "vertices of attachment" of the 

bridge. Assume that there are at least iwo such vertices (otherwise the bridge 

can be separated from C) and that they are ordered in a clockwise sense on C. 

The successive vertices in this orderinJ divide C into a set of edge-4isjoint 

paths. We say that bridge b' does not a~ternate wi th bridge b, if a11 the 
j 

vertices of attachment of b' lie on a p,th defined by two successive vertices 

attachment of b. Otherwise, we say that :b' alternates with b. Notice that in 
I 

a planar graph, the bridges which alterqate must be mapped on opposite sides 
I 

of C. On the other hand, bridges which ~o not alternate are not so constrained 
I 

and may be mapped on either the same or Ion opposite sides of C. From this 
I 
I 

knowledge the following theorem is clearj' 
I 
I 

! 

I 

Theorem 2: 

A pseudo-Hamiltonian graph is planar if land only if its bridges can be 

associated with two disjoint classes I abd 0, such that no two bridges in the 
I 

I 
same class alternate. 

I 
This theorem expresses the condition tha~ the pseudo-Hamiltonian graph be planar , 
in terms of the synnnetric binary relatiof' "alternation", which is defined on 

the set B of bridges. To examine 

alternation graph (G , U ), such 
a a 

this re~ation we form an (undirected) 

that: I 

I) For every element in B th~re corresponds a vertex in G
a 

2) b. alternateswithb. -leg., g.]EU 
1 J 1 J a 

I 
It is clear that for every pseudo-Hamiltonian graph, there is a unique alternation 

I 

graph (relative to the circuit C). In ger' eral, the alternation graph will 

consist of several connected components . 

. I 
DeL A bipartite graph is a graph in WhlCr the vertex set G decomposes into two 

disjoint sets G
1 

and G
2 

such that e~ch edge connects an element of G
1 

with an element of G
2

• 
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Theorem 3: 

The necessary and sufficient condition that the pseudo-Hamiltonian graph be 

planar is that its alternation graph is bipartite. 

The proof follows directly from theorem 2. 

The following procedure may be used to determine whether a graph is bipartite 

or not. Construct a spanning forest of the alternation graph. Assign to an 

arbitrary vertex of the tree the plllssign. The vertices which are connected 

with the plussign via one edge obtain a minus-sign (and vice versa). In this 

way the sign of each vertex of the alternation graph is uniquely fixed. The 

graph is bipartite if and only if all remaining edges are incident to two 

vertices with opposite sign. 

Another procedure is the following:Choose a vertex of the alternation graph 

and assign to this vertex the plussign. Assign this minussign to each vertex 

which is connected to the plussign via one edge. If there exists an edge 

between any two elements of this set of minussign-vertices, then the graph 

is not bipartite. If this is not the case, then choose one of the last set of 

assigned vertices and assign the opposite sign to the vertices which are 

connected with the chosen vertex via one edge. If there exists an edge between 

any of these vertices (the last set of assigned vertices) and any ether vertex 

with the same sign, then the graph is not bipartite. The procedure is going on 

until all vertices have a sign. It is possible that in a particular step, there 

are no other edges going out from any vertex of the last set of assigned vertices. 

Then the procedure is started again for the vertices which are .left (which 

have no sign). 

The property of alternation also makes it possible to implement the decomposition 

on the computer using matrix notation. To illustrate this let us consider the 

incidence matrix A of the pseudo-Hamiltonian graph. Arrange the rows and columns 

of this matrix A in such a manner that the property of alternation can be 

determined by inspection. The leading rows and columns correspond to the 

vertices and edges of C in a natural sequence. The edges of attachment of each 

bridge are grouped together and placed next (ending with the bridges consisting 

of only one edge, namely the edge between two vertices of C). 
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, 
I 

I 
To determine whether two bridges altern~te. We examine the submatrix of A 

I, 

whose rows correspond to the vertices o~ C, and whose columns correspond 
• 1 • 

to the bridges. This matr1x is called t~e attachmentmatr1x H, and can be 

divided into submatrices A. of H which dorrespond to the bridges b. 
1 I 1 

Let A. and A. be two distinct submatricJs of H. Then, A. does not alternate 
1 J 

with A., if al1 
J 

I 1 

of the nonzero rows of A. are bounded by the same two successive 
11 

nonzero rows of A .• From the above~entioned theorem 2 we now can state: 
J I 

The pseudo-Hamiltonian graph is plAnar if its attachmentmatrix can be 
I 

partitioned H = [r:O], where no two submatrices A., A. in a partition 
I 1 J 

I of 0 alternate. 

I 
A partitioning-algorithm of the attachment matrix is given below. 

i 
I 



-77-

Partitioning-algorithm of the attachment matrix H of a pseudo-Hamiltonian graph 

(Note that this algorithm is like the second procedure which tests the 

bipartiteness of the alternation graph). 

n:= n + I 

1:= \1; 0:= iil; 

H':= {AI' A2 , ••• Api Ai submatrices of H, 

corre.sponding to the bridges}; 

n:- 0; 1:= 0; 

H
j 

= A.I A.EH' arbitrarily 
n 1 1 

H
j 

:= set of all the 
n 

submatrices of H', that 

alternate with a arbitrary 

submatrix (element) of H
j 
n 

H' := 

if (n+ 1) = odd then 
j 

else I: = I + Hn+1 

Does h alternate 
o if (n+l) = 

if (n+l) = 

j 
H' - Hn+1 

j 
0:- 0 + Hn+1 

j:= j + I 

n:= 0 

The pseudo-Hamil
tonian graph is not 
planar : 

II' partitioning ready 
print I 

print 0 

The above-described partitioning of H takes the form 

00 oIl 12 
H = [HoHI ••• HkHoHI •• , HpHo ••• J 
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2. """;,,:,""_""'-"_,,-',;'-'''',[, 

I 

A; Some graph-theoretical notions I 
, 
i 

Before defining the "dual graph", tet us define some other notions and 

properties of these notions. 

