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Abstract

Background: Splicing of genomic exons into mRNAs is a critical prerequisite for the accurate synthesis of human

proteins. Genetic variants impacting splicing underlie a substantial proportion of genetic disease, but are

challenging to identify beyond those occurring at donor and acceptor dinucleotides. To address this, various

methods aim to predict variant effects on splicing. Recently, deep neural networks (DNNs) have been shown to

achieve better results in predicting splice variants than other strategies.

Methods: It has been unclear how best to integrate such process-specific scores into genome-wide variant effect

predictors. Here, we use a recently published experimental data set to compare several machine learning methods

that score variant effects on splicing. We integrate the best of those approaches into general variant effect

prediction models and observe the effect on classification of known pathogenic variants.

Results: We integrate two specialized splicing scores into CADD (Combined Annotation Dependent Depletion;

cadd.gs.washington.edu), a widely used tool for genome-wide variant effect prediction that we previously

developed to weight and integrate diverse collections of genomic annotations. With this new model, CADD-Splice,

we show that inclusion of splicing DNN effect scores substantially improves predictions across multiple variant

categories, without compromising overall performance.

Conclusions: While splice effect scores show superior performance on splice variants, specialized predictors cannot

compete with other variant scores in general variant interpretation, as the latter account for nonsense and missense

effects that do not alter splicing. Although only shown here for splice scores, we believe that the applied approach

will generalize to other specific molecular processes, providing a path for the further improvement of genome-wide

variant effect prediction.

Background
One of the key steps involved in the regulation of

eukaryotic gene expression is RNA splicing, the trans-

formation of transcribed pre-mRNA into translatable

mRNA through the removal of intronic sequences. While

variations of this process have been described [1], the

principal mechanism of RNA splicing is that the

branchpoint located in the spliced intron binds to the 5′-

donor site (relative to the intron), forming a lariat

intermediate. The 3′-donor site binds to the acceptor and

connects the two exons, thereby releasing the intron. At

some genes, multiple acceptor or donor sites compete,

such that multiple different alternative transcripts can be

formed from one gene, i.e., alternative splicing [2]. Various

studies show that more than 90% [3, 4] of genes with mul-

tiple exons undergo alternative splicing, i.e., not all exons

are included in every transcript. For each exon or exon

segment, the quantity “percent spliced-in” (psi) is defined
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as the relative fraction of transcripts this segment is in-

cluded in [5]. Exons with high psi values are associated

with stronger conservation and depletion of loss-of-

function variation [6]. The dynamics of both canonical

and alternative splicing can be influenced or disrupted by

genomic sequence variation. Variants disrupting splicing

are established contributors to rare genetic disease and

more generally variants modulating splicing substantially

contribute to phenotypic variation with respect to com-

mon traits and disease risk [7–10].

However, splicing is just one of many biological pro-

cesses that can be impacted by genetic variants, with

others including protein function, distal and proximal

regulation of cell type-specific transcription, transcript

stability, and DNA replication. Given millions of variants

in a human genome [11] and myriad molecular pro-

cesses through which each variant might act, pinpointing

the genetic changes causal for a specific phenotype down

to a set or single variant remains difficult. To address

this, the field increasingly relies on automated

approaches to prioritize causal variants. While some

predictors specialize on certain variant categories (e.g.,

synonymous [12] or missense effects [13, 14]) or classes

(e.g., SNVs [15] or InDels [16, 17]), others take features

from different biological processes into account and en-

able variant interpretation across the genome. Both

process-specific and genome-wide approaches to variant

effect prediction have distinct advantages, and it has

been challenging to reconcile them into a maximally ef-

fective approach.

A number of genome-wide scores predict variant effects

from sequence alone [18, 19]; most however use annota-

tions and genomic features defined based on experimental

assays, simulations, and statistical analyses thereof [12,

20–22]. A common approach is to train machine learning

classifiers to distinguish between two defined classes of

variants (e.g., pathogenic and benign) using selected fea-

tures. Such models can be trained via various techniques

of machine learning, e.g., logistic regression, boosting

trees, support vector machines, or deep learning. A

general variant scoring tool that we previously developed

is Combined Annotation Dependent Depletion [20, 23]

(CADD), a logistic regression model that is trained on

more than 15 million evolutionary derived variants

(proxy-benign) and a matching set of simulated variants

(proxy-deleterious). This approach has advantages over

using known sets of pathogenic and benign variants.

Firstly, the CADD training set is much larger, covering di-

verse genomic regions and even rare feature annotations.

Secondly, it does not suffer from the many different ascer-

tainment effects that come with historic and on-going se-

lection [24] of small but well-characterized variant sets.

Therefore, it leverages a high number of features and does

not easily overfit.

