
http://www.diva-portal.org

Postprint

This is the accepted version of a paper published in Social Network Analysis and Mining. This
paper has been peer-reviewed but does not include the final publisher proof-corrections or journal
pagination.

Citation for the original published paper (version of record):

Soliman, A., Bahri, L., Girdzijauskas, Š., Carminati, B., Ferrari, E. (2016)
CADIVa: Cooperative and Adaptive Decentralized Identity Validation Model for Social
Networks.
Social Network Analysis and Mining, 6(1): UNSP 36
https://doi.org/10.1007/s13278-016-0343-z

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

The final publication is available at Springer via http://dx.doi.org/10.1007/s13278-016-0343-z

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-193150



A

CADIVa: Cooperative and Adaptive Decentralized Identity Validation
Model for Social Networks

Amira Soliman, Royal Institute of Technology (KTH)

Leila Bahri, Insubria University

Sarunas Girdzijauskas, Royal Institute of Technology (KTH)

Barbara Carminati, Insubria University

Elena Ferrari, Insubria University

Online Social Networks (OSNs) have successfully changed the way people interact. Online interactions
among people span geographical boundaries and interweave with different human-life activities. However,
current OSNs identification schemes lack guarantees on quantifying the trustworthiness of online identities
of users joining them. Therefore, driven from the need to empower users with an identity validation scheme,
we introduce a novel model, Cooperative and Adaptive Decentralized Identity Validation CADIVa, that al-
lows OSN users to assign trust levels to whomever they interact with. CADIVa exploits association rule
mining approach to extract the identity correlations among profile attributes in every individual community
in a social network. CADIVa is a fully decentralized and adaptive model that exploits fully decentralized
learning and cooperative approaches not only to preserve users privacy, but also to increase the system
reliability and to make it resilient to mono-failure. CADIVa follows the ensemble learning paradigm to pre-
serve users privacy and employs gossip protocols to achieve efficient and low-overhead communication. We
provide two different implementation scenarios of CADIVa. Results confirm CADIVa’s ability to provide fine-
grained community-aware identity validation with average improvement up to 36% and 50% compared to
the semi-centralized or global approaches, respectively.

Additional Key Words and Phrases: Identity Validation, Online Social Networks, Distributed Systems, Pri-
vacy Preservation, Decentralized Online Social Networks

1. INTRODUCTION

Online Social Networks (OSNs) have changed the way people communicate and have
provided new forms of communication and social interactions. Online interactions span
geographical boundaries and interweave with the different daily life activities. The
realm of OSNs design shows variety in purpose for different types of interactions
among people. Some sites keep a very professional approach (like LinkedIn1), while
most sites mix professionalism with personalization (like Facebook2 and Google+3).
However, all of these sites employ a lightweight process for obtaining membership
identities (i.e., confirming a valid email address) to facilitate their smooth joining and
fast adoption. Moreover, when users create their profiles on these OSNs, they are given

1www.linkedin.com
2www.facebook.com
3https://plus.google.com/
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the complete freedom to fill up the records of their profiles without validating them.
Consequently, such convenience increases the vulnerability of such networks to un-
dergo security threats such as spam, malware, and phishing attacks [Huber et al.,
2011; Luo et al., 2009; Jagatic et al., 2007]. One of the recently trending threats to
OSNs is the spread of fake accounts that are seeking to get social [Robinson, 2015;
Stringhini, 2014].