Nullity (cyclomatic number): 

The nullity of a graph with m 

]J = m - n + p. 

i 
edge~, 

I 

n vertices and p components is 

Rank: The rank of a graph with m edges, n vertices and p components is n - p. 
\ 

Theorem I: The nullity of a graph is equal to the maximum number of 
I 

independent circuits. 
I 
i , 

Proof: Let us build up the graph edge by edge, starting with a graph 
I 

consisting of the vertices of the graph, isolated one from the other. 
\ 

Adding a new edge connecting two vertices a and b of the graph which 
I 

are connected by a path in rlhe graph, will increase the nullity by , 
i 

one (the nullity will not a~ter in other cases a~b), and the addition 

closes new circuits. suppos~ that before adding the edge e
k 

we had 
I 

obtained afundamental basis icontaining the circuits C
1

' C
2

' ••• ; 
I 

and that after the edge e
k 

~as been added we have formed the new 

circuits: Ci, CZ' .... Clearly Ci cannot be expressed linearly in 
I 

terms of the C. (since it contains an edge which is not contained 
1 i 

in the Ci ); on the other ha~d Ci, C3' ... can be expressed linearly 

in terms of the C
i 

and Cj. ~o, each time the nullity is increased 

by one the maximum number of, linear independent circuits increases 

I
, 

by one. 

Corollary I: A graph contains no 

Corollary 2: A graph possesses a 

is one. 

Cut-set: 

I 
I 

ci'rcuits if and only if its nullity is zero. 
i , 

unique circuit if and only if its nullity , 

A cut-set is a set of edges of a copnected graph (G, U) such that the 
, 

removal of these edges from (G, U) ~educes the rank of (G, U) by one, 
I 

provided that no proper subset of tpis set reduces the rank of (G, U) by , 
one when it is removed from (G, U). i 
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Dual graphs: 

(G2 , U2) is a dual of (G
I

, U
I

) if there is one-to-one correspondence 

between the edges of the two graphs, such that if (HI' E
I
) is any subgraph 

of (G I , UI ) and (H;, E;) is the complement of the corresponding subgraph 

of (G
2

, U
2
), then 

r 2 = R2 - ~I 

where r 2 and R2 are ranks of (H;, E;) and (G
2

, U
2
), respectively, and ~I 

is the nullity of (HI' E
I
) 

(GI,U I ) (G
2

,U
2

) 
r

2 = 2 

R2 = 3 

~ 
n

l 
= I 

~ /r 
(HI ,E I ) (H;,E;) 

Theorem 2: If (G
I

, U
I
) and (G

2
, U

2
) are dual graphs, circuits in either 

graph correspond one-to-one with cut-sets in the other. 

Proof: Assume C to be a circuit in (G
I

, U
I
). Consider this circuit as the 

subgraph (HI' EI ) in the definition of a dual graph. Since the nullity 

of a circuit is one (theorem I), the rank of the complement of the 

corresponding sub graph is exactly one less than the rank of graph 

(G
2

, U
2
). Since no proper subset of a circuit is a circuit, no 

proper subset of the corresponding set of edges of the circuit reduces 

the rank of (G
2

, U
2

) with one by removing these edges. 
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I 
So the set of edges of the circuit lis a cut-set. 

Assume a set of edges to be a cut-slet of (G
2

, U
2
). Removal of this 

set of edges reduces the rank of (C
2

, U
2

) with one. The corresponding 

. ( ). I. ( . subgraph 1n G
1

, U
1 

w111 have nulli1ty one accord1ng to the 

definition of a dual graph). Since ia cut-set is a minimal set, the 
I 

corresponding subgraph in (G
1

, U
1

) Fhich contains a circuit (Cor. 2) 

contains no subgraph containing a c~rcuit. Hence this subgraph is 
i 

a circuit itself. Since the edges of this circuit are uniquely 
I 

determined by the edges of the cut-ret, this circuit is uniquely 

determined. I 
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Let uS start from a connected graph (G, U) with the following properties 

I. the relation r is antireflexive (no loops); 

2. U is a set of non-ordered pairs of vertices, called edges, (so the 

graph is not a multigraph). 

a. We first of all give a planarity-test which is based on the theorem of 

Whitney: A graph is planar if and only if it has a dual. 

Write U = T U L in which 

IGI= n; IT U LI= m 

T = set of edges which form a spanning tree 

L = set of edges which are the links 

The nodal 

in'id'~,7"~::)I': 
be given in the following form: 
= I ,2, ••• t n 

A = (a .. ) = 
1J A A . = I ,2, 1ll 21 22 J 

... , 
in which the edges which belong to the columns of the matrix AI2 form a 

spanning tree. This means that matrix AI2 is non-singular, so its inverse 

exists. The edges which belong to the columns of matrix All form the set L 

of links. 