While existing variant effect prediction scores already

proved very helpful in detecting deleterious mutations

genome-wide, multiple studies showed limited specificity

for predicting splice-altering variants [10, 25, 26]. Even

though conservation scores like PhastCons [27] or

PhyloP [28], a major feature of many effect predictions,

are better than random in intronic regions [26], special-

ized scores show improved performance and are neces-

sary to successfully predict splice variants residing

within exonic regions. There are a number of specialized

scores for predicting splice changes [29], trained using

different types of machine learning [30], including deci-

sion tree [31–34], probabilistic [35], and kmer-based [36,

37] models. The first generation of splicing scores, like

MaxEntScan [35], focuses on the immediate neighbor-

hood of splice junctions, as most splicing variants have

been found in these regions [30]. In the last few years,

more distal splicing regulatory elements have been taken

into account [31, 32, 34]. Recently, deep neural networks

(DNNs) achieved good results on predicting splice

variants genome-wide. While the idea of using neural

networks for splice predictions is more than two decades

old [38], the first tool to leverage the recent progress in

deep learning technology was SPANR/Spidex [39], which

is trained on experimentally observed exon skipping

events and predicts exon inclusion percentages based on

genomic features. Instead of using predefined features,

two recent tools (MMSplice [40] and SpliceAI [41]) are

limited to genomic sequence as input for their

prediction.

In order to study a large number of RNA splice-

altering variants, Cheung et al. [26] developed a highly

parallel reporter assay, called Multiplexed Functional

Assay of Splicing using Sort-seq (MFASS, Fig. 1). The

MFASS experiment used a minigene reporter assay to

investigate 27,000 human population variants obtained

from ExAC [42] for their impact on RNA splicing. In

their analysis, the authors note that while immediate

splice site variants are most important, many variants

further away in the intronic and exonic sequence lead to

deviation from the reference splicing behavior [26]. Due

to its high number of exonic and intronic variants from

over 2000 different exons tested, this data set represents

a comprehensive resource for benchmarking splicing

predictions. Here we present a computational analysis

that leverages the MFASS data set. First, we assess

several machine learning methods that score variant spli-

cing effects. Next, we integrate the two best performing

approaches into our genome-wide variant prioritization

tool CADD. Finally, we show that the refined CADD

model “CADD-Splice” has substantially improved

performance for predicting splicing and multiple other

variant categories. As process-specific information

should generally improve variant prioritization, our
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results underline the importance of developing and inte-

grating process-specific scores.

Methods
MFASS reporter assay data set of splicing effects

The MFASS [26] data set was downloaded from GitHub

(https://github.com/KosuriLab/MFASS/). The data set

was split into intronic (n = 13,603) and exonic (n = 14,

130) variants as defined by Cheung et al. [26]. Further,

the data set was split into splice-disrupting variants (sdv,

n = 1050) and variants that do not disrupt splicing (no-

sdv, n = 26,683) based on whether the psi ratio of the

tested exon changed by more than 0.5 (Δpsi > 0.5). We

explored additional thresholds at 0.7, 0.3, and 0.1, as well

as using only variants with Δpsi > 0.5 for the sdv set and

variants with Δpsi < 0.1 for the no-sdv set. In perform-

ance comparisons, the number of variants is slightly re-

duced as only variants were included for which all tested

scores are defined. Psi values were downloaded in nat-

ural scale with the MFASS data set.

Predictors of splice effects

dbscSNV v1.1 scores [33] were downloaded at https://

sites.google.com/site/jpopgen/dbNSFP. The dbscSNV

random forest model is shown in performance compari-

sons. CADD started integrating the two dbscSNV

models (random forest and AdaBoost) in version 1.4.

Hexamere HAL [37] scores were generated using HAL

model scripts from Kipoi [43]. HAL scores including

percent spliced-in (psi) were downloaded with the

MFASS data set, originally obtained via the HAL website

http://splicing.cs.washington.edu/ for exon skipping vari-

ants by the MFASS authors [26]. S-CAP [32] (v1.0)

scores were downloaded from http://bejerano.stanford.

edu/scap/. All eight S-CAP scores were combined into

one score by taking the maximum per variant. Where

specifically indicated and per S-CAP definition,

variants without precalculated score were imputed as be-

nign (S-CAP score = 0). Spidex [39] (v1.0, noncommercial)

scores were downloaded from http://assets.deepgenomics.

com/spidex_public_noncommercial_v1_0.tar.

MMSplice [40] scores were generated via the script

(v1.0.2) installed from pypi. The exon-intron boundaries

were provided as GTF gene annotation file downloaded

from Ensembl [44] v95. The script provides model

scores of the sequence with reference allele and with al-

ternative allele for five submodels (acceptor, acceptor in-

tron, exon, donor, and donor intron). The script also

provides the composite linear models' delta_logit_psi

and pathogenicity that summarize the five submodels in

one metric. delta_logit_psi scores were used in perform-

ance comparisons.