Fake accounts are nothing new to the online world in general and to OSNs in par-
ticular. Despite all the efforts to aid the detection of fake accounts, they still make a
considerable proportion of the active online population of today’s major OSNs. For in-
stance, as of December 2015, Facebook has been reported to have 1.49 billion accounts
out of which at least 83 million are known to be fake.4 What is more dangerous than
the existence of these fake accounts is their exploitation to build social trust; hence
making honest targets more willing to trust dangerous content or putting the privacy
of their information at risk [Robinson, 2015; Stringhini, 2014]. This social trustwor-
thiness is mainly achieved by means of creating personal connections with honest
users. Indeed, most of the techniques available for fake accounts detection rely on
the premise that fake accounts exhibit tendencies of densely connected groups that
are weakly connected to the rest of the OSN, or outlying behavior that is skewed com-
pared to common trends [Yu et al., 2006a; Yu et al., 2008]. As such, once a fake account
succeeds at befriending honest users, its chances of getting detected would be consid-
erably diminished. Moreover, the established connections may allow the fake account
to inherit some of the trust accorded to the befriended honest account; thus give to the
fake account more credibility resulting in higher chances of fooling other honest users
[Stringhini, 2014]. This suggests that there may be a need for a mechanism that facili-
tates the validation of profiles in an OSN to allow honest users to take better informed
decisions before accepting a new connection in the network.

Several approaches have been proposed to address the problem of identity valida-
tion of users in OSNs. Particularly, online identity validation targets the estimation
of trustworthiness of an OSN profile in terms of linking this profile to a true social
human identity. However, all of the existing approaches tend to compromise users’
privacy in their trial to achieve some security goals. For example, some of them iden-
tify users by utilizing their sensitive information such as geo-locations they usually
visit and time-stamps of the information they share [Goga et al., 2013]. In [Chairun-
nanda et al., 2011], authors use typing patterns to identify users, whereas chatting
patterns are exploited in [Roffo et al., 2013]. Additionally, other validation approaches
have suggested to rely on human feedback. For example, in [Sirivianos et al., 2012] the
authors suggest to evaluate an identity on a given network based on feedback of her
connections on another one. Generally, all of these techniques are derived from the in-
centive to validate online identities, yet they fail to limit the boundary of information
to be used to fulfill their objective without violating users privacy or revealing their
sensitive information to other entities who are not privileged to access it.

More importantly, further privacy concerns also emerge as a result of the central-
ized architecture of todays popular OSNs. In particular, this centralized architecture
has critical consequences such as the necessity for a high degree of trust in the OSN
provider, censorship of users behavior and the utilization of users’ data for business-
related purposes [Debatin et al., 2009; Dwyer, 2011]. Therefore, in the last decade, re-
searchers and the open source community have proposed various decentralized OSNs
(DOSNs) (e.g., [Koll et al., 2014; Nilizadeh et al., 2012; Kapanipathi et al., 2011]) that
remove dependency on a centralized provider. The main objectives behind decentral-
ization are to preserve users privacy in both shared content and communication, and

4https://zephoria.com/top-15-valuable-facebook-statistics/
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also to provide complete freedom from any form of censorship or profiling. DOSNs op-
erate as distributed information management platforms on top of networks of trusted
servers or P2P infrastructures [Datta et al., 2010]. Thus, DOSNs provide a privacy
preserving alternative to current OSNs, where users have full control of their data.

Although the DOSNs paradigm presents promising ways for preserving users pri-
vacy, it creates even more challenges when it comes to validating users identities. In-
deed, in the absence of a central management entity, designing mechanisms to control
online identities in a DOSN brings up several challenges. First, all the information
that could be exploited to validate a user’s identity is solely owned and managed by
him/her and is not available to any other entity. Second, with the privacy preservation
set as a first requirement, an appropriate solution should not exploit any information
outside of its owner’s boundaries. In addition to that, an adequate solution should not
subvert the decentralized architecture of DOSNs. That is, collaboration between peers
should ideally be exploited in a fully decentralized manner without introducing sub-
central entities or super peers that might constitute single points of failure or privacy
breach entities.