Reduced form of the nodal incidence matrix (deletion of one row): 

i = 1,2, ... n-·l j=I,2, ... ,m. 

Each of the (m-n+l) links of the tree defines a loop of the graph, called 

fundamental loop of the graph. The fundamental loops define a (m-n+l) x m 

matrix B
f

; if the edges of the graph are numbered so that the links of the 

tree form the first (m-n+1) edges, and if the fundamental loops are numbered 

corresponding, B
f 

will be of the form: 

F) 

T -I T 
in which F = - All' (A

I2
) 

T = trans paning 

Additions modulo 2. 

Each edge of a spanning tree of a connected graph segregates the vertices 

into two sets; the corresponding cut of the graph consists of that particular 

tree-edge together with certain links of the tree. The set of (n-I) cuts 

obtained in this way from a tree is called the fundamental set of cuts 

and define a (n-I) x m matrix C
f

; if the edges of the graph are numbered 

so that the last (n-I) columns correspond to the tree, and if the cuts are 

numbered correspondingly, then C
f 

will be of the form: 

Cf =(E In-I) 

in which E = - FT 
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The planar graph (G, U) has a fundamen~al cut-matrix C
f 

and a fundamental 

loop-matrix B
f

• The dual graph (G*, U*)! has a fundamental cut-matrix C~ 

and a fundamental loop-matrix B;. I 
I 

From the duality of circuit and cut-set it now is clear that: 
I 

I 

There exists a one-one-corresp~nding mapping of the edges of 

the graphs (C, U) and(C*, U'? such that C
f 

= B; and B
f 

= C; 

i 
i 

The algorithm now is of the following ~orm: 

lit [I] 

incidence matrix (A) 

of the given graph 

dual 

B C* f = f = (E
T 

T 
m -

Tutte, W.T., 

From matrices to graphs, 

r-------~(A) is not planar 

Can. J of Math., vol. 16, pp. 108-127 (1964). 

I 
i , 

I 
I 

The following planarity-test is based In the theorem of Mclane: 
b. I. . 

Given a nonseparable connected graph (q, U) of m edges and n vert1ces hav1ng 
I 

circuit matrix B. A necessary and suf~icient condition for the graph to 

be planar is that it have a circuit-ba~is together with one additional circuit 
I 

{together forming submatrix B~ such tha~ this collection of circuits 
• I • 

conta1ns each edge of the graph exactly tW1ce. 
I 

Testing the rows of the circuit matrix10f the graph, taking m-n+2 rows 
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at a time involves a too big amount of labor. Let us therefore use two 

basic topological properties: 

1. each row of B (circuit set) corresponds to the set of edges that 
m 

comprise the boundary of a region produced when the planar graph is 

mapped on the sphere; 

2. (based on intuition). If all the circuit sets of a planar graph are 

considered, the circuit sets that bound the regions will predominately 

have fewer edges than those circuit sets whose edges do not together 

bound a single region. Consequently one can test the rows of the 

circuit matrix of a planar graph, giving preference to circuit sets 

having a small number of edges, and thereby realize more quickly the 

submatrix B • 
m 

Let us introduce the following definitions 

Def. 1: Edge Ordered Circuit Matrix Be: A circuit matrix of a graph is 

edge ordered when a given row has at least as many l's as the 

preceding row. 

Def. 2: Edge Set Vector E : An edge set vector E of an edge ordered circuit 

matrix B of N rows is a column matrix having N elements with its 
e 

k th element corresponding to the k th row of B , and having 
e 

numerical value equal to the number of 1 's in that row of B 
e 

(Each k th entry of E is the number of edges in the k th circuit 

set of Be)' 

DeL 3: Circuit Combination Vector ~: .. Consider a graph of m edges and 

n vertices, which has an edge ordered circuit matrix B of N rows. 
e 

A circuit combination vector of B is a row vector of N elements 
e 

of which m-n+2 elements have value 1 while the remaining elements 

have value O. 

Def. 4: Primitive Circuit Combination Vector C
p 

: A primitive circuit 

combination vector is a circuit combination vector in"which there is 

no more than one 0 between the first and last 1 entry in the vector. 

Each row of B represents a circuit set having as many edges as, or fewer 
e 

edges than, the circuit set represented by any subsequent row. We are 

interested in evaluating rows of B , m-n+2 at a time. Consequently a set 
e 

of rows under consideration can be represented by the circuit combination 

vector C
k

• 
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I 

All possible combinations of rows of a Icircuit matrix taken m-n+2 at a time 
I 

can be represented by a systematic list1ing of M circuit combination 
I 

vectors '(f.e. reading columnwise from tfP to bottom). 

Note that: C
k 

E = total number of edges, (including repeated edges) in the 
I 

circuit sets of Be represented by C
k

. 
, 

For a planar graph we know that a submaltrix B exists having exactly two 
I m 

I's per column (thus m columns gives a Itotal of 2m edges) (McLane). 
I 

I , 
Lemma I : i 

I , 
Given a nonseperable connected graph I 

(GI• 
U) having m edges and edge set 

, 
vector E. Then (G. U) is planar only if; there exists a circuit combination 

vector C. such that: 
J 

C. E = 2m 
J 

If we identify any primitive circuit co~bination vector in the systematic 
I 

listing of all circuit combination vect'ors, we observe that each given 
I 

element in all the vectors following th'e primitive vector is either in the 
I 

same position or moved to the right of jthe position it occupied in the primitive 

primitive vector. 