Pre-scored SpliceAI [41] v1.3 scores were downloaded

from Illumina BaseSpace. For larger InDels unavailable

from precomputed scores, the variant scores were com-

puted via an adapted version of the SpliceAI scripts ver-

sion 1.3 (https://github.com/Illumina/SpliceAI/) that is

able to integrate scores from pre-scored files in order to

Fig. 1 Benchmarking available splice predictions on the MFASS data set. We use the Multiplexed Functional Assay of Splicing using Sort-seq

(MFASS) data set to benchmark different available splice effect predictors. MFASS studied splicing effects of more than 27,000 human exonic and

intronic variants by creating a synthetic library of the respective exons (or nearest exon for intronic variants) between two GFP exons. The

genome integrated sequences are transcribed and it is observed how much each exon is spliced in or out of the reporter mRNAs through RNA-

seq. Changes in the percent spliced-in (psi) between reference and alternative sequence alleles are used to identify splice disrupting variants

(sdv). We analyze how well different machine learning models distinguish between sdv and no-sdv variants
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enable faster scoring. In comparisons of SpliceAI with

other scores, all four SpliceAI models were combined

into a single score by using the maximum score for a

variant.

A combined score of MMSplice and SpliceAI, MMAI,

was defined for evaluation on the MFASS data set. To

give equal weight to both MMSplice and SpliceAI, scores

were divided by their respective standard deviation

across all MFASS variants (MMSplice 0.5291, SpliceAI

0.1206) and the normalized scores added. For SpliceAI,

the maximum score across all SpliceAI submodels was

used and for MMSplice delta_logit_psi. Similarly,

MMAIpsi was defined by including normalized “percent

spliced-in” as measured for the reference allele in the

MFASS data set (standard deviation of 0.0622 across all

MFASS variants).

We explored “proportion expressed across transcripts”

(pext) [6] (version February 27, 2019) as a predictor of

splice site importance. Values were downloaded from

the gnomAD server and archived for reproducibility at

https://doi.org/10.5281/zenodo.4447230. For intronic

variants, the pext value of the closest exon is used.

Integration of SpliceAI and MMSplice features in CADD

SpliceAI and MMSplice (see above) were adapted as fea-

tures into CADD. For SpliceAI, all four SpliceAI submo-

dels for 10 kb sequence windows were integrated as

separate annotations. In both training data set and final

scoring, predicted splice gains at annotated splice sites

and predicted splice loss outside of annotated splice sites

were set to 0 (for donor and acceptor sites). This was

previously described for SpliceAI [41] and has been

referred to as masking. We relied on precomputed

SpliceAI scores as genome-wide scoring from sequence

was too computationally expensive. Since models require

the reference base of a variant to match the human ref-

erence, variants of the proxy-benign CADD training data

set (human-derived variants) were scored with reference

and alternative alleles reversed. To adjust for this, gain

and loss model scores were swapped for donor and ac-

ceptor, and masking was applied after the swap as de-

scribed above.

For MMSplice, all five submodels were integrated as

separate annotations. MMSplice provides only scores for

variants where the reference matches the genome refer-

ence. In case of the proxy-deleterious class of simulated

variants as well as in scoring applications of the CADD

model, the reference score was subtracted from the al-

ternative score, as described by the authors. In the

proxy-benign class, the alternative score was subtracted

from the reference score. For all MMSplice submodels,

positive score differences were set to 0.

For variants annotated with multiple different conse-

quence predictions as annotated by Ensembl VEP, both

MMSplice and SpliceAI scores were limited to the con-

sequence of the same gene. All variants not annotated

by MMSplice or SpliceAI were imputed as 0. All nine

MMSplice annotations and SpliceAI submodels for 10

kb sequence windows were further included in a feature

cross with the consequence annotation (see “Summary

of CADD v1.6 models” below).

ClinVar pathogenic vs. gnomAD common variants

ClinVar [45] was downloaded from https://ftp.ncbi.nlm.

nih.gov/pub/clinvar/ (April 20, 2020). “pathogenic” vari-

ants were selected from the database based on the

assignment of “Variant Clinical Significance”, excluding

variants with multiple assignments. gnomAD [46] vari-

ants (version 2.1.1, 229 million single nucleotide variants

from 15,708 whole genome sequenced individuals) were

downloaded from https://gnomad.broadinstitute.org/.

