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The interaction between leukemia cells and the bone microenvironment is known to

provide drug resistance in leukemia cells. This phenomenon, called cell adhesion-

mediated drug resistance (CAM-DR), has been demonstrated in many subsets of

leukemia including B- and T-acute lymphoblastic leukemia (B- and T-ALL) and acute

myeloid leukemia (AML). Cell adhesion molecules (CAMs) are surface molecules that allow

cell–cell or cell–extracellular matrix (ECM) adhesion. CAMs not only recognize ligands for

binding but also initiate the intracellular signaling pathways that are associated with cell

proliferation, survival, and drug resistance upon binding to their ligands. Cadherins,

selectins, and integrins are well-known cell adhesion molecules that allow binding to

neighboring cells, ECM proteins, and soluble factors. The expression of cadherin, selectin,

and integrin correlates with the increased drug resistance of leukemia cells. This paper will

review the role of cadherins, selectins, and integrins in CAM-DR and the results of clinical

trials targeting these molecules.

Keywords: leukemia, cell adhesion molecules, cell adhesion-mediated drug resistance, chemoresistance, bone
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INTRODUCTION

Despite the improved overall survival of leukemia patients, relapsed and refractory leukemia still

remain a problem. Chemoresistant minimal residual disease (MRD) contributes to the recurrence of

the disease. Patients with relapsed leukemia in the bone marrow (BM) have worse outcomes than

patients with relapses in the central nervous system or testis (1), suggesting the contribution of the

BM to the progression and aggressiveness of the disease. Indeed, the BM microenvironment is

known to govern leukemia quiescence (2–4), proliferation (5), drug resistance (6), and
leukemogenesis (7). Leukemia cells communicate with BM through surface molecules called cell

adhesion molecules (CAMs). The CAM-mediated interaction of leukemia cells with the

surrounding microenvironment contributes to drug resistance, which is called cell adhesion-

mediated drug resistance (CAM-DR). Surface molecule overexpression and CAM-DR have been

addressed in many subtypes of leukemia, including B- and T-acute lymphoblastic leukemia (B- and

T-ALL) and acute myeloid leukemia (AML). CAM-DR is one mechanism through which leukemia
cells obtain chemoresistance, and resistant clones will result in the recurrence of the disease. Due to

aberrant expression, CAMs serve not only as a prognostic tool for detecting MRD in leukemia but

can also be targeted to sensitize drug-resistant cells to chemotherapy (8–11). CAM inhibition in
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leukemia is being actively evaluated in preclinical and clinical

studies. In this review, we will focus on the major groups of

CAMs—cadherin, selectin, and integrin—and their role in drug

resistance in leukemia.

LEUKEMIA AND LEUKEMIA STEM CELLS

Leukemia is a type of Cancers that affects a patient’s blood and

bone marrow. Leukemia can be categorized into different

subtypes depending on the progression of the disease (acute

and chronic) or a lineage and developmental stage of cells

(myeloid or lymphoblastic). Four main subtypes of leukemia

that will be discussed in this review are: acute lymphoblastic

leukemia (ALL) (12–14), AML (15, 16), chronic lymphocytic
leukemia (CLL) (17, 18), and chronic myeloid leukemia (CML)

(19, 20). Leukemic cells have been described to interact with and

remodel BM to support leukemic cell expansion and

survival (21).

LSCs are capable of self-renewal and thus able to maintain

survival in optimized in vitro co-culture systems and in
immunocompromised mice, which have been defined in AML

and CML (22). CAMs play an important role in the interaction

between LSCs and the hematopoietic niche (23, 24). Firstly, it has

been shown that N-cadherin positive CD34+ CD38− LSCs

population has a critical role in the development of AML (25,

26). Moreover, the downregulation of E-cadherin suppressed the

adhesion of AML cells to BM-derived MSCs and enhanced the
anti-leukemic effect of cytarabine (27). Secondly, in an AML

mouse model, LSCs adhered to the vascular niche which

protected LSCs from chemotherapy through E-selectin/E-

selectin ligands and this effect was ameliorated by GMI-1271

(28). Thirdly, VLA-4 is one of the most prominent integrins

involved in LSCs (24). Recently a study showed that inhibition of
Kindlin-3-mediated VLA-4 adhesion mobilized LSCs in the BM

and prolonged survival of mice with CML (29). Furthermore, the

integrin aVb3 was expressed in particular on CD34+ cells in

AML with NPM1 mutation (30).

CELL ADHESION MOLECULES
IN LEUKEMIA

BM is a complex tissue with various components. Mesenchymal
stromal cells (MSC) (31, 32), endothelial cells (4, 33), osteoblasts

(34), adipocytes (35), neurons (36), Schwann cells (37), and

megakaryocytes (38) comprise the endosteal and vascular BM

niches. Soluble factors such as chemokines (39), the exosome (40,

41), or microRNA (42) facilitate crosstalk between cells in the

BM (43, 44) Extracellular matrix (ECM) proteins deposited from
cells provides the BM architecture and determine the stiffness of

tissue, which affects the cell proliferation and chemosensitivity of

leukemia (45). The BM microenvironment has been studied for

its role in leukemia support and drug resistance (46, 47). A

previous study examined BCR-ABL positive (Ph+) (Tom-1,

Nalm-27 and Sup-B15) and BCR-ABL negative (Ph−) cell lines

(REH and Nalm-6) cultured on primary bone marrow stromal

cells (BMSC) or osteoblasts (HOB) divided into three

populations by relative distance to the supportive layer–S

(suspended), phase bright (PB), and phase dim (PD). Out of

the three populations, the PD leukemic population planted under

the BMSC layer demonstrated increased quiescence; resistance to
cytarabine (Ara-C), methotrexate (MTX), and vincristine (VCR);

and increased glycolysis (48). This result shows the importance

of crosstalk between leukemia and the surrounding

microenvironment. One of the most well-known mechanisms

of the BM–leukemia cell interaction is the CXCR4/CXCL12 axis

(2, 49), yet there are many more surface molecules that are
directly associated with adhesion and interaction (50–52). Cell

adhesion molecules (CAMs) are cell surface proteins that are

specialized for adhesion to other types of cells or the ECM. This

review will primarily focus on leukemia-relevant adhesion

receptors from four major families of CAMs - cadherin,

immunoglobulin superfamily CAM (IgCAM), selectin and
integrin (53).

CAMs are single-pass transmembrane proteins with

extracellular, transmembrane, and intracellular structures. The

extracellular domain of CAMs recognizes specific ligands or

counter-receptors, and the intracellular (cytoplasmic) domain

translates external stimuli into intracellular signalings, while the

transmembrane domain stabilizes the structure of the molecule.
While selectins act as amonomer, cadherins form a homodimer

and integrinsmust a heterodimer inorder tobe fully functional.Ca2

+ is required for stabilization of extracellular domain (54–56), as

well as in selectins for proper binding to ligands (57). Integrins are

dependent and regulated by other divalent cations as well (58, 59).