Lemma 2: 
, 

Given edge set vector E a primitive cir:cuit combination vector C
p 

and any 
I 

subsequent circuit combination vector C (i.e. q>p). If C
p 

E = m and 
Iq 

C
q 

E = n. then n>m (m and n being pos. iintegers). 

I 
Lemma 3: , 

I 
Given a nonseperable. connected graph CG, U). h"ving m edges and edge set 

vector E. Consider systematically list";d circuit combination vectors 
I 

C
I

.C
2 
••••• C I' C • where C is a primitive circuit combination vector. 

p- p p I 
(G. U) is nonplanar when a) CI.C

Z
' '" ICp-1 does not satisfy the above-

mentioned theorem of McLane. and b) C :E>2m. 

, PI 
Proof: for a) The theorem includes nec~ssary conditions for a planar graph 

, 

for b) We note from Lemma Z. al] C + 
, p r 

have a product greater than Zm. IHence 
I 

listed subsequent to C will 
p 

Lemma I is not satisfied. Since 

neither a) nor b) satisfy necessary conditions for a planar graph. the 
I 

graph must be nonplanar. 

Using above-mentioned Lemmas. the 

following form: 

! 

planarity-test-algorithm must 
I 

I 

have the 
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circuit matrix B 

of the graph (G, U) 

Form the edge ordered 

circuit matrix B 
e 

Form the edge set vector 

E from 

Generate circuit combination 

NO 

C
k 

primitive 

circuit vecto 

7 

graph (G, U) 

not planar 

Form a submatrix B 
m 

(m - n+2 rows corresponding 

to the I-entries of C
k 

.. ' ---~;-;~~;-----_ m + n+1 rows 

-_~ndependen 

H 

column of B 
m 

I's 

graph (G, U) 

is planar 

, 
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3.The whirl method ----------------

In the mathematical formulation of the p~oblem we introduced a method of 

taking care of the following constraints;: 

I. certain terminals must be at the periphery of the graph; 

2. these terminals have to appear in a p!reviously specified order. 

We will now translate the problem includiing these requirements into a 
I 

graph like problem, ending up with a strrcture which is called a "whirl" 
I 

i. e. a set of vertices, a set of arcs, and a set of edges. 
I 
I 

I. Construct the potential graph in the psual way (thus without the extensions 
I 

to examine the constraints). I 

2. Determine the simple graph of the obt~ined graph. This will be the graph 

to test on planarity, since we may conclude from the result whether the 

I potential graph is planar. 

3. Take now the - let us say t 
. I • 

term1nails t~at should be at the per1phery 

in a specified sequence, and number them 1n such a way that terminal i 
I 

should be a neighbour of i-I and i+1 ;(mod t). 

4 If . 1· . d . h .1 1 . I b d h 1 • term1na 1 1S connecte W1t term1na 1+ y an e ge, t en rep ace 
I 

this edge by an arc from terminal i tlb terminal i + I, else add an arc from 

terminal i to terminal i+1 (mod t). 

We assume that the constructed "whirl" i~ biconnected (this is not a restriction, 

if we are able to treat the components nbt containing arcs in the same way. 
I 

We will see that this is true). 

The planarity test is an iterative one, ii-e. the test is a special partitioning 

of the whirl in "sub-whirls" which must be partitioned in the same way, until 

only digraphs with vertices of indegree II are .left. If the partitioning of 

one of the "whirls" appears to be impossible the original whirl is not planar. 
i 

The partitioning should decline according to the following eight rules: 
I 

i 
]. Search for a path P[x,yJ where x and fI are the only "periphery" terminals. 

x and y divide the set of arcs into tro chains C
I 

and C
2

• The vertices 

are numbered from x to y by "path-indiices". 
I 

2. Now we have to consider the sub whirls! and subgraphs that are obtained by 

applying the following operations: 
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- Remove the edges that have only path vertices as terminal vertices, 

and that are not from P[x,yJ. 

They are a first set of subgraphs (each consisting of one edge). 

- Next remove all edges of p[x,yJ. This may give several components. For 

each component we examine whether a subset of the vertices of P[x,y] 

is an articulation set for this component. If so then seperate this 

component on these vertices, and consider the connected subgraphs as 

a second set. 

3. The whirl is not planar, if now C] and C
2 

are still in one component. 

4. We'll call the whirl containing c] S] and the one containing C
2 

S2' The 

other are numbered S3' S4""'Sp' 

5. Assign to each subgraph S. an array L. of the indices of the path-vertices 
1 1 

contained in S.;l. = min {L.} m. = max {L.} 
1. 1 1. 1. 1. 

6. Construct an auxiliary graph (H, U'): 

H={S],S2""'S }; [s.,s.JEU'++:i( ) L L [(l.<s<m.)A(l.<ex<m.)J 
P' 1 J ex,S E .x. 1 1 J J 

1 J 

7. Test whether (H, U') is bipartite, and if so divide H into two sets H] 

and H2 such that 

[a, b]EU' ++ «aEH] "bE H
2

)V (aEH
2
" bE H] » 

else the whirl is not planar. 

8. Split the whirl into two whirls by 

]. replacing all edges of P[x,y] by two parallel arcs with opposite 

orientations. 