Variants were filtered based on filters set by the gno-

mAD authors, i.e., only variants passing quality filters

were considered. InDel variants longer than 50 bp were

not considered. Common variants from gnomAD with

minor allele frequency (MAF) greater than 0.05 were

used as a “benign set” compared to “pathogenic” ClinVar

variants. In order to score GRCh37 variants with CADD

GRCh38 models, variants were lifted to GRCh38 using

CrossMap [47], excluding variants that did not lift back

to the same GRCh37 coordinates. 12 out of 68,491

pathogenic ClinVar variants and 2300 out of 165,881

common gnomAD variants could not be lifted recipro-

cally between genome builds and were excluded. Variant

types were annotated using Ensembl VEP [48] and

CADD’s broader consequence assignments.

ClinVar likely pathogenic vs. low frequency gnomAD

variants

SNVs from ClinVar (see above) assigned clinical signifi-

cance “likely-pathogenic” (incl. Variants assigned the

two terms “likely-pathogenic” and “pathogenic”) were

tested. We chose to also look at these variants in a sep-

arate test data set, as these are less frequently used for

training of variant classifiers, reducing the likelihood of

inflated performance estimates. The “likely-pathogenic”

variants are compared to 300,000 randomly picked SNVs

from gnomAD (see above) with minor allele frequency

below 0.05 and an allele count above 1.

Enrichment of gnomAD variants

To look at score enrichments, gnomAD variants (see

above) were assigned to three bins as frequent (MAF >

0.001), rare (MAF < 0.001, allele count > 1) and singleton

(allele count = 1). In order to compare between different

CADD versions, score percentiles were used as variant

ranks. Variant types were annotated using Ensembl VEP

[48] and CADD’s broader consequence category.
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Enrichments per category were calculated as percentiles

for all variants of the same category and dividing the

number of observed variants above this threshold per

bin by the number expected from random drawing. To

estimate variance, 1000 bootstrap iterations were per-

formed of which the 95% confidence interval is shown.

Changes in CADD since version 1.4/1.5

Several minor changes compared to CADD v1.4/v1.5

were implemented as outlined in the CADD v1.6 release

notes [49]. This includes annotation fixes in the GRCh38

version of CADD, specifically GERP [50] scores where

an integer overflow was corrected, and Ensembl Regula-

tory Build [51] where the hierarchical assignment of

different element categories was unstable if more than

one category was reported per variant. Another issue

specific to CADD v1.4/v1.5 was fixed, where highly

conserved coding variants could be scored as UTR of

overlapping gene annotations. Further, “unknown” was

removed from the categorical consequence levels as this

included only two variants in the entire training set.

These variants (classified by VEP as coding sequence

variants without further specification) were reassigned to

the “synonymous” consequence category.

Summary of CADD v1.6 models

A full list of annotations included in CADD-Splice is

summarized in Additional file 1: Table S1 for GRCh37

and in Additional file 1: Table S2 for GRCh38. The

CADD-Splice (CADD GRCh37-v1.6) model has a total

of 1029 features derived from 102 annotations. Two

hundred twenty-two features Xi derive from 90 numer-

ical annotations and one-hot-encoding of 12 categorical/

Boolean annotations. Fourteen Boolean indicators Wi

express whether a given feature/feature group (out of

cDNApos, CDSpos, protPos, aminoacid_substitution,

targetScan, mirSVR, Grantham, PolyPhenVal, SIFTval,

Dist2Mutation, chromHMM, dbscSNV_ada, dbscSNV_

rf, and SpliceAI) is undefined. Pairs of 12 base substitu-

tions and 189 amino acid substitutions possible to create

with SNVs correspond to another 201 features. Further,

16 different variant consequence categories and a set D

consisting of the 37 annotations bStatistic, cDNApos,

CDSpos, Dst2Splice, GerpN, GerpS, mamPhCons, mam-

PhyloP, minDistTSE, minDistTSS, priPhCons, priPhyloP,

protPos, relcDNApos, relCDSpos, relProtPos, verPh-

Cons, verPhyloP, Dist2Mutation, freq100, freq1000,

freq10000, rare100, rare1000, rare10000, sngl100,

sngl1000, sngl10000, SpliceAI_accgain, SpliceAI_accloss,

SpliceAI_dongain, SpliceAI_donloss, MMSplice_accep-

torIntron, MMSplice_acceptor, MMSplice_donorIntron,

MMSplice_donor and MMSplice_exon are used to cre-

ate a set of 592 consequence interactions. The full model

is fitted using the logistic regression implementation in

scikit-learn is:

β0 þ
X222

i¼1
βiX i þ

X4

i¼1

X3

j¼1
γ ij1 i − th Ref category and j − th Alt category;i≠ jf g

þ
X189

i¼1
δi1 i − th amino acid exchange possible in SNVf g

þ
X14

i¼1
τiW i

þ
X16

i¼1

X
j∈D

αij1 i − th Consequence categoryf gX j

For CADD GRCh38-v1.6, the number of total features

is 1028 derived from 120 annotations. The hyperpara-

meter optimization strategy was unchanged from CADD

v1.4 [20]. The full list of data sets used to develop

CADD-Splice is provided in Additional file 1: Table S3.