Ca2+ binding maintains the folded and inactive conformation of
integrins while the heterodimer travels from the Golgi to the cell

surface, and integrin undergoes conformational changes upon

replacement of Ca2+ with Mg2+ or Mn2+ (58–60).

BM is abundant in binding partners for CAMs as each

components of BM discussed above express diverse ligands

and secret ECM (61–68) (Figure 1). Fibronectin, collagen and

laminin secreted in the BM will interact with cellular surface
molecules (69, 70). Leukemia-induced BM remodeling can

interrupt homeostasis and shift equilibrium towards leukemia

progression by overexpressing binding partners for CAMs (71–

74). At the same time, leukemia cells can aberrantly express

CAM to facilitate surface molecule-mediated interaction with

BMmicroenvironment, thereby inducing cell-adhesion mediated
drug resistance (CAM-DR). Recently, the mitochondrial transfer

from mesenchymal cells to leukemia has been shown to promote

drug resistance in T-ALL, indicating the diverse aspects that BM

can modulate to provide leukemia protection (75).

CADHERINS IN CELL ADHESION-
MEDIATED DRUG RESISTANCE
IN LEUKEMIA

Cadherins are a type of CAM that participates in forming
adherent junctions between adjacent cells. Cadherins can be
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subdivided into several different groups including Type I and

Type II classical cadherins (76), desmosomal cadherins (77),

proto-cadherins (78), seven-pass transmembrane cadherins, and

FAT and Dachsous cadherins (79). The extracellular domain

contains cadherin extracellular repeats that exert homotypic

Ca2+ dependent adhesion, while the intracellular domain binds
p120-catenin and b or g-catenin (80–82). Furthermore, b-
catenin will interact with a-catenin, which binds actin

filaments (83–85). Adherens junction complexes formed

between two cells connect epithelial and endothelial cells (86)

(Figure 2). E-cadherin, N-cadherin, and P-cadherin are classified

as Type I, while VE-cadherins are Type II classical cadherins,
which have been well-studied in the context of cancer biology. In

metastatic epithelial tumors, the downregulation of E-cadherin

compensated by the expression of other cadherins, such as N-

cadherin, is a hallmark of the epithelial–mesenchymal transition

(EMT). This “cadherin switching” enables tumor cells to acquire

a metastatic phenotype that is different from the parental
population. Indeed, E-cadherin is considered a tumor

suppressor as it inhibits transformation by blocking b-catenin
signaling (87). Therefore, dysfunctional or decreased expression

of E-cadherin is associated with cancer progression and

metastasis. However, cadherin switching is a late event in

tumorigenesis and is context-dependent (e.g., exposure to

certain soluble factors or interaction with specific ECM
proteins) (88, 89).

VE-CADHERIN
Although leukemia does not necessarily undergo EMT, E-

cadherin expression is reduced by hypermethylation of the E-

cadherin gene promoter (90, 91), while VE-cadherin and N-

cadherin expression contributes to chemoresistance in BCR-

ABL+ (Ph+) ALL and CML (92, 93). VE-cadherin expression

along with PECAM-1 expression on ALL enhances the adhesion

of leukemia cells to human brain-derived microvasculature

endothelial cells (HBMECs) and their migration through the

HBMEC monolayer, suggesting a role of VE-cadherin in the
central nervous system (CNS) infiltrating leukemia (94).

Furthermore, stromal cells upregulate VE-cadherin expression

in BCR-ABL+ leukemia cell lines (K562 and SUP-B15) and

increase resistance to imatinib by stabilizing b-catenin (95). b-
catenin is an important component in cadherin-mediated

adhesion as it bridges the cytoplasmic tail of cadherin to the
actin cytoskeleton and stabilizes the adherent junction. Since b-
catenin binds to transcription factors to initiate transcription,

cadherin adhesion is often associated with the activation of Wnt/

b-catenin intracellular signaling pathways (96). A subpopulation

of the Ph+ B-ALL cell line SUP-B15 presents leukemia stem cells

(LSCs) and expresses stem cell markers (CD34, CD38, and c-Kit)
and endothelial antigens (Flk-1 and PECAM-1); moreover, LSCs

express VE-cadherin after a long-term co-culture on stromal

cells (97). The overexpression of VE-cadherin on Ph+/VE-

cadherin+ LSC populations stabilizes b-catenin, maintaining b-
catenin as constitutively active and thus promoting self-renewal

independent of Wnt signaling. The same group later showed that

VE-cadherin regulates apoptosis in Ph+ ALL (98).

N-CADHERIN
Apart from VE-cadherin, N-cadherin is also associated with

LSCs. In AML patients treated with a HAD regimen of

homoharringtoninetcytosine (HHT), cytarabine (Ara-C), and

daunorubicin (DNR), the N-cadherin and Tie2 expressing

FIGURE 1 | BM microenvironment. BM includes many types of cellular and non-cellular components. Cellular components express ligands or counter receptors,

such as VCAM-1 or ICAM, that will bind to CAMs. Cells can also secret extracellular matrix (ECM) proteins that will bind to CAMs.
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CD34+/CD38−/CD123+ LSC population presented higher

expansion than AML patients who did not receive
chemotherapy, indicating that the expression of N-cadherin

and Tie2 on AML cells provides a survival benefit against the

therapy (99). In addition, the N-cadherin expressing cell line

KG-1 and AML patient-derived bone marrow mononuclear cells

(BMMNCs) were able to form more colonies compared to an N-

cadherin negative control (26). A higher percentage of N-
cadherin+ cells were shown to remain at the G0/G1 phases

compared to N-cadherin− cells and showed higher engraftment

in NOD/SCID mice compared to the negative control. Indeed,

N-cadherin+ cell bearing mice had a significantly shorter survival

than the N-cadherin− engrafted mice. This suggests a role of N-

cadherin in maintaining the stem cell-like properties and survival

of LSCs, which results in relapse. Mesenchymal stromal cell
(MSC)-N-cadherin adhesion in CML LSC also provides tyrosine

kinase imatinib resistance by stabilizing N-cadherin/b-catenin
complex formation and the nuclear translocation of b-catenin in

concert with the activation of exogenous Wnt/b-catenin
signaling (92). When the N-cadherin-mediated adhesion of

CML cells to MSCs was interrupted with anti-N-cadherin

short cyclic HAV peptide (NCDH), the CML cells gained
sensitivity toward imatinib treatment.

E-CADHERIN
Another study supported E-cadherin as an important mediator

for AML pathogenesis, indicated by stalled differentiation

accompanied with high proliferation (100). In this study,

carbohydrate-binding prote in lect in LecB induced
differentiation of the AML cell line THP-1 and increased

apoptosis of cells in a dose and time dependent manner. LecB-

induced differentiation was mediated by increased autophagy

and decreased cellular b-catenin levels, the balance of which is a

crucial factor for regulating the differentiation of AML cells. In

differentiating cells, LecB was in proximity to the membrane E-

cadherin and further promoted the co-localization of E-cadherin
and b-catenin. Interestingly, fewer LecB treated THP-1 cells were

suspended in the supernatant, suggesting greater adhesion to the

cell culture plate, but the direct association of E-cadherin and

adhesion was not investigated in this study.