2. Seperate the whirl now on the vertices of P[x,y] 

(this is an articulation set) in such a way that each whirl contains a 

cycle and one whirl contains all SiEHl and the other all SiEH2' 

We end this description by adding two remarks: 

- the big advantage of this method is that it gives as a result a face

oriented representation of the graph, but is is a relatively slow test, 

since it always consists of a number of partitions that is equal to the 

number of edges minus the number of vertices; 

- if one wants to test a graph instead of a whirl, this is possible by 

starting with replacing an arbitrary edge by two parallel arcs with 

opposite orientations. 
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VII. THE PLANARISATION OF NONPLANAR NETWORKS 

I.TERMINALVALUES 

A convenient way of describing an n-terminal-network is by the n x n

resistance- or n x n-conductance-matrix. For some reason the latter is 

chosen, and it will be called the S-matrix. 

i I (t) S II SI2 ...... Sin v I (t) 

i 2.(t) S21 S22 .... ",S2n v
2

(t) 

= or I = S V 

in (t) S 
nl Sn2····· "Snn vn (t) 

( I ) 

In these equations the current entering the network via terminal p is 

denoted by i (t), while v (t) is the voltage between terminal q and some 
p q 

freely chosen reference. 

Two n-terminal-networks are called equivalent if and only if their S-matrices 

are identical. 

The S-matrix always enjoys two properties which are direct consequences of 

the Kirchhoff-laws: 

- The Kirchhoff-current-law says that, irrespective of the terminal-voltages, 

the sum of all entering currents is o. This means for a voltage-vector 

(O,O, .... ,vj, .... O), that we have: 

n 

L: i. (t) = 
~ 

S .. = 0 
~J 

(2) 

i=1 

- Since the choice of the reference-voltage has no influence on the currents, 

we can write for arbitrary a 

n 

= L: {s ... v.(t)} 
j=1 ~J J 

n 

= L: {s .. (v. (t) + a)} = 
. I ~J J 
J= 

n n 

=L: 
j=1 

{ s ..• v.(t)} + a 
~J J L: 

j=1 
s .. 
~J 



and conclude 

n 

L 
j=l 

s .. = 0 
1J 

I 

(3) 

We now direct our attention to specikl classes of n-terminal-networks. The 
I 
I 

star ccnnected-R-networks represent 9ne of these classes. 

A star connected-R-network, for shor~ a "star", is an n-terminal-network, 
I 

consisting of n conductances and oneinode which is not available as a terminal 
I 

and with which every terminal is connected by means of one conductance. The 
I 

conductance between terminal i and the "inner node" is denoted by G .• 
I 1 

Let the auxiliary entity G be defined by 
I 

G = i~ G. I 
1 I 

I 

(4) 

I 

I 
The entries of the S-matrix of such 4 network are: 

G.G. 
s .. = 

_ ...2:...2 
for ilj 

1J G 

G~ 
for i=j 

G. 1 
s .. = -G 

1J 1 

(5) 

Note that, if the networkstructure i~ a star, the correspondence between 
I 

the ne twork and its S-ma trix is one-o:ne [5] . 

At this moment we fulfil the first 

terminalvalue <1>. for stars: 
1 

G. 
1 

<l>i =-

~ 

I 

part 
I 
I 

i 

I 
I 
I 

I 
I 

I 
Using (6) and (2) or (3) we can rewrite 

I 

i 

I 
! 
I 
I 

of our promise and define the 

(5) as: 

(6) 
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s .. = - ¢.¢. for i,lj 
1) 1 J 

(7) 
n 

s .. = ¢iL 1) ¢p for i=j 

p=1 

p,li 

So far our discussion of star-networks. We now proceed with the polygon

connected-R-networks, here called "polygons". This is an n-terminal-network 

without "inner nodes" in which each terminal is connected with every other 

terminal by one conductance. The number of conductances is equal to !n(n-I). 

We write G .. for the conductance between the terminal i and j. 
1,] 

Again we express the matrix-entries in the conductancevalues: 

soO = - G •• 
1) 1,) 

n 

Sij = L 
p=1 

G. 
1,p 

p,li 

for i,lj 

for i=j 

It is also true, that in case we are dealing with polygon-networks the 

the correspondence between the network and its S-matrix is one-one. 

At this point let us agree upon the following convention: 

(8) 

- We consider the indices as residue-classes (mod n); this means that we make 

no difference between p and q, when p - q = k.n for some integer k. We 

write p e q. 

Consider now polygons that satisfy the following conditions: 

- The value of 

G. G. 
1,X l.,y 

G 
(9) 

x,y 
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is. independent of the choice of x and y. Of course cases 

y = i and x ; yare excluded, since d. . does not have a 
1,1 

We will refer to this kind of polygons as T-polygons. 

, 

I 
i 

i 

with x :: it 

meaning. 

(10) 

The importance of this definition 
I 

becomes 
I 

clear when we look at the identity: 

1Ji·1Ji· 
1 J 

f:-r = ~l"i,p 

-rc;:-' 
rj,p 

-~ ~IG. 
l"i,j ~Gj ,p 

ru G. I 

1'IP 

With this equation and (2) or (3), we have 
I 

s .. 
1J 

= - ~·lJJ. 
1 J 

n 

Sij = lJi i L IJip 

p=1 

pfi 

I 
for ifj I 

for i=j 

for T-polygons: 

G .. 
1,] 

( 11 ) 

Comparing (7) and (11) with each other rl e come to the conclusion that every 

star is transformable into a T-polygon, and conversely that every T-polygon 
I 

is transformable into a star. In both c'ases we only have to take the 
I 

terminalvalues of corresponding terminalls identical. , 
Now the question arises: "Are there pol~gon-networks, having an equivalent 

star without being a T-polygon?" The answer will be clear from the following 
I 

reasoning: 

Suppose there is such a polygon, then f1ind its equivalent star. Since every 
, 

star can be transformed into an equival1ent T-polygon, it is possible to give a 

T-polygon equivalent to the original p~lygOn which was not aT-polygon. 