More information on model training (including a script

for loading data matrixes and training in scikit-learn) is

available at https://cadd.gs.washington.edu/training.

Results
Sequence-based models perform best for splice effect

prediction

Using the MFASS data set split into splice-disrupting

variants (sdv, total n = 1050) and not-disrupting variants

(no-sdv, n = 26,683, Fig. 1), we compared the perform-

ance of several recent splicing effect predictors (i.e.,

dbscSNV [15], HAL [37], MMSplice [40], S-CAP [32],

SPANR [39], and SpliceAI [41]) and a selection of

species conservation measures (Fig. 2a, Additional file 1:

Fig. S1). We found that the relative performance of dif-

ferent scores is not dependent on the Δpsi threshold of

0.5 that was used to define sdv and no-sdv (Add-

itional file 1: Fig. S2). We discovered that the original

MFASS publication [26] inverted some scores such as

PhyloP and PhastCons and that, when corrected, those

scores perform better than random guessing on predict-

ing splice effects. However, predictive power of the

species conservation measures for exonic variants is lim-

ited, because most exonic variants are in the highest

conservation bin (Fig. 2b). The performance of species

conservation measures on intronic variants is similar to

previous versions of CADD, while performance of all

methods is generally better and less variable for introns

(Fig. 2c). From the tested splicing effect predictors,

SpliceAI and MMSplice, both DNNs based solely on

genomic sequence, showed the best overall performance

(Fig. 2a) with areas under the Precision Recall Curve

(auPRC) of 0.328 (SpliceAI) and 0.361 (MMSplice).

Despite their similar performance on the MFASS data

set, Spearman’s correlation between SpliceAI and

MMSplice scores is only around 0.6. We speculate that

this is due to the different model architectures.

MMSplice is a convolutional neural network that was

trained on data from a large massively parallel reporter

assay library [37] of random sequences and takes into
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account 75 bp of sequence up and downstream of a

known splice junction for splice donors and splice ac-

ceptors. This is in contrast to SpliceAI that, as a deep

residual network, takes advantage of a much larger se-

quence window of 10 kbp and was trained on RNA ex-

pression data from different individuals and tissues in

GTEx. We further speculated that as both scores were

derived very differently, they may complement each

other. Thus, we evaluated an equally weighted linear

combination of the two scores (MMAI) on the MFASS

data set, which indeed reached a better auPRC of 0.416

(Fig. 2).

Percent spliced-in improves prediction only on the MFAS

S data set

Cheung et al. [26] showed that HAL [37] achieves the

best performance on exons (auPRC 0.274, Add-

itional file 1: Fig. S1B). However, the hexamer sequence-

based model of HAL also uses psi of the reference allele

as an additional assay-derived source of information.

Unfortunately, the derived measure Δpsi between refer-

ence and alternative allele was used to separate sdv and

no-sdv variants. psi of the reference alone separates sdv

from no-sdv variants (Additional file 1: Fig. S1B, auPRC

of psi 0.143, HAL with psi 0.274, HAL without psi

0.175) and interpretation of the increased performance

needs to consider the underlying circularity. Adding psi

in the linear combination of MMSplice and SpliceAI

(MMAIpsi) gives an auPRC of 0.472 (Fig. 2a). This com-

bination outperforms all other models on exons and

much better precision is especially achieved for high re-

call thresholds (Fig. 2b). Using HAL without psi does re-

sult in the same performance as MMSplice (auPRC

0.175, Additional file 1: Fig. S1B), but application of

HAL is by design limited to exons, which is why we

chose MMSplice over HAL for a combined score.

As an assay derived measure, MFASS psi values can-

not be used to predict splicing effects genome-wide,

which would be a prerequisite for including them as an

unbiased feature in variant prediction. While measures

of psi can be derived for any RNA-Seq data set [5, 52]

and are predictive of specific cell-types [53], CADD

would require an organismal summary of all cell types

and developmental stages. While this became available

after our study [54], we explored a close proxy of psi,

the proportion expressed across transcripts (pext [6])

score. pext is based on RNAseq transcript assemblies

and quantifies the expression of each base in an exon in

relation to the whole gene. However, neither does pext

separate sdv and no-sdv variants very well (Add-

itional file 1: Fig. S1A, auPRC of 0.058 vs 0.143 for psi)

nor do we find separation of splicing variants in the

CADD training set based on its value. While better

equivalents may be considered, we speculate that psi

values as measured in MFASS are very assay dependent.