FIGURE 2 | Cadherin and adherens junction. Upon engagement in homotropic manner, cytoplasmic tail of cadherins will bind to actin through p120, b-catenin, and

a-catenin protein complex. Cadherin mediated protein complex formation is observed at adherens junction where adjacent cells are connected to each other.
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Drugs developed to interrupt the interactions between

malignant cells and the microenvironment decreased cadherin

expression on malignant cells as a secondary effect without

directly targeting cadherin. Recently, an adenosine analogue,

Cordycepin, was proposed as an anti-leukemia therapeutic

adjuvant. Cordycepin’s anti-leukemic effect in U937 and
K562 cells was achieved through the reduced attachment of

leukemia cells to MSC by decreasing N-cadherin expression on

leukemia cells and vascular cell adhesion molecule-1 (VCAM-1)

in MSCs (101). Targeting bone marrow endothelial cells

(BMECs) with combretastatin, a microtubule assembly

inhibitor, increased AML cell dislodgement from BMECs
(102). Combretastatin decreased VCAM-1 and VE-cadherin on

BMECs, and dislodged AML cells shifted G0/G1 to G2/M in their

cell cycle. A combination treatment of combretastatin and

cytotoxic chemotherapy increased induction apoptosis in AML

cells. Taken together, cadherins play an important role in

leukemia drug resistance. Particularly, chemotherapy-resistant
leukemic stem cell (LSC) populations utilize cadherin, which

further stabilizes b-catenin and thus activates the expression of

genes important for self-renewal.

TARGETING CADHERINS IN LEUKEMIA
Cadherin inhibitors were developed based on compelling
preclinical data and translated into clinical trials. A cyclic

pentapeptide ADH-1 against N-cadherin is the most

commonly studied cadherin inhibitor in cancer models. Thus

far, this pentapeptide has been tested as a single agent or in

combination with conventional chemotherapy in patients with

N-cadherin expressing solid tumors (103–107). Due to N-
cadherin’s role in tumor metastasis, drug resistance and bone

marrow homing, N-cadherin has been proposed as a potential

target to treat hematological malignancies in patients (108)

(Table 1).

FX06 is a naturally occurring peptide derived from the Bb15-42
sequence of human fibrin that is cleaved and released from the

parental fibrin and competitively binds to VE-cadherin (114).
FX06 was evaluated in myocardial infarction, yet it failed to show

significant baseline benefits compared to a placebo-treated

group, although the necrotic core zone significantly decreased

(109). FX06 has not been tested in any cancer to date.

Celecoxib is a nonsteroidal anti-inflammatory drug that

inhibits prostaglandin-endoperoxide synthase 2, also known as
COX-2. Interestingly, the effects of celecoxib were studied to treat

calcific aortic valve disease (CAVD) because of their cadherin-11

binding properties (115, 116). Celecoxib was shown to promote

anoikis by downregulating E-cadherin in osteosarcoma cell line

MG-63 by decreasing PI3K/Akt (117). However, E-cadherin

downregulation is a characteristic of EMT in invasive tumors

when accompanied with N-cadherin expression; thus celecoxib

has been proposed to induce EMT in ovarian cancer (118).
Despite different views on celecoxib, there have been more than

100 related clinical trials in the U.S. for cancer patients, including

two trials on leukemia and hematological malignancies (119).

Celecoxib showed the inhibition of proliferation and survival by

downregulating b-catenin in Ph+ CML (120), restoring imatinib

sensitivity in imatinib-resistant CML (121), and exerting an anti-
tumor effect in the HL-60 AML cell line (122), yet its relationship

with cadherin-11 is not yet specified. As Wnt signaling has been

shown to be an aberrantly upregulated pathway in leukemia

(123) and is involved with chemoresistance, this warrants further

exploration of celecoxib as a viable therapy to reverse CAM-DR

in leukemia.

SELECTINS IN CELL ADHESION-
MEDIATED DRUG RESISTANCE IN
LEUKEMIA

Selectins (CD62) are single-chain transmembrane glycoproteins

that mediate calcium-dependent carbohydrate-binding. There are

three major types of selectins: L-selectins are majorly expressed on
leukocytes, E-selectins are expressed on endothelial cells, and P-

selectins are expressed on activated platelets (124, 125). Selectins

share common structures: (1) Calcium-dependent lectin domain,

(2) an epidermal growth factor (EGF)-like domain, (3) a variably-

sized repeated region, (4) a transmembrane domain, and (5) a

cytoplasmic domain (126). The main function of selectins is to

facilitate leukocyte tethering and rolling along endothelial cells,
which is an initial step of the transmigration of leukocytes through

the endothelial barrier. Briefly, free floating cells expressing

selectin ligands, such as P-selectin glycoprotein ligand-1 (PSGL-

1), bind to P-selectin expressing endothelial cells. Upon

engagement, the leukocyte movement will slow down and the

cells remain in proximity to the vessel wall, while integrin-ICAM/
VCAM-1 interactions and other cytokine-mediated tight

adhesions between leukocytes and endothelial cells strengthen

the binding for transmigration. As a result, leukocytes can travel

to distant sites of inflammation, and hematopoietic stem cells

(HSCs) can home into the bone marrow (127).

TABLE 1 | Description of cadherin inhibitors.

Drug

name

Description Indication References

ADH-1 N-cadherin inhibitor Solid tumors (104–106)

FX06 Competitive inhibitor of fibrin E1 binding to VE-

cadherin

Cardiac reperfusion injury and myocardial infarction (109, 110)

Celecoxib COX-2 inhibitor Evaluated for anti-cancer effects by binding to cadherin-11 and regulating E-cadherin

expression

(111–113)
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Because the endothelium binding of leukocytes is a

prerequisite of metastasis, selectins are well-known to be

involved in cancer progression (128, 129). E-selectin expressed

on the endothelium is the primary source of binding partners for

leukocytes, and T-ALL cells were not able to adhere to

interleukin-2 activated human umbilical vein endothelial cells
(HUVEC) upon E-selectin inhibition with a monoclonal

antibody (130). E-selectin expression in the BM vascular niche

has been proposed to be regulated by Runt-related (RUNX)

transcription factor, and RUNX silencing was shown to

downregulate E-selectin expression and lead a subsequent

decrease in AML engraftment in the BM in mice (131).
Leukemia cells interact with E-selectin through various ligands

such as CD43, CD44, and PSGL-1. Particularly, myeloblasts favor

PSGL-1 for interactions with endothelial selectins, while

lymphoblasts express less PSGL-1. PSGL-1 expressed on the

surface of the leukemia cells can bind to P-selectin along with E-

selectinonendothelial cells (132). In contrast, lymphoblastsmainly
use CD43 and/or CD44 to bind to endothelial selectins (133).