I 

I 
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This contradicts with the one-one-correspondence between polygons and their 

S-matrices. 

The main theorem is proved now: 

EVERY STAR IS TRANSFORMABLE INTO A POLYGON AND A POLYGON IS 

TRANSFORMABLE INTO A STAR IF AND ONLY IF THE POLYGON IS A 

T-POLYGON. 

The transformationformulas are: 

n 
G. 

1 L Gi = G' 

i= 1 

~. = 
1~ 

~f: 
n 

lji. = l.ZX 1zl L , 1 
~Gx,y • i= 1 

G .. ;:: 
1,] 

lji. = 'I' 
1 

~.~. 
1 J 

G. 
1 

= lji.'I' 
1 

n 

=L 
j=1 

n j;!i 

G .. + lji: 
1,] 1. 

The last formula will be clear after noting that Llji·=~ 
i=1 1 

Sometimes it will be profitable to permit negative conductances. 

In case G. . < 0 we write 
1,] 

( 12) 

( 13) 

At the end of a procedure like (13) the exponent of -I will be even. If 

it is quadruple, we replace it by a plus-sign and otherwise by a minus-sign. 

However, it is possible that the situation with G = 0 occurs. Since the 

S-matrix is not properly defined then, the presented approach is not 

adequate. For T-polygons the corresponding case is ~= o. This condition 

is equivalent to: 

n 

L 
i=2 

G. 
.2:.z.£ ;! - 1 
G 

I,p 

Every star with G ;! 0 is transformable into a polygon and a polygon is 

transformable into a star if ~nd only if the polygon is a T-polygon with 

n 

L: 
i=2 

G . 
.2:.z.£ ;! - 1 
G 

I,p 
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2. PLANAR EQUIVALENTS OF POLYGONS , 

It is sometimes desirable to have a Pla~ar equivalent for a certain non-planar 

network. In this section we will searchl for such equivalents in case the 

original network is an n-polygon. usingi the concept of terminal-values one 
I 

can find them, when n " 7. The cases n =1 4 and n = 5 were already known [1,2]. 

A solution for n = 6 was communicated tb us by S. Tirtoprodjo. 
I 

I 
The case n = 7 is rather complicated folr a one-colour-figure. This is the reason 

for not presenting it here. After seeing how the procedure works for n = 4,5 

and 6, n = 7 will give no extra difficu1lties. The structure of the resulting 

planar equivalent is shown in fig. 4. 1 

1 

The arbitrary 4-polygon of fig. la willi not 
I 

Nevertheless we will give it terminal-values 
I 

the six conductances e.g. G
I
,3 

= fuR. 
WI .~ 

"G3,4 

, GI ,4 'I G3 ,4 

i 
I 

, 
I 
I 

be in general aT-polygon. 

derived from only four of 

and G2 4: , 

We replace the two other conductances G 2 and G
2 

3 by parallel-circuits 
II , , 

(fig. Ib) in such a way that we are left with a T-polygon and two parallel-

conductances. After transforming the TtpOlygOn into a star,we have the planar 

network of fig. Ic, which is equivalent to the original 4-polygon. 
, ! , 

I 

I 
I 
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In = 5 

Now we derive the terminal-values from five of the ten conductances (fig. Za). 

We choose the inner conductances G1,3 ' G1,4 ' GZ,4 ' G
Z

,5 and G
3

,5 ' for then the 

parallel circuits will form the periphery of the network: 

ljJI 
_ fu ~GZ,5' fu 
- ~G3,5i ~Gz,~ 

G2 4 
ljJI ljJ2 = ....:.= 

G1,4 

ljJ3 
G3 5 

ljJZ = -"= 
G2,5 

G3 5 
ljJ5 = -"= '.jJ 

G1,3 I 

1/!4 
GZ 4 

ljJ5 = ....:.= 
GZ 5 , 

'I' = ljJI + 1/!Z + 1/!3 + 1/!4 + 1/!5 

Again we replace the other conductances in the same way as before 

(G .. by (G •. - 1/!.1/!.)11 1/!.1/!.) (fig. Zb) and we obtain a T-polygon with five 
l.,J l.,J l. J l. J 

additional conductances. After transforming the I-polygon, the planar 

network of fig. 2c is left. 

This case is more complicated because we need six conductances to determine 

six terminal-values. This leaves nine conductances to be replaced by 

parallel circuits. It is impossible to keep the extra conductances at the 

periphery of the network. Therefore we choose our six in such a way that 

we can follow the same procedure in the resulting network: 

Fig. 3a gives the original configuration. We derive the terminalvalues from: 

G1,3' G1,5 ' G3,5 ' G1,4 
T-polygon drawn with full 

, G3,6 and G2,5 in the usual way. This gives the 

lines (1/!.1/!.) in fig 3b. 
l. J 



To obtain equivalence to fig. 3a, we ha e to add the conductances 

indicated by the dotted lines (G .. - 1jJ!.IjJ.). In fig. 3c we have transformed 
1,J 11 J 

the T-polygon into a star and now we car treat the 4-polygons 1 - 2 - S - 6, 

3 - 4 - S - 2 and 5 - 6 - S - 4 as we diid above (n = 4). Fig. 3d gives the 

configuration of the resulting planar network. 