Extending CADD’s splice model

The performance of CADD version 1.3 compared to

CADD v1.4 on the MFASS data set is very different,

with auPRC increasing from 0.063 (v1.3) to 0.108 (v1.4).

Up to version 1.3, CADD contained only distance infor-

mation of canonical splice sites within 20 bp of variants.

This had changed in CADD v1.4, where, among other

annotations, dbscSNV [33] features were integrated. The

dbscSNV scores are two ensemble predictors of variant

splice effects around canonical splice sites (− 3 to + 8 at

Fig. 2 Precision-Recall performance of classifying intronic and exonic MFASS variants. Different machine learning models were used to separate

splice disrupting variants from those without a splice effect. Shown are all variants in MFASS (a) that were scored by all splice effect predictors, b

only exonic and c only intronic variants. Generally, specialized splice effect predictors, such as MMSplice, SPANR, and SpliceAI, perform better than

the more general CADD, both on exonic and intronic variants. We observe the best performance by combining MMSplice and SpliceAI with the

percent spliced-in (psi) value of the reference allele in a linear combination (MMAIpsi). Such a model however is assay-specific and circular with

MFASS class definitions. A new CADD-Splice model, integrating MMSplice and SpliceAI as features, outperforms previous CADD models
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the 5′ splice site and − 12 to + 2 at the 3′ splice site). By

splitting the MFASS data set into two sets of variants

(with and without dbscSNV scores available), we found

that the improvement in splice effect prediction between

CADD v1.3 and CADD v1.4 was entirely dependent on

this addition of dbscSNV (Additional file 1: Fig. S3). The

limited distance range of the dbscSNV scores further ex-

plains why intronic variants CADD v1.4 perform simi-

larly to PhastCons scores (which like other conservation

metrics are integrated into CADD).

Based on the previous results, we added MMSplice

and SpliceAI submodels as features and trained a new

CADD model ‘CADD-Splice’. For MMSplice, the exon-

intron boundaries required were obtained from Ensembl

[44] v95 transcript models. We note that genome-wide

computation of large DNNs, such as SpliceAI, can be

computationally very expensive and that we therefore

use pre-scored files. Nevertheless, we think that keeping

features up-to-date with the latest gene annotation is

crucial for providing unbiased variant scores for all gen-

omic variants. Using purely sequence-based models such

as DNNs is advantageous as scores can be updated with

new gene annotations or even genome builds without

retraining the model.

In preparation for integrating the DNN scores into our

model, we analyzed their score distributions in the two

classes of the CADD training set. We found that mask-

ing SpliceAI submodels (as recommended by the au-

thors) benefited the annotation, as unmasked scores (i.e.,

splicing loss outside of existing sites and splicing gain

for already existing sites) did not show class specificity

(Additional file 1: Fig. S4). Similarly for the MMSplice

submodels, we did not observe a depletion in the

human-derived variants for positive scores (Add-

itional file 1: Fig. S5). We therefore prepared all scores

accordingly before training the model. All MMSplice

and SpliceAI features were learned with positive coeffi-

cients in the CADD-Splice model, which indicates that

increased scores in the splice models are associated with

increased deleteriousness in the combined model.

CADD model improvements are highly specific to splicing

effects

The new model, labeled CADD-Splice in all figures, shows

an increased auPRC of 0.185 on the entire MFASS data

set (compared to 0.108 above), with better performance

on both exonic and intronic variants (Fig. 2). Still, the

overall performance (across variant types) is very similar

to the latest version of CADD (v1.4-GRCh37, Add-

itional file 1: Fig. S6A) with a Spearman correlation be-

tween CADD-Splice and CADD v1.4 of 0.995 for 100,000

SNV drawn randomly from throughout the genome. Lar-

ger score changes are found for variants around known

splice sites, as apparent from an increased depletion of

high CADD scores for “frequent” variants (gnomAD [46]

MAF > 0.1%) and an enrichment of gnomAD singletons in

splice regions (Fig. 3). In the splice site proximal regions,

this enrichment/depletion effect increases from CADD

v1.3 over v1.4 to CADD-Splice. However, for canonical

splice sites, changes are within the 95% confidence interval

of the CADD-Splice measures. This can also be observed

for other variant categories such as intronic variants or

other coding mutations (Additional file 1: Fig. S7).

In order to validate CADD-Splice on known disease-

causing mutations, we used curated pathogenic variants

from ClinVar and compared the area under the Receiver

Operator Characteristic (auROC, Fig. 4). Rather than

using curated benign variants with their respective ascer-

tainment biases, we used common (MAF > 0.05) variants

from gnomAD as controls. We observe that CADD-

Splice outperforms on intronic variants (auROC 0.957)

and splice site variants (auROC 0.978), not only previous

versions of CADD (GRCh37-v1.4: auROC intronic 0.879

and splice site 0.938) but also the specialized scores

MMSplice (0.886 and 0.970) and SpliceAI (0.869 and

0.959). For other variant categories, like synonymous

and missense variants (Additional file 1: Fig. S6B-C), we

observe small positive changes in model performance,

probably due to a mixture of splicing-related and unre-

lated changes in the model.