Therefore, even though specific ligands are preferentially used in

different cells, this does not mean that other molecules are less

crucial in conferring CAM-DR. Indeed, myeloblasts use PSGL-1,

CD44, and CD43 to various extents during E-selectin binding.

Therefore, different patients show different profiles of E-selectin

ligand expression levels. Interestingly, nilotinib treatment
upregulated E-selectin, ICAM-1, and VCAM-1 expression on

human endothelial cells (134), which may result in the increased

adherence of leukemia cells to E-selectin and the evasion of

chemotherapy-induced cytotoxicity. In fact, a high baseline level

of soluble E-selectin along with VEGF, PAI-1, and low initial

soluble ICAM-1 were proposed as prognostic factors for poor
outcomes in pediatric ALL (135). Leukemia itself can express

selectins on the surface to promote migration and progression.

HumanBCR-ABL1 (p210) retrovirus transducedmurine leukemia

expressed integrin subunit alpha-6 andL-selectin,whichwere used

to metastasize into the central nervous system, predominantly in

meninges (136).

TARGETING SELECTIN IN CANCER

Currently, selectin inhibition is actively being translated into

leukemia treatments (Table 2). GMI-1271 (Uproleselan), an E-

selectin antagonist, is intended to inhibit E-selectin expression on

endothelial cells so that E-selectin-mediated drug resistance in

leukemia can be prevented. Preclinical investigations of GMI-1271

in multiple myeloma (MM) showed the sensitization of E-selectin
ligand rich inMM toward bortezomib (142). GMI-1359, a dual E-

selectin and CXCR4 inhibitor, significantly decreased bone

metastasis, synergized the docetaxel effect in prostate cancer cells

(137), and sensitized MM toward carfilzomib (138). Currently,

GMI-1271 is being investigated for its safety and efficacy in AML

patients (Table 3). Crizanlizumab (Adakveo) is a monoclonal
antibody against P-selectin, which is expressed on the surface of

the activated endothelium and platelets. Crizanlizumab is used to

reduce vaso-occlusive crises (VOC) in adult and pediatric patients

with sickle cell disease (SCD). Clinical trials are open for dose

confirmation and safety in both adult andpediatric SCDpatients to

evaluate the safety and efficacy on SCD-related complications

along with a combination study of myelofibrosis with ruxolitinib.
YSPSL (rPSGL-lg), a P-selectin glycoprotein ligand IgG fusion

protein, binds to P-selectin and was evaluated in ischemia-

reperfusion injury, liver disease, and kidney functions but has

not been tested in cancer (143).

GMI-1271 is currently the only selectin inhibitor in clinical

trials and is being investigated for its safety and efficacy in AML
patients (Table 3). There is increasing evidence in support of the

importance of targeting the BMmicroenvironment due to its role

TABLE 2 | Description of selectin inhibitors.

Drug name Description indication References

GMI-1271

(Uproleselan)

E-selectin inhibitor Small molecule inhibitor against E-selectin on endothelial cells to treat AML and

potentially other hematologic cancers

(28)

GMI-1359 E-selectin/CXCR4 dual inhibitor Targeting E-selectin and CXCR4 to reduce tumor metastasis to bone marrow (137, 138)

Crizanlizumab

(Adakveo)

Monoclonal antibody against P-selectin Reduction of vaso-occlusive crises in sickle cell disease patients (139)

YSPSL (rPSGL-lg) Recombinant P-selectin glycoprotein ligand

IgG fusion protein

Myocardial infarction, red blood cell disorders, anemia, transplant, ischemic-

reperfusion injury

(140, 141)

TABLE 3 | Clinical trials for selectin inhibitors in leukemia.

Drug Target Condition or

disease

Phase Intervention/treatment References

GMI-

1271

E-

selectin

AML I/II Evaluation of GMI-1271 treatment combined with mitoxantrone, etoposide, cytarabine and idarubicin in

AML patients

NCT02306291

GMI-

1271

E-

selectin

Relapsed/

refractory AML

III Efficacy of uproleselan (GMI–1271) in combination with mitoxantrone etoposide and cytarabine (MEC), or

fludarabine, cytarabine and idarubicin (FAI) in relapsed/refractory AML patients

NCT03616470

GMI-

1271

E-

selectin

AML (adults 60

years and older)

II/III Evaluation of uproleselan combined with cytarabine or daunorubicin in older AML patients receiving

intensive induction chemotherapy.

NCT03701308
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in therapy resistance (144–146). In these clinical trials, GMI-

1271 will be administered in combination with existing

chemotherapies, which highlights how targeting both the

microenvironment and leukemia cells may be necessary in

order to ameliorate CAM-DR.

INTEGRINS IN CELL ADHESION-
MEDIATED DRUG RESISTANCE

Integrins are calcium independent type-I transmembrane

proteins with a shared structure of the extracellular domain,

the transmembrane domain, and the cytoplasmic domain.

Composed of 18 alpha (a) and 8 beta (b) subunits, integrins

participate in cell–cell or cell–ECM adhesion. To date, 24

integrin heterodimers with different combinations of a and b
subunits are known and can interact with their ligands in

arginine–glycine–aspartic acid (RGD) sequence dependent and

independent manners (147, 148) (Figure 3). Figure 3 does not

represent a comprehensive list of integrin heterodimers but

rather includes integrins described by currently available

publications in the field of leukemia, which are reviewed in

this review. During “inside-out” signaling, binding of talin to the
cytoplasmic tail of the b subunit increases integrins’ affinity

toward their ligands by undergoing conformational changes

from low-affinity to high-affinity state (149, 150). On the other

hand, binding of a ligand or a counter-receptor to a specific

domain on thea subunit or the ab heterodimer results in spatial

separation of cytoplasmic tails of a and b subunits. This event
allows adaptor proteins such as talin and vinculin to engage with

b tail and associate with the cytoskeleton and form a protein

complex called focal adhesion and integrin clustering (151–153)

(Figure 4). Integrins can be internalized and recycled, thus

controlling availability of integrin heterodimers on the plasma

membrane (148, 154). These processes will translate external

stimuli and environmental cues into intracellular signaling and

mediate adhesion, cell spreading, migration, proliferation and

survival in cells. Integrin-dependent adhesion to ECM can
convert mechanical forces into biochemical signals, allowing

cells to recognize biophysical properties of given BM

microenvironment (155). Few studies analyze redundancy

between integrins in CAM-DR, and how it might affect

integrin targeting. Future studies will need to address this gap

of knowledge. Here, we summarized integrins by name.

INTEGRIN a 1 (CD49a)
Integrin alpha 1 subunit forms a heterodimer with the integrin

beta 1 subunit to form a1b1, which binds to collagen and laminin

(156, 157). a1b1 is also called very late antigen 1 (VLA-1) because
it is expressed on the surface of long-term activated T cells (158).