I 
I 

I 
I 
I 

1 
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3 • CONCLUDING REMARKS 

The introduction of terminal-values has made it possible to prove the main 

theorem in an easier way as with the existing methods [3, 4, 5, 6] and 

gives practical formulas to perform the star-polygon-transformation. But 

it has other advantages. One of these is presented in section Z where 

planar equivalents for polygons are given. This way of searching planar 

equivalents is not restricted to polygons. Both elementary Kuratowsky

graphs [7] , for example, can be transformed in planar networks. To 

conclude from the famous theorem in this paper (71 that every RLC-network 

has a planar equivalent appears to be wrong after careful examination, 

but the restrictions are not very strong. 

In applications, for example in energy-distributions, it often occurs that 

the conductance values in a polygon are not all different from each other. 

Let us take an n-gon with only two different conductance values G
1 

and G
Z

' 

With the concept of terminal values in mind, we know that this polygon is 

transformable into a star if and only if (n-I) conductances with value G
1 

come together in one node and all the other conductances have the value GZ' 

This structure is easy to recognise in a polygon-network. 

It will be easy to find other examples of the application of terminal values, but. 

we hope that the above is sufficient to convince the reader of the power 

of this concept. 
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APPENDIX 

i 

In fact we did prove in section I that a 

star if and only if 

I 
polygon 

1 
is transformable into a 

G. G. G. G. 
1,X 1,Y = 1,V l,ll 

G G 
(A) 

X,Y V,U 

I 
for all i, x, y, u and v with iJ;x, iJ;v, i,*y; 

I 
i~u, xJy and viu (mod n). 

I 
The set of conditions (A) is equivalent to I 

for all 

Proof: 

I 
! 

I 

G. k G. 1 1., _ 1., 

G. k -C:-
l J , J , 

i, j, k and 1 with i"k, jik, iil 

From (A) follows (B), for 

G. kG .. 
1, _ 1,J = 

G. 1 G .. 
1, 1,J G. k 

l., G~,l 
= G.! 1 Gj,k Gj ,1 

+--
G. k 

J , JI, 
I , 

(A) is also consequence of (B): 

G. G. G. G. 
i 

G. I ...2.z2£ = 2..Ll 4 ~ ..2:.U .2:.J2. G. 
G G G G G 1., v 
u,x u,y u,x x,y u,V I 

I , 
I 

G. G. G. G. G.' 
l., V l.,U l., X 1,y 

= 
l.1,y 

+-- -G-G G GI 
u,v x,u x,y u:,y 

(B) 

G. G . G. 
= ..2:.U ..2:.U ~ G. 

G G G l., V 
u,y x,y u,v 

G. G. G. 
.2:.U. 1,U l., V 

G G 
x,y u,v 

G. G. G. G. 

-> 

I l., v .2:.U. l.,X 1. , x: 
-G-

U,v. 

G. 
l.,U 

-G-= 
x,u 

G 
u,y 

G. 
.2:.U. 
G 
x,y 

G 
x,y 

G. G. 
= 

l., V l.,U 

G 
u,v 



-99-

Hence. the set (B) is also sufficient for the transformability. but the 

conditions in (B) are not independent. In the following two steps we will 

come to a set with a minimal number of conditions. Since every Y - 6 -

transformation is always possible in both directions. we take n > 3. 

The set (B) is equivalent to 

G. G. 
1.j 1,j + I 

(C) = 
Gi + I • j Gi + I .j + I 

for all i and j with jii-I, jii and jii+1. (mod n) 

f!gg!: The derivation of (C) from (B) is simple. but we have also to prove 

that (C) implies (B): 

G .. + 2 G .. + 3 G .. + 4 G .. + n - '2 
(C) + .,.;.1.:,.;:1.....:.--=::. ____ = ~1.:,,;:1.....:.--=::.-----= ~1~,;:1.....:......:.----= •••••••• = ~1~.~1.....:.~---=-----

Gi + l ,i+2 Gi + l • i + 3 Gi + I • I + 4 Gi + l ,i+n-2 

G. G. G. Gi + I 
... .".;;;1.!. .... p _____ = ~1C!.;:r----- or G1 .• r = ~....,:......:..!. • ...:.r- for p"i. di 

Gi + I Gi + I Gi + I 
• P , r 1.P , P pl6i+I. and r~i+1 (mod n) 

(J ') 

Be r > p (this is no restriction!). then 

G 
r,r + 

G 
p.r + 

= "'G,=.r.:,.;:r....,:.+-=.2 = ",G,=.r.:,. ;:r....,:.+--=::.3 = •••••••• _ 
G G 
p.r + 2 p.r + 3 

G 
r.p -

G 
P.P -

(2') 

From (J ') we also get: 

G 
I .r 

G 
I.p + I P - p -

= 
G G 

I p.r p,p + 

G G = G G 
p,r p + I.p - I p,p - P + I • r = 

G G 
p,r p.P - I 

= G G G = G 
I.r p + I.r p + I,p - I P.P + I P -

Dividing the last two members of this equation by G + I G _ I gives: 
P.P P.P 



G 
E,P -

G 
p,p -

We are now able to 

G 
r ,r + 

G 
p,r + 

G 
E + I, r 

G 
p,p + I 

= 
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1 

: 

G G 
."xE~,..tP:""';+---'1-:,;P"--_I!...!.;, r~ + 
GIG 

p,p + I p,p-

continue the nde (2'): 

= ~G:-,r:..J,!..:r=-+:.....;2:. = s eq ue I 

Gp,r+2 • .... r· 
G 

r,p -
G 
p,p -

I 
G 
r,r -

G 
p,r -

G 
r,p + 

G 
p,p + 

G 
r,p -

G 
p,p -

(3' ) = 

G 
r,p + 

G 
p,p + 

G + 2 
= -==-r..!.,-cp--.:......::. = 

G 
p,p + 2 

= 

..... r 
This completes the proof because this ~equence contains all the equations of (B). 