In addition to the previous test, we compared likely-

pathogenic variants from ClinVar to rare population

variants (MAF < 0.05, allele count > 1) from gnomAD

(Additional file 1: Fig. S8). The comparison replicates

the previous results in the different variant categories,

while highlighting best performance of CADD on the

complete variant set. This test scenario allows compari-

son to the specialized splicing scores like S-CAP and

SPANR whose training set partially overlaps the ClinVar

pathogenic set (Additional file 1: Fig. S9). While SPANR

does not perform better than CADD in any of the com-

parisons, S-CAP outperforms CADD on canonical splice

site variants (Additional file 1: Fig. S9B) and intronic

SNVs (Additional file 1: Fig. S9D). However, precom-

puted S-CAP scores are missing for about 9% (5980 out

of 66,608) of splicing-related variants in this test set

(Additional file 1: Fig. S9B-D). When interpreting miss-

ing variants as benign rather than excluding them from

all comparisons (Additional file 1: Fig. S9E-H), the

score’s performance reduces substantially and results

only in an improved performance for canonical splice

sites (Additional file 1: Fig. S9F).

Finally, we trained a CADD model using the same fea-

tures and parameters as for CADD-Splice on genome build

GRCh38, extending the previously described GRCh38

models [20]. In the comparison of pathogenic variants from

ClinVar to common gnomAD variants, analogous to the

GRCh37 model, this new CADD model (GRCh38-v1.6)
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Fig. 3 Increased enrichment for rare variants at high CADD scores. CADD assigns higher scores with increasing population frequency, despite

allele frequency not being included in the model. Here, depletion and enrichment of variants is grouped by frequency and CADD score

percentiles, with CADD-Splice outperforming previous versions. At high CADD scores, frequent (MAF > 0.001) and rare (allele count > 1) variants

are depleted and singletons (observed once in gnomAD) enriched. For variants in canonical splice sites (left), the difference is mostly within the

bootstrapped 95%-confidence interval, but CADD-Splice significantly outperforms previous versions within 20 bp of splice sites (right)

Fig. 4 Improved performance of CADD for separating common and known pathogenic variants. The CADD-Splice model has a higher auROC

than previous CADD versions and specialized splice scores in distinguishing between pathogenic variants from ClinVar and common variants

(MAF > 0.05) from gnomAD for both splice site variants (left) and intronic variants (right)
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scores similar to the previous model (GRCh38-v1.5) while

outperforming it on splice site variants and intronic SNVs

(Additional file 1: Fig. S10).

Discussion
When analyzing genomes in research or clinical applica-

tions for phenotype causal variants, the affected molecu-

lar process is usually unknown. Therefore, genomic

scores need to integrate knowledge across different pro-

cesses in order to rank variants across different variant

types, e.g., amino acid substitutions, truncating variants,

and splicing alterations. However, to our knowledge,

existing predictors scoring all types of genomic variants

do not specifically take RNA splicing effects into ac-

count, as evident by their limited performance on spe-

cialized data sets [10, 25, 26]. Here we demonstrate that

deep learning frameworks of splicing effects can improve

the performance of existing genome-wide variant effect

prediction solutions. Specifically, we show that the inte-

gration of deep learning derived scores from MMSplice

and SpliceAI into the general variant effect predictor

CADD enables splice effect prediction with high

accuracy.

We benchmarked available splice predictions on the

experimental MFASS data set and on known disease

causing mutations from ClinVar. Even though MFASS

does not cover some types of variants like gain-of-

function mutations and deep intronic variants, it is a

very valuable data set for splicing prediction and the

most comprehensive data set for experimental splice-site

effects today. We were able to show that existing splice

models work well in predicting splice effects, provided

that tools use the genomic context of each variant and

not the assay-specific sequence design as input for the

prediction. It further benefits methods when they are

not only available as a precomputed score but provided

as software that can be run genome-wide and independ-

ent of genome build and other annotations. We note

that performance of all methods differs between exonic

and intronic sequence (as expected due to different

levels of constraints), as well as with distance to the ca-

nonical splice site. Even CADD v1.3, which uses only a

20-bp distance to canonical splice sites, has high preci-

sion in distinguishing pathogenic variants at canonical

splice sites and shows reasonable performance for in-

tronic variants. Based on the results of the benchmark

sets, it is also unknown how far we can generalize obser-

vations for intronic variants that are more than 40 bp

away from a known splice junction as such variants are

not included in the MFASS data set and are rarely dis-

covered from disease studies [30].