VLA-1 mediates the adhesion of intraepithelial lymphocytes

(IELs), such as the CD8+ T cells found in the intestinal

epithelium, to collagen (159). a1 was also suggested to be a

potential marker for stromal cells and is expressed in more than

80% of human derived non-transformed bone marrow stroma

cells. In this study, only a1 expressing stroma precursors was able
to give rise to colony-forming unit-fibroblasts (CFU-F)

compared to the a1 negative subgroup of the stromal

population, suggesting a1 as a marker for stromal precursor

cells (160). Embryonic fibroblasts derived from a1 deleted mice

were not able to spread or migrate to either collagen IV or

laminin, suggesting their importance in cell spreading and
migration (161). However, the role of VLA-1 in CAM-DR in

leukemia is still unknown.

FIGURE 3 | Dimerization of integrins in leukemia. Dimerization of a and b integrins forms a functional heterodimer unit. This figure does not represent a

comprehensive list of integrin heterodimers but rather includes integrins described by currently available publications in the field of leukemia, which are reviewed in

this review.
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INTEGRIN a 2 (CD49b)
Integrin alpha 2 forms a heterodimer with the beta 1 subunit to

form a VLA-2 molecule that binds to collagen and laminin (162).

A real-time quantitative polymerase chain reaction study on 134

de novoAML patients revealed higher ITGA2 expression in AML

patients compared to the 33 normal controls (163). Moreover,
ITGA2high patients had significantly lower complete remission

(CR) rates and a shorter overall survival compared to the

ITGA2low groups. ITGA2 expression decreased significantly in

the patients who achieved CR but increased again in relapsed

patients, suggesting that ITGA2 is a marker for a poor prognosis

in AML. The a2b1 mediated adhesion of the T-ALL cell lines
Jurkat and HSB-2 and the primary T-ALL blasts toward collagen

I decreased doxorubicin induced apoptosis (164). a2b1 mediated

adhesion activates the MAPK/ERK pathway, which inhibits the

doxorubicin-induced activation of c-Jun N-terminal kinase

(JNK) and maintains the pro-survival protein Bcl-2 family

member Mcl-1. The same group extended a2b1-collagen
mediated doxorubicin resistance in the AML cell lines HL-60
and U937 (165). In AML, collagen binding through a2b1
inhibited the activation of the pro-apoptotic protein Rac1,

thereby preventing Rac1 induced DNA damage.

INTEGRIN a 3 (CD49c)
VLA-3 interacts with ligands in both an RGD-dependent and

RGD-independent manner. VLA-3 mediated adhesion to

fibronectin requires RGD-motif recognition, whereas binding

to collagen and laminin does not require an RGD-motif in the
ligands (166). VLA-3 binding to fibronectin increased in the

presence of the Mg2+ and Mn2+−divalent cations required for

integrin activation, whereas binding to collagen and laminin was

less affected. Integrin-a3 was identified as a marker for long-term

repopulating hematopoietic stem cells (LT-HSCs) that expand

from CD34+ human cord blood cells and retain their self-
renewal ability with a long-term engraftment pattern compared

to short term HSCs (SC-HSCs) (167). Furthermore, ITGA3

knockdown with short hairpin RNA against ITGA3 did not

affect the stemness of the cells but decreased the long-term

reconstitution ability in NSG mice. However, the specific role

of VLA-3 in CAM-DR in leukemia is still unclear.

INTEGRIN a 4 (CD49d)
Integrin a4 binds with either the b1 or b7 subunit to form a4b1 or
a4b7 heterodimer. Integrin a4 exerts physiological effects

including cell adhesion and migration, while triggering

intracellular signaling, thereby indicating the promotion of
leukemia cell drug resistance and survival. Integrin-a4

knockout mice are embryonically lethal (168). There are

specific relationships between integrin a4, epigenetics,

metabolism, and cell surface markers. Histone deacetylase

inhibitor treatment may downregulate VLA-4 for various AML

cell lines, primary patient samples, and normal hematopoietic

FIGURE 4 | Integrin signaling in leukemia. Talin binding to cytoplasmic tail of b-subunit activates integrin heterodimer and increases affinity of the complex towards

ligands. Activation of integrin is followed by conformational change of the heterodimer and separation of cytoplasmic tails of each subunit, allowing recruitment of

proteins. Recruited proteins, such as kindlin, paxillin, FAK and Src forms a protein complex that initiates integrin mediated intracellular signaling that results in cell

adhesion, migration, survival and mechanotransduction of leukemia cells.
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stem cells (169). The expression of G9a, a histone

methyltransferase related to gene silencing, correlates with

integrin a4 expression in pediatric B- and T-ALL.

Furthermore, G9a depletion or inhibition with BIX01294 was

shown to abrogate the ability of ALL cell migration towards the

endothelial monolayer (170). Moreover, it was recently reported
that tetraspanin (CD9)+ B-ALL is associated with a poor

prognosis. In this study, CD9 physically interacted with VLA-4

and mediated the affinity to VCAM-1. CD9 inhibition

interrupted the leukemia–stroma interactions and sensitized B-

ALL cells to chemotherapy (171). CD98 has been shown to

interact with the cytoplasmic domains of b1 and b3 and mediate
the adhesive signaling of integrin a4/VCAM-1 in AML (172).

The redox modulation of adjacent thiols in VLA-4 by AS101, an

IL-1b converting enzyme, restored the chemosensitivity of AML

cells by decreasing PI3K/Akt/Bcl2 signaling (173). It has been

demonstrated that integrin a4 and a5 are involved in Jurkat T-

ALL adhesion-independent chemoresistance (174). Our studies
also showed that both deletion and inhibition with natalizumab

of integrin a4 sensitize primary B-ALL cells to chemotherapy

(175). Furthermore, the CD49d antisense drug ATL1102

efficiently downregulated the CD49d mRNA level of B-ALL in

vitro (176). Anti–VLA-4 antibodies (SG/73, SG/17) were shown

to increase chemosensitivity in human AML cells and eradicate

minimal residual disease (MRD) in experimental mice when
combined with chemotherapy (6). Integrin a4 has been shown to

be a prognostic marker of poor overall survival in B-ALL (175).

Interestingly, a report from the Children’s Oncology Group

found that high VLA-4 expression is associated with a better

clinical outcome in pediatric AML and is an independent

predictor of relapse (177). Similar results were found in a
study of the Southwest Oncology Group trials (178).