1.1. Motivation

Starting from the requirement of preserving users’ privacy in suggesting an appro-
priate solution for identity validation of peers in a DOSN, it sounds crucial to limit
the exploited information to publicly available one only and to not move data across
its ownership boundaries. A possible approach is to utilize the provided profile infor-
mation of a user. Particularly, the evaluation can be done based on the integrity of
the provided profile information, and veracity of reflecting actual real identity of the
profile owner. This idea has been suggested in [Bahri et al., 2014] where the authors
suggest using community feedback to assign trustworthiness levels to users on a so-
cial network based on the profile information they exhibit. The authors show that there
exists a dependency among different profile attributes such that their corresponding
values are expected to exhibit some correlation within any truthful profile. They do
this by gathering human feedback from a trusted set of users on a centralized profiles
training dataset. Once these correlations are identified, again they engage users’ feed-
back, to estimate the identity trustworthiness level of a target profile. In particular,
the computed trustworthiness level of any target profile indicates the homogeneity be-
tween values in the user’s profile and the identified correlated attributes. Although, the
proposed approach succeeds in limiting the required information to identify identity
trustworthiness by relying only on profile information, using users’ feedback might
be violating users privacy. Moreover, this solution relies on the existence of a cen-
tral repository of profiles from which the correlations between attributes could be ex-
tracted.

Basing the learning of correlations between profile attributes on all the users pro-
files as one unified entity (i.e., the global correlations that are generated using all the
profiles) would capture generalizations across all of the users in the network and might
result in discriminatory validation patterns to minorities. For example, if we consider
a network of one million users, extracting statistically significant correlations from
the whole population provides broad commonalities shared across the whole popula-
tion such as interests in specific sports. This might not apply to all users at a micro
scale, and would result in incorrectly validating their profiles. At this point, it comes
logical to exploit network relationships as well as they reflect groupings of people that
might be representative of common identity trends. In fact, it has been found that so-
cial networks exhibit a clustering phenomena by which users topologically cluster into
communities [Krivitsky et al., 2009; Ferrara, 2012]. Furthermore, users inside every
community typically have high similarity to each other sharing common identity and
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background trends [Ferrara, 2012]. Thus, it sounds more realistic to validate identities
within single communities instead of considering all the users base as one flat entity
and resulting in identity validation patterns that could be very vague and too general
to apply to users at micro levels. For example, if the majority of users work in infor-
mation technology jobs and share the same interests in electronics and gadgets, global
learning will enforce a correlation rule between job and interests. On the other hand,
smaller communities of people who work on different careers (e.g., school teachers) will
be penalized for mismatching this rule.

Furthermore, it is intuitively observable that people have multiple community mem-
berships. For example, a person usually has connections to multiple groups or commu-
nities, such as family members, colleagues, friends, and co-workers. Therefore, it is
more reasonable to compute multiple trustworthiness levels per user according to the
different communities that he or she belongs to. Therefore, the objective of identity
validation systems is to go beyond the existing solutions of binary classification (i.e.,
classifying a new profile as legitimate or fake) and provide a community-aware iden-
tity validation. Community-aware identity validation systems will have the ability to
identify the existing communities in the social network and extract the correlated at-
tributes inside each community. Consequently, identity validation of new users can be
performed by quantifying the overlapping among the profile attribute values of the
new users with respect to the existing correlated attributes of the communities which
these users want to join. Moreover, new users can have multiple trustworthy levels to
the communities they join. For example, a new user who is a computer science student
in some university has a high trustworthiness level for the community of computer
science students as they study the same subjects. However, the same student may
have a lower trustworthiness level for the community of music bands as he/she is not
interested in music.

In addition to these limitations, relying on a central learning repository to unveil
identity trends does not align with our target scenario of DOSNs. Thus, to design
a solution tailored to DOSNs, and to overcome the limitations related to the cen-
tralized and supervised approach exploited in [Bahri et al., 2014] to extract the cor-
relations among profile attributes from a profile schema, we previously proposed in
[Soliman et al., 2015], a decentralized identity validation (DIVa) model that adopts
a quasi-decentralized approach. Instead of supervised learning that requires human
feedback, DIVa successfully conceptualizes users online identities by extracting the
correlations among profile attributes from the user population. Additionally, DIVa pro-
vides community-based validation by mining the correlations form individual commu-
nities not from the user population as a whole. DIVa achieves this in a three phase
process that starts by each node learning the collection of its local correlated attribute
sets (LCAS) by exploiting association rule mining over the profiles of its direct friends
only. In the second phase, a community detection mechanism is deployed to define
the communities existing in the network. Thereafter, every node, knowing the com-
munities to which it belong, communicates its learned collection of LCAS to the super
nodes of its membership communities. These super nodes, referred to as diva nodes,
are unique in each community and are responsible of receiving all LCAS collections
from all the nodes in their community and aggregating them to generate the commu-
nity level correlated attribute sets (i.e., CAS). As such, DIVa provides stronger fine-
grained validation rules (i.e., a set of CASes per community) that reflect the existing
patterns inside every existing community instead of the global trends that any new
profile can maintain. Thereafter, every user can use these correlations to evaluate the
truthfulness of new profiles he or she desires to become friend with. In particular, the
evaluation of identity trustworthiness depends on the coherence of its claimed identity
against the discovered correlations of the targeted community.
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1.2. Contribution