Of note, our findings contradict the original MFASS

publication [26] that found HAL among the best per-

forming predictors. We show that including psi as a

feature provides an assay-specific predictive advantage

and that without this feature, HAL’s performance is

comparable to MMSplice and SpliceAI. While part of

this observation is probably due to biases of the assay,

i.e., that certain exons are more frequently integrated in

the reporter construct than others, some of it could be a

biological signal. More specifically, it could be argued

that prevalent splice junctions (high psi) are less suscep-

tible to disruption than less prevalent ones where mul-

tiple alternatives are generated. It has been previously

observed that mutation effects scale non-monotonically

with the inclusion level of an exon, with mutations hav-

ing a maximum effect at a predictable intermediate in-

clusion level [55]. It was suggested that competition

between alternative splice sites is sufficient to cause this

non-linear relationship. We thought about integrating

this in our model but could not determine a sensible fea-

ture. For example, the pext score, which we investigated

as a genome-wide and organismal psi substitute, did not

capture splice effect size.

We note that for individual cases, the joint analysis of

DNA and RNA samples has proven very effective to

identify and prioritize splice or regulatory variants

underlying differentially expressed genes [10, 56, 57].

However, due to the tissue- and cell-type specificity of

such events, informative transcriptome data is limited by

the availability of the relevant RNA samples. We suggest

that a combination of variant prioritization and RNA

data could be very effective, and future work should ex-

plore this. For example, computational predictions could

motivate the collection of relevant tissues or the estab-

lishment of cell lines from which RNA transcript data

would be used to validate an actual splicing effect.

We found it very important to distinguish variants cre-

ating new splice junctions from those disrupting existing

ones. SpliceAI is a prime example, as it specifically dis-

tinguishes between splice gain and loss at a particular

position. Since we did not detect a depletion of predicted

splice gain mutations at existing sites (and vice versa loss

at non-existing sites), we were able to mask scores and

to achieve a better signal to noise ratio. While MMSplice

does not distinguish between gain and loss, it achieves a

similar effect from integrating knowledge about the se-

quence of the associated donor or acceptor from the

opposite site of a splice junction. This also underscores

the importance of the annotation of existing splice junc-

tions. Given that general variant classifiers such as

CADD include annotations from many different sources,

developers have to make sure that features are not in-

herently biased due to how they were generated. We are

hopeful that community standards such as the upcoming

Matched Annotation from NCBI and EMBL-EBI

(MANE) project together with a rise of sequence-based

models that can be more easily adapted to new
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annotations will help to produce more stable, reprodu-

cible, and better predictors.

It is clear that the significance of individual genes

for specific diseases [58, 59] is not well-represented

in organismal and genome-wide models of variant

effects such as CADD. Existing gene and transcript

specific information may therefore aid variant

prioritization. For example, information about the

specific phenotype (including pathways, gene interac-

tions, or affected tissues) is potentially of high rele-

vance. This may also motivate a more naive and

inclusive approach of integrating annotations into

genome-wide models. However, integrating gene and

transcript-specific measures like essentiality, protein

interactions and network centrality, or specificity of

expression could impair the discovery of less well-

studied disease genes due to observation biases [24].

To include annotations in genome-wide models, they

are preferentially base-pair/substitution level reso-

lution, available for all instances of an effect class,

and do not have major biases. Thus, even though

other information is useful for a final variant rank-

ing, we are skeptical of integrating broad-scale anno-

tations that prioritize variants based on their

location in specific genomic regions.

Conclusions
We show that process-specific DNN models are su-

perior for identifying splice altering variants if the

only possible variant effect is a splice effect. However,

typically this prior knowledge is not available and var-

iants need to be ranked across effect classes. In such

a heterogeneous variant setup, a general pathogenicity

predictor, like CADD, that integrates many different

features, works better than the specialized splice

scores in identifying pathogenic variants. The outper-

formance of the specialized scores is even observed

when comparisons are limited to splice proximal or

intronic variants. We speculate that this is due to a

combination of the annotated categorical variant ef-

fects and features of species conservation. This sug-

gests that variant prioritization can generally be

improved by integrating process-specific information

like splice scores. We believe that this is universal

and outlines the importance of developing process-

specific scores for regulatory sequences, UTRs, or

non-coding RNA species.

The GRCh37 model CADD-Splice, as well as the

GRCh38 model, have been released as CADD v1.6. On

our website cadd.gs.washington.edu, we provide precom-

puted scores for all genomic SNVs, scoring of SNVs and

InDels via online submission, and link to the script re-

pository that can be used for offline scoring.
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