INTEGRIN a 5 (CD49e)
The integrin a5 subunit can dimerize with integrin b1 to form

a5b1 (VLA-5), which binds to the RGD sequence in fibronectin

(179). Both murine and CD34+ human HSCs were shown to bind

to a recombinant peptide of the VLA-5 binding RGD-motif of

fibronectin in vitro (180). The preincubation of B6.Hbbd/Hbbd,
Gpi-1a/Gpi-1a mice-derived BM cells incubated with the

fibronectin binding domain including the peptide CH-296

decreased the engraftment of BM cells in recipient mice, and

the intravenous injection of the CH-296 peptide caused an

increase in the percentage of progenitor cells in the spleen,

suggesting the importance of VLA-5 in HSC engraftment in
the BM. VLA-5 has been suggested as a therapeutic target in

leukemia. A subset of ALL includes an alteration in the IKAROS

gene, which is correlated with a poor prognosis. The exon 5

deletion of Ikzf1 in pre-B cells arrests the cells in an “adherent

phase”, where survival and proliferation depend on stable

adhesion to the stroma with increased Erk1-2 MAPK activity

(181). The expression of the dominant-negative Ikaros isoform
IK6 in the T-ALL (Jurkat) and B-ALL cell lines (RS4;11, Nalm6)

lifted the transcription suppression of FUT4, which fucosylates

a5b1 on leukemia cells and tightens the adhesion of ALL cells to

fibronectin in the ECM. This increased adhesion was achieved

via activation of the FAK/Akt pathway upon Lewis X (LeX,

CD15, or SSEA-1) modification of a5b1 (182). In U937 and blasts
from AML patients, a4b1 and a5b1 mediated the adhesion of

cells to fibronectin, and the addition of the Wnt antagonist sFRP

induced resistance to daunorubicin 16407823 (183). Both

adhesion and the Wnt pathway contribute to chemoresistance
in AML and require the activation of glycogen synthase kinase

3b (GSK3b). Upon serum starvation of AML U937, VLA-5

binding to fibronectin regulates specific pro-survival functions

through the activation of GSK3b (184). VLA-5 inhibition with an
anti-integrin a5 antibody sufficiently decreased adhesion of the

Ph+ ALL cell line SUP-B15 to fibronectin, while a combination of
VLA-5 inhibition with imatinib synergistically increased

apoptosis in SUP-B15 cells in vitro (185). Furthermore, the

inhibition of VLA-5 with disintegrin, an antibody, or knocking

down integrin-a5 impaired the engraftment of SUP-B15 cells in

immunodeficient mice. A combination of integrin-a5 inhibition

with the FAK inhibitor TAE226 prolonged the survival of SUP-
B15 engrafted mice, suggesting that the inhibition of VLA-5

combined with conventional chemotherapy may improve the

outcome for Ph+ ALL patients.

INTEGRIN a 6 (CD49f, VLA6)
Integrin a6 dimerizes with b1 to form VLA-6 (186) or with b4 to
form a6b4, which is also known as TSP-180 (187). a6 has been

suggested to be a biomarker for minimal residual disease since it

is expressed on pre-B-ALL at diagnosis, and the signal is

preserved or expressed with a higher intensity after therapy

(10, 188). a6 was found to be expressed significantly more
strongly not only in relapsed B-ALL but also in ecotropic viral

integration site-1 positive (EVI1+) AML cases. In this study, the

drug sensitivity of EVI1 AML cells was restored after the

inhibition of integrin a6 (189). Functionally, a6 is suggested to

play an important role in the chemoresistance and metastasis of

leukemia cells. EVI1+ AML cell lines and primary cells were able
to bind to laminin better than cell lines with low EVI1. This

adhesion is specifically mediated by ITGA6 and ITGB4

expression on EVI1 AML cells, and small-hairpin RNA against

EVI1 decreased the expression of ITGA6 and ITGB4. Moreover,

the inhibition of ITGA6 or ITGB4 with neutralizing antibodies

restored chemosensitivity against Ara-C in EVI+ AML cells. In

another study, a6 on the surface of ALL was shown to facilitate
the invasion of ALL cells into the central nervous system by

binding to laminin during the process of migration toward the

cerebrospinal fluid (190).

Since a high expression of integrin a6 was found on day 29 of

an MRD test on B-ALL in the Children’s Oncology Group

(COG) P9906 clinical trial, we proposed the drug resistance
role of integrin a6. Firstly, we showed that the integrin a6
blockade de-adhered the B-ALL cell from laminin-1 and OP9

stromal cells. Secondly, P5G10, an anti-integrin a6 antibody, in

combination with chemotherapy, prolonged the survival of B-

ALL xenograft mice. Thirdly, integrin a6 deletion induced

apoptosis of B-ALL cells involving Src signaling (191).
Recently, it has been shown that the inhibition of integrin-a6

is correlated with decreased cell surface deformability using
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single-beam acoustic tweezers, while no changes in inhibition

were shown for integrin a4 (192).

INTEGRIN a 7 (ITGA7)
Integrin-a7 binds with b1, which is expressed on skeletal and

cardiac muscle (193–196). ITGA7 was more significantly

increased in AML patients with granulocytic sarcoma (GS)

compared to patients with GS. Furthermore, integrin-a7

mediated the phosphorylation of ERK in the surface integrin-

a7 expressing AML cell lines PL21 and THP1, thus promoting

the proliferation of these cells (197). ITGA7 also has been
suggested to be a biomarker for AML patients as ITGA7

expression in AML patients was significantly increased

compared to the control and correlated with a poorer

prognosis. Patients with either high ITGA7 mRNA or protein

expression had a shorter event-free survival (EFS) and overall

survival (OS) compared to low ITAG7 patients (198).

INTEGRIN a 9 (ITGA9)
Integrin-a9 dimerizes with the b1 subunit to form an a9b1 that is
distributed in the airway epithelium, squamous epithelium,
smooth and skeletal muscle, and hepatocytes (199). a9b1
recognizes tenascin-C (200), osteopontin (201), and VCAM-1

(202). While a9b1 shares nearly 40% of its amino-acid sequence

homology with integrin-a4, both have distinct functions.

Integrin-a9 knockout mice develop bilateral chylothorax and

die 6 to 12 days after birth due to respiratory failure (203). The
roles of integrin-a9 in the context of leukemia have not been

elucidated. Recently, the dual inhibition of a4b1 and a9b1 with
BOP { [ N - ( b e n z e n e s u l f o n y l ) - L - p r o l y l - L - O - ( 1 -

pyrrolidinylcarbonyl]tyrosine, a small molecule antagonist

against integrin a4b1 and a9b1} demonstrated the successful

HSC mobilization potential from the bone marrow to the

peripheral blood. While a single dose of BOP increased the
mobilization of huCD45+CD34+ cells by about 2 fold compared

to the saline control, a combination of BOP with the CXCR4

inhibitor AMD3100 increased the mobilization of HSC by three

fold (204). This result suggests that a9b1, concomitantly with

a4b1, is involved in the integrin mediated adhesion of HSCs in

the bone marrow. Indeed, CD34+/CD133+ hematopoietic stem
and progenitor cells (HSPCs) expressed a9 transcripts and a9b1
on the surface. Integrin-a9 mediates the adhesion of CD34+ cells

to osteoblasts, and the addition of functional blocking antibody

against a9b1 and Y9A2 significantly decreased the proliferation

and differentiation of CD34+ HSPC cells (205).