The provided model in [Soliman et al., 2015] demonstrated good results in meeting the
goal of designing an identity validation model for DOSNs that uses minimal informa-
tion (i.e., profile information only); however, this model does not provide a fully decen-
tralized solution. In fact, [Soliman et al., 2015] assumes the availability of some super
nodes (i.e., diva nodes) that are exploited as central hubs within each community and
are used to aggregate the final community-based profile attribute correlations. These
super nodes might constitute single points of failure or performance bottlenecks in the
system as the process depends on their availability and on their ability to perform the
tasks entrusted to them. Moreover, the assumption of super nodes does not fully align
with the fully decentralized spirit of DOSNs. In addition to that, the work in [Soli-
man et al., 2015] bases on static assumptions across all communities for the threshold
values adopted to learn significant correlations within each community. That is, all
communities adopt the same threshold value for the learning of a valid correlation be-
tween profile attributes of their members, ignoring the specific characteristics of every
community such as size, homogeneity, etc.

To address these limitations, in this paper we suggest a cooperative and adaptive de-
centralized identity validation model (CADIVa), that is fully decentralized and adap-
tive. CADIVa exploits gossip learning to provide fully decentralized and cooperative
learning, not only to preserve users privacy, but also to increase the system reliability
and to make it resilient to mono-failure. Furthermore, CADIVa tunes the statistical
significant threshold for selecting profile attribute correlations according to the num-
ber of nodes belonging to each community. Adaptive thresholds increase the freedom
of each community to have the value that reflects the level of homogeneity among its
constituent members.

CADIVa operates based on a gossip-based algorithm to cut off the role of the su-
per nodes in aggregating their communities CASes, and to engage all of the nodes in
a community instead. As this might result in a communication overhead, we demon-
strate the trade-off between convergence and network overhead and propose two dif-
ferent implementations of CADIVa. In the first one, the community detection phase is
executed first and performed separately from the aggregation phase, whereas in the
second implementation we combine both the community detection and LCASes aggre-
gation to minimize the overall communication overhead. The results show that both
versions of CADIVa achieve improvement up to 36% and 50% than DIVa and global
approach, respectively.

Furthermore, the main motivation behind CADIVa is to quantify the trustworthi-
ness of new users joining the social network and recommend neglecting the connec-
tions from untrustworthiness users. However, the users have the complete freedom
either to follow CADIVa’s recommendations or to neglect them. Therefore, we devel-
oped CADIVa as adaptive and self-correcting model that continuously updates com-
munities validation rules while new nodes being added to the communities. The first
part of CADIVa’s adaptability lies on computing different threshold values according to
the statistical strength of attribute pairs frequency inside every community indepen-
dently. Secondly, CADIVa monitors the topological changes in the communities after
adding the new nodes/edges. Afterwards, CADIVa re-performs the CAS learning in
the regions where communities topologically change. We perform a set of experiments
following hierarchical community detection to show how CASes change with the in-
crease of community size. The results emphasize the ability of CADIVa to extract the
community-level CASes that reflect the topological structure of the underlying com-
munities and the properties of the user population belonging to each community.