We can write the set (C) also in the f1110Wing way: 

CI , I C1 ,2 · ....... C 
I, n - 13 

C2 I C2 2 C I · ....... 2,n - 13 . ' . ' 

i 

C 
n, I 

C 
n,2 · ....... C 

13 n,n -

1 where C. stands for the equation 
1,j 

I G. 
+ j 

G .. i.. 2 1 zi + 1 121 + J , 
Gi + Gi + I ,i 

I 
j 1 ,i + j + I ,.. + 2 

1 

::,::'.,. =0 ",," .m,.,,,.,,,, "'"", <wi .. in <h. ""' '0' 
G. " I G. .. . 2 

C + n-J+q,n-J+q+q+ = n-J+q,n-J+q+J+ + 

n - j + q,j G. . I • I G . I . . 2 
n-J+q+l,n-J+f+J+ n-J+q+ ,n-J+q+J+ 

G. I I G. 2 
+ n-J+q,n+q+ = n-J+q,n+q+ 

+ 

G • \ G • 2 n-J+q+l,n+q+'. n-J+q+l,n+q+ 

G . 
n+q+l,n-J+q 

G 2 • n+q+ ,n-J+q 

G) • q+ ,n+q-J 

G 2 • q+ ,n+q-J 

I 

i 
Gn+q+I,n-j+q+1 ->

Gn+q+2 ,n-j+q+) 

i G I • =1 q+ ,n-J+q+) + 

Gq+2 ,n_j+q+1 

->-
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~ Gq+I ,q+l+n_j_2+1 = 
Gq+2 ,Q+I+n-j-2+1 

This last equation is precisely C 
q+I,n-j-2 

G . 
q+I,q+l+n-r2+2 

Gq+2,q+l+n-j-2+2 

Thus, it is enough to check the equations contained in the following tables: 

in case n is odd: C1 ,2 ...... I • C1 'n-3 
-2-

C2 ,I C2 ,2 •••••••• C2 'n-3 

in case n is even: 

C· 
n,l 

C1 1 , 

C2,I 

C· 
n,l 

C 
n,2 

C1 ,2 

C2 ,2 

C 
n,2 

· ....... 

· ....... 

· ....... 

• •••• I I • 

-2-

C 
n'n-3 

T 

C1 'n-4 
-2-

C 
2'n-4 

-2-

C 
n n-4 
2'-2-

C n'n-4 
-2-

(D) 

C 1 'n-2 
-2-

C2'n-2 
-2-

C 
n n-2 

(D) 

2'-2-

The conditions in these tables are independent, for, if one reads the 

equations column after column, and each column downward, then we meet in 

every equation a conductance which did 

The total number of equations in (D) is 

surprise us: 

not appear before, namely G. '+'+2' 
1,1 J 

!n(n-3), and this number does not 

- a polygon is determined by its !n(n-I) conductances: !n(n-I) degrees of 

freedom 

- a star is determined by its n conductances: n degrees of freedom 

- a T-polygon is equivalent to a star, and cannot have more then n degrees 

of freedom. 
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I 
This means that the minimal set of conditions must contain \n(n-I)-n = 

\n(n-3) independent equations. I 
I 

I 
The set CD) is also easily found by ins~ection' I • 

I 

We write the equations \ 

I 
G G =G G I , 
p,q p-I,q+1 p-I,q. p,qr1 

choosing for q first p+I, while p runs from to n. Then we take for q p+2 and 
I 

again p runs from 1 to n. We continue inl this way until we have 

!n(n-3) equations (fig. 5) [21 • ! 
I 

I 

\ 

I 

\ 

I 

I 
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CAPTIONS OF FIGURES 

Fig. 

Fig. la 

Fig. Ib 

Fig. lc 

Fig. 2 

Fig. 2a 

Fig. 2b 

Fig. 2c 

Fig. 3 

Fig. 3a 

Fig. 3b 

Fig. 3c 

Fig. 3d 

Fig. 4 

Fig. 5 

A planar transformation of a 4-gon 

A general 4-gon 

Splitting of the 4-gon in a T-4-gon and residual conductances 

The planar equivalent of a 4-gon 

A planar transformation of a 5-gon 

A general 5-gon 

Splitting of the 5-gon in a T-5-gon and residual conductances 

The planar equivalent of a 5-gon 

A planar transformation of a 6-gon 

A general 6-gon 

Splitting of the 6-gon in a T-6-gon (full lines) and residual 

conductances (dotted lines) 

The network after transformation of the T-6-gon 

The planar equivalent of a 6-gon 

The structure of a planar equivalent of a general T-7-gon 

A sub-network of aT-polygon. 
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