INTEGRIN a L (CD11a, LFA-1)
Integrin-aL dimerized with a b2 subunit is called lymphocyte

function-associated antigen-1 (LFA-1). In an early study using T
cells derived from leukocyte adhesion deficient (LAD) patients

with genetic defects in b2 showed a decreased expression of LFA-

1 and LFA-1 LAD derived T cells still bound to endothelial cells

similar to normal T cells via complementary binding through

VLA-4, but their transmigration through the endothelial layer of

LAD derived T cells was significantly decreased (206). In

hematological malignancies, T-cell neoplasms, including T-

ALL, almost always express LFA-1, while LFA-1 expression in

lymphoma and B-cell neoplasms, including T-ALL, CLL, HCL,

and SLL, vary between patients (207, 208). LFA-1 on the T-ALL

cell line (Sup T1 and Jurkat) and primary T-ALL were shown to
play a critical role in binding T-ALL cells to the BM stroma (HS-

5 and patient derived BM) and regulating the survival of T-ALL

cells (209).

INTEGRIN a M (CD11b)
The integrin-aMb2 heterodimer is called Mac-1 and is known to
bind to fibrinogen (210), platelet factor 4 (211), and ICAM-1

(212). The expression of Mac-1 was suggested to be a biomarker

for a poor prognosis (213). The Mac-1 mediated adhesion of

U937 and HL-60 cells to plastic was suggested to elicit a survival

benefit in leukemia cells treated with phorbol ester, and these

Mac-1 mediated adherent cells are susceptible to undergo anoikis

when forced to be de-adhered, suggesting adhesion
dependent survival.

INTEGRIN a V (CD51, VNRA, MSK8)
Integrin-aV can dimerize with b1, b3, b5, b6, and b8.
Heterodimers including aV can bind to fibronectin (214) and
vitronectin (215, 216). In AML, aVb3 is suggested to cooperate

with the fibroblast growth factor receptor (fgf-R) to increase

proliferation, especially the subset of AML that has Hox-

overexpression induced by MLL fusion protein (217). In this

study, the MLL-ELL transduction of primary murine bone

marrow cells increased the expression of b3 integrin via

HoxA10, and the aVb3-mediated adhesion of cells to
vitronectin increased Syk, Pak1, and Fak1. aVb3 activity was

reversed through the b-catenin and Cdx4 dependent decrease in

ITGB3 promoter activity upon fgf-R inhibition in these cells.

INTEGRIN b1 (CD29)
Integrin b1 is the most common beta subunit heterodimer

partner for integrin alpha subunits (218). In cancer,
upregulated expression of b1 is indicative of a poor prognosis

(219) and plays roles in chemoresistance by binding to ligands

and eliciting downstream signaling events. Berrazouane et al.

reported that b1 promotes chemoresistance in T-ALL primary

blasts via ABC transporter-mediated doxorubicin efflux and the

downstream activation of PYK2 (220). Integrin a2b1 binds to

collagen and upregulates ABCC1 via the ERK/MAPK pathways
to modulate efflux (221). Similarly, collagen-binding b1 integrins
contribute to doxorubicin resistance in AML by reducing DNA

damage through Rac1 inhibition (222).

b1 also has roles in apoptosis inhibition. Estrugo et al.

demonstrated that leukemia cell lines HL60 and Jurkat adhere to b1
integrin ligands fibronectin, laminin, or collagen-1 and are protected
from radiation, Ara-C, and FasL-induced apoptosis (223). These b1
integrin-mediated cell-matrix interactions inhibit procaspase-8

activation via the PI3K/AKT pathway. Additionally, b1 integrin
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ligation to fibronectin impairs both procaspase-3 and procaspase-9

activation associated with the intrinsic apoptotic pathway.

The tetraspanin superfamily is known to be associated with

the activation, ligand binding, and inside-out signaling of b1
integrins and can promote cancer cell survival (224, 225). When

b1 is expressed with tetraspanin CD82, chemoresistance is
promoted by increasing PKCa activation and the downstream

clustering of b1 integrin, leading to AML cell survival via the

activation of p38 MAPK for DNA damage repair (226). In

summary, integrin b1 is implicated in the chemoresistance of

leukemia via chemotherapy efflux, intracellular signaling, and

apoptosis inhibition.

INTEGRIN b3
It has been suggested that integrin b3 may have functional

redundancies with b1 integrins (227). In AML, b3-mediated

signaling is required for leukemogenesis and leukemia survival
(228), in part through SYK activation. To date, the function of b3
in the chemoresistance in leukemia has not been studied. In

hepatocellular carcinoma, the upregulation of Galectin-1, which

elevates aVb3expression, was found to activate the PI3K/AKT

pathway and is correlated with a poor sorafenib response (229).

The antagonism of b3with cilengitide inM2macrophages led to the
promotion of tumor cells, and the loss of integrin b3 signaling

promoted an immunosuppressive tumor environment (230).

Clearly, b3 signaling is important in drug response and cancer

progression, which may be grounds for similar studies on leukemia.

INTEGRIN b7
Integrin b7 is present on lymphocytes as a subunit of the a4b7
heterodimer and mediates binding to fibronectin, VCAM-1 (231),

and mucosal addressin cell adhesion molecule 1 (MAdCAM-1)

(232). a4b7 is less well studied in the context of leukemogenesis
and drug resistance and is mainly involved with lymphocyte

homing and trafficking. In hematopoietic progenitor cells, a4b7
and MAdCAM-1 contribute to the recruitment of cells into the

bone marrow following transplantation, and the inhibition of

MAdCAM-1 significantly reduces homing (233). For blood

cancers, it has been suggested that the expression of a4b7 plays a

role in the leukemic evolution of T cell lymphoblastic lymphomas
and the dissemination of lymphoma cells to VCAM-1-positive

vascular spaces (234). In T cell leukemias with gastrointestinal

involvement, it was found that the expression of a4b7 is linked

with homing to MAdCAM-1 on endothelial cells in the intestinal

mucosa (235). In summary, while a4b7 may not be involved with

leukemogenesis, its roles in lymphocyte homing have effects on the
progression of leukemia in different organs.