The main contributions of this paper can be summarized as follows:
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— A cooperative, massively parallel and reliable identity validation model that pre-
serves users privacy and operates without super nodes support, hence it suitably fits
DOSNs.

— Community-aware identity validation model that reveals mostly frequent fine-
grained identity patterns inside every community more accurately than existing
semi-centralized or global approaches.

— Adaptive identity validation model that is capable of tuning the model parameters to
reflect the existing homophily level inside every community.

— Incrementally learning model that monitors the evolving changes in the underlying
social graph and updates communities validation rules.

The rest of the paper is organized as follows. Section 2 provides background on the
proposed identity validation scheme. In Section 3, we describe the CADIVa model and
detail its two suggested implementations. Section 4 provides security and complexity
analysis, whereas Section 5 presents and discusses experiments results. In Section 6
we survey the related work and then conclude the paper in Section 7.

2. BACKGROUND: COMBINING PROFILE AND NETWORK DATA FOR IDENTITY VALIDATION

The goal of our proposed model is to provide users in a DOSN with an identity val-
idation service that would help them in assessing the trustworthiness of their new
online contacts. Our target requirements are to achieve this goal without subverting
the privacy preservation guaranteed by the DOSN design and to offer a solution that
is fully decentralized without relying on super nodes that might constitute single point
of failure. To answer our goal, we suggest a model that exploits detected correlations
between profile attributes in a profile schema to provide communities in a DOSN with
sets of correlated attribute sets (CAS) that reflect the identity trends of their members.
These CASes can be used by community members to assess the trustworthiness of new
contacts desiring to connect with them. Basically, our model bases on two assumptions.
First, social networks exhibit a clustering feature by which users topologically cluster
into communities with connections within a community denser than across communi-
ties. Second, people within communities share common identity trends and patterns
that could be extracted and that could be used to validate the identity of new members
desiring to connect with them.

To extract those correlations in a profile schema, we exploit the principles of Associ-
ation Rule Mining (ARM) [Agrawal et al., 1993]. ARM is a data mining model that has
been extensively used in market-basket analysis, to extract rules on how a subset of
items influences the presence of another subset [Agrawal et al., 1993; Agrawal et al.,
1994; Kotsiantis and Kanellopoulos, 2006; Hipp et al., 2000]. Similarly in our scenario,
we are interested in finding the set of correlated attributes and quantifying the depen-
dency relations among them. Hence, for identity validation an association rule can be,
“a user who is employed at company X also lives in city Y”. To infer such rules, the
proposed model extracts the frequent profile attributes values inside each community
and identifies their equivalent profile attributes as Correlated Attribute Set (CAS). As
such, the evaluation of identity trustworthiness of a profile can be performed based
on the coherence of its claimed attribute values against the discovered CAS and their
values.

To be aligned with the DOSN design and with our target privacy preservation re-
quirements, we design our suggested model based on a node-centric approach and
structure its operation in three main phases, as illustrated in Figure 2. First, all
the nodes in the network collaboratively execute a decentralized community detec-
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Community C2 

CAS = { (City, Interest)} 

Values for City = {Milan, 

Stockholm} 

Values for Interest= {Music, 

Movies}  

CAS = { (Education, Job), 

(Job, City)}  

Values for City = {Stockholm} 

Values for Job= {PhD Student, 

Master Student}  

Community C1 

Bob

Alice’s profile

City: Milan

Interests: 

Music, Movies, 

Sports

Fig. 1. Illustrative scenario for Example 2.1. Alice sends a friendship request to Bob who evaluates Alice’s
profile w.r.t the validation rules of the communities he belongs to.

tion algorithm5 to detect topological communities existing in the social network. Sec-
ond, every node independently executes ARM learning using its local data (i.e., the
profile information of its direct friends only) to extract its local correlated attribute
set (LCAS) that exist among its direct friends. Thus, profile information is processed
locally and any possibility of mismanagement or accidental disclosure of profiles in-
formation is diminished because users’ data are not moved outside their trusted zone.
Finally, nodes participate in a voting mechanism to formulate the community consen-
sus from LCASes and reach a common community-level CASes.

Once the nodes agree on their communities CASes, nodes can evaluate the integrity
of profile information of a new user desiring to connect with them. To illustrate the
validation process, we provide the scenario in Example 2.1.

Example 2.1. Let us assume we have two communities C1 and C2 in the OSN where
we found that {Education, Job}, and {Job, Current City} form the C1’s CAS, while {
Current City, Interests} forms C2’s CAS. The existence of the two attribute pairs in
CAS of C1 is agreed on by and communicated to all its nodes, and the same applies
for C2. Consider Bob to be a member of the two communities and assume Alice is a
new user who wants to connect with Bob (see Figure 1). Bob knows that in his first
community (i.e, C1), trustworthy nodes should demonstrate homogeneity between Ed-
ucation and Job and between Job and Current City. Therefore, Bob can estimate the
trustworthiness of Alice’s profile by checking the values she provides to these attribute
couples. The estimation of Alice’s profile indicates that Alice has a low trust level to
be a member of C1, however, she is more trustworthy to be in C2. So, Bob can accept
Alice’s friendship and consider her to be a member of C2 but not C1. To assist users to
have clearer judgment, the model also provides the top-n values associated with each
CAS in their community.

5We exploit the community detection algorithm suggested in [Rahimian et al., 2014] as it provides a fully
decentralized solution.
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Fig. 2. The three phases of our identity validation scheme. First, communities boundaries are identified by
detecting densely connected regions, then every node performs local learning, and the final step is aggregate
rules per community using gossip-learning.

In what follows, we describe in more details each of the three phases of the proposed
model.

2.1. Community Detection Phase

In social networks, it is intuitively observable that people have multiple commu-
nity memberships. For example, a person usually has connections that span multiple
groups like family, friends and classmates, co-workers etc. Furthermore, the number
of communities a user can belong to is unlimited as a person can simultaneously as-
sociate with as many groups as he/she wishes. Thus, it is more reasonable to cluster
users into overlapping communities rather than disjoint ones. Therefore, in our com-
munity detection phase we allow nodes to join multiple communities. In particular, the
community detection algorithm that we exploit (i.e., the proposal in [Rahimian et al.,
2014]) run in conductive rounds, such that in every round nodes maintain an ordered
list of the communities according to the number of the direct friends belonging to these
communities. Basically, as illustrated on Figure 2, a node starts a community by itself
and initializes its community identifier with the maximum ID among itself and its
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direct friends. Afterwards, nodes exchange their sates with their direct friends, such
that every node updates the community membership list with the number of of the
community that the majority of its friends are located in. Then, every node allocates
itself to the community containing the highest number of its neighbours (i.e, the domi-
nant community as the case of node 8), if such a community exists; otherwise, the node
assigns itself to the community with the maximum ID.

Once every node is aware of the communities it belongs to, the second phase of the
model is run locally by each node.

2.2. Local Learning Phase

Our proposed scheme extends the ensemble learning paradigm in distributed machine
learning and works on fully distributed datasets without collecting the data into one
central location. As shown in Figure 2(d), every node uses its local data repository that
contains the collection of its direct friends profiles, and generates a set of distributed
models by exploiting principles of Association Rule Mining (ARM). The formal state-
ment of ARM was firstly stated by Agrawal [Agrawal et al., 1993] to extract the asso-
ciation rules of the causal dependencies of buying different items. In our model, the
items are the profile attributes and the association rules are the correlated attribute
sets. For example, a node can learn from examining the profiles of its direct friends that
users who study at university x also live in city Y. If a node sees such an observation
is frequent enough in the profiles of its direct friends, the node deduces that attributes
University and City are correlated. We provide the details of this step under Section
3.2.

Once all the nodes have learned their local correlated attribute sets, they engage in
a collaborative process to form consensus on the community level correlated attribute
sets.

2.3. Forming Community Consensus Phase

The last phase is to agree on the communities CASes. Communities CASes are com-
puted in an incremental fashion by aggregating the individual LCASes at the level of
all the nodes in every given community. This achieves the same predictive and analytic
power, as applying the learning on a centralized repository, in a distributed fashion
without moving individual data outside its ownership boundaries and thus, without
violating users privacy. In our previous work [Soliman et al., 2015], the node with the
maximum ID (also referred to as diva node) inside every community is responsible for
receiving the LCASes form all other nodes in the community and performing weighted
voting mechanism in order to reach the final CAS for the community. For example,
as illustrated in Figure 2(e), node 7 is the community’s diva node and in round (0) of
the aggregation process this node receives LCASes generated from its direct friends.
In the following round(s), the node continues to receive LCASes from other nodes that
are not directly connected to it (i.e., nodes 0, 4, and 11) . Particularly, the arrows in Fig-
ure 2(e) show the paths that nodes 0, 4, and 11 use to send their LCASes to their diva
node. Afterwords, diva node generates the community CAS by performing the voting
mechanism, then propagates the CAS to all of the nodes belonging to the community.

Obviously, depending on diva nodes for LCASes aggregation reduces the reliability
of the system and makes it vulnerable to a single point failure. Therefore, in this paper,
we propose two different implementations in CADIVa to perform LCASes aggregation
in a fully decentralized manner without relying on any super nodes. More precisely, in
the first implementation, we allow all of the nodes in every individual community to
cooperate in an aggregation process using gossip-based algorithm. In particular, every
node keeps a cache repository to store some nodes inside its community that are not
direct neighbors to it, and stores hop-to-hop route to reach them. Afterwards, during a
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gossip exchange process that is executed in successive rounds, nodes select a random
node from their caches, and exchange a subset of their random peers stored in their
caches. After a sufficient number of rounds, nodes inside every community will end up
having a uniformly random sample of its community members. Then, the nodes can
exchange their LCASes with the random sample nodes from their communities and
locally they can merge these LCASes to reach the final community CAS. Thus, every
node can select the top-k attributes to be the community CAS. As illustrated in Figure
2(f), in the first round node 0 performs LCAS exchange with node 5, whereas in the
last round node 11 is not a direct friend of node 7, thus the exchange message is sent
via the intermediate node 5. We detail this implementation in Section 3.3.1.

Regarding the second implementation, the local learning is performed first, then the
community detection and LCASes aggregation are combined together into one phase
to minimize the communication overhead. In particular, nodes start by extracting their
LCASes and while they are exchanging their community IDs, they add a random sam-
ple of their direct neighbors. Upon receiving such messages, nodes store into their
caches the received random nodes information if they belong to the same communi-
ties. Afterwards, after the community detection algorithm converges, nodes forward
their LCASes to the random nodes stored in their caches. We present this second im-
plementation under Section 3.3.2.

3. CADIVA: UNLEASHING THE COOPERATIVE WORK

In this section, we present the core of CADIVa. First, we detail the local learning al-
gorithm, followed by the overlapping community detection and gossip-based algorithm
for LCASes aggregation. Afterwards, we present a second implementation of CADIVa
that iteratively applies a combined process of community detection with LCASes ag-
gregation. Before we present the algorithms, we proceed with a few definitions.

3.1. Notations and Definitions

We consider the social network as an undirected graph G = (V, E), where V is the
set of nodes and E is the set of edges. eij ∈ E denotes a relationship between nodes
vi and vj ∈ V . We denote with S = {A1, A2, .., Am }, the profile schema adopted in
the social network. Given a node vi ∈ V , pi denotes the set of its profile values: pi =
{pi.a1, pi.a2, ..pi.am}, where pi.ak is the value provided by vi for Ak ∈ S.

We denote by Local Profile Collection (LPC), the set of profiles of a node’s friends.
That is, given vi ∈ V , and DFi = {vj ∈ V |eij ∈ E} representing the set of vi’s direct
friends, LPCi = {pk|vk ∈ DFi} denotes the collection of their profiles and is referred to
as vi’s local profile collection.

Given LPCi, the Local Frequent Attributes LFAi is the