TARGETING INTEGRINS

The preclinical evaluation of integrin inhibition has suggested

promising results for the sensitization of leukemia cells to

chemotherapy. Knocking out ITGA4 restored the sensitivity of

BCR-ABL+ murine leukemia toward nilotinib (NTB), and a

blockade of integrin alpha 4 with a monoclonal antibody

sensitized primary B-ALL engrafted xenograft mice to

chemotherapy (175). Since the b1 (CD29) subunit dimerizes

with many different a units, blockade of b1 is an attractive target
for leukemia therapy. In T-ALL, the b1 blockade with b1 specific
antibody AIIB2 inhibited cell-matrix interactions and decreased

the Matrigel effect on T-ALL colony formation. Furthermore,

AIIB2 in combination with doxorubicin significantly prolonged

the survival of CEM xenograft mouse models (220). OS2966, a

humanized monoclonal antibody, will be used in a phase I
clinical trial for glioblastoma and may also have efficacy in the

treatment of hematological malignancies by targeting multiple

in tegr ins on leukemia ce l l s and the surrounding

microenvironment (236). As for other integrins, targeting the

active form of the integrin b7 subunit, specifically the MMG49

epitope in the N-terminal region of active b7, showed multiple
anti-myeloma effects in vivo without damaging normal

hematopoietic cells (237). The efficacy of chimeric antigen

receptor (CAR) T cells against avb3 in melanoma and avb6 in

ovarian, breast, and pancreatic xenograft mice models has also

been evaluated (238, 239) for integrin targeting CAR T therapy

in hematological malignancies.

Despite the compelling in vitro and in vivo anti-tumor effects
of integrin blockades in tumor models, the preclinical evaluation

of integrin targeting has not yet been successfully translated

into a clinical platform. Several clinical trials evaluating

integrin inhibition in solid tumors were terminated due to

infusion-related reactions and non-significant anti-tumor

activity (NCT00915278) (240), insufficient clinical data
(NCT00684996), or low enrollment (NCT00675428). A phase

II trial of abituzumab (EMD 525797) targeting av in

combination with cetuximab and FOLFIRI in metastatic

colorectal cancer is expected to be completed by August

2021 (NCT03688230).

Integrin targeting is useful for the detection of cancers, and

many clinical trials target integrin in the CT/PET imaging of
cancer patients. A novel radiotracer 99mTc-RWY detecting

integrin alpha 6 is in an early phase I clinical trial for SPECT

imaging in breast cancer (NCT04289532), and the safety of the

radiotracer and potential clinical applications are being

evaluated. Likewise, many other types of integrin tracing

molecules are being evaluated for their efficacy in imaging
cancer patients (NCT04285996).

Although the inhibition of integrin has not yet been

successfully translated into a clinical trial for leukemia,

integrins remain a valid target for cancer therapy, as they can

serve as a targetable biomarker. Targeting the active form of the

integrin b7 subunit, specifically the MMG49 epitope in the N-

terminal region of active b7, showed multiple anti-myeloma
effects in vivo without damaging normal hematopoietic cells

(237). The efficacy of CAR T cells against avb3 in melanoma

and avb6 in ovarian, breast, and pancreatic xenograft mice

models has also been evaluated (238, 239) for integrin

targeting CAR T therapy in hematological malignancies.
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In summary, integrin blockades must be further investigated

using preclinical systems that can accurately recapitulate the

biological environments in patients, thus allowing the integrin

blockade to exert anti-tumor effects (241) (Table 4). To

overcome this challenge, integrins can serve as a good target

for tumor imaging in patients or for immunotherapy, including
CAR T therapy. As discussed in this section, integrin blockades

have been shown to increase chemosensitivity of leukemia cells

and provide support for further studies of integrins as a viable

target to abolish CAM-DR in leukemia.

CONCLUSION

Despite advances in cancer therapy and the increased overall

survival rate of cancer patients, the eradication of leukemia still

remains a challenge. Pediatric ALL has a good prognosis overall,

yet relapse and refractory disease remain a problem. AML has a

worse prognosis, and there is an unmet need for the

improvement of patient outcomes. The impact of the
microenvironment on cancer cell progression and drug

resistance has been often neglected, yet it is apparent that

TABLE 4 | Description of integrin inhibitors.

Drug name Description Indication References

Natalizumab

(Tysabri®)

Monoclonal antibody against a4 Multiple sclerosis and Crohn’s disease (175)

Vedolizumab

(Entivio)

Monoclonal antibody against a4b7 severe ulcerative colitis or Crohn’s disease (242, 243)

Volociximab Monoclonal antibody against integrin a5b1 Solid tumors including kidney, lung, ovarian cancer, melanoma, and

pancreatic cancer

(244–247)

ATN-161 non-RGD based peptide targeting a5b1 and anb3 Solid tumors including prostate, colon, and hepatocellular cancers (248–250)

Intetumumab

(CNTO95)

human an monoclonal antibody Inhibition of tumor growth (236, 251)

Etaracizumab

(MEDI-522)

Monoclonal antibody against anb3 Psoriasis, kidney cancer (252, 253)

Abituzumab

(EMD525797)

Monoclonal antibody against anb6 Metastatic prostate cancer (254, 255)

Cilengitide (EMD

121974)

first anti-angiogenic small molecule targeting the integrins

avb3, avb5, and a5b1

Inhibition of endothelial cell–cell and cell–ECM interactions and

angiogenesis

(256–259)

GLPG0187 a small molecule inhibitor for anb1, anb3, anb5, anb6, and

a5b1

Solid tumors including high-grade gliomas and colorectal

carcinoma

(260–262)

OS2966 Humanized monoclonal antibody against b1 integrins Glioblastoma, meningioma, ALL, and AML (236, 263)

FIGURE 5 | Overview of CAM-DR in leukemia. Cadherin, selectin, and integrin contribute to drug-resistance and metastasis upon engagement with their ligands in the

BM. Homotropic engagment of cadherins can protect leukemia cells from chemotherapy (reference 92, 95) by modulating Wnt signaling and promote self-renewal of

LSCs (reference 96, 97, 99). Leukemia cells can also bind to E-selectin expressed on endothelial cells through expressed selectin ligands on their surface (ref 132, 133).

Interruption of E-selectin mediated interaction between leukemia and endothelial cells is actively being investigated in many clinical trials (ref 20). Integrin binding to BM

stromal cells, ECM or counter receptors activates pro-survival signaling pathways such as PI3K/AKT and Ras/ERK pathway (ref 164, 221, 223, 229).
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leukemia cells actively communicate and interact with the

surrounding microenvironment for their survival. Therefore,

disrupting the interactions between leukemia cells and the

surrounding cells or ECM protein may lead to apoptosis or

sensitization toward chemotherapy. Cadherins, selectins, and

integrins are known cell adhesion molecules that are involved
in CAM-DR in leukemia (Figure 5). Their aberrant expression

and association in CAM-DR in different types of leukemia have

been studied. Furthermore, a preclinical evaluation of the efficacy

of the CAM blockade was performed on subtypes of leukemia

and showed promising results with an anti-leukemic effect. The

FDA has granted a Breakthrough Therapy designation and Fast
Track designation for the E-selectin inhibitor Uproleselan, which

shows both the urgency of finding an effective drug for leukemia

treatment and the importance of microenvironment–leukemia

interactions in leukemia treatment. The translation of more

CAM inhibitors into a clinical platform will advance leukemia

therapy and eradication of the disease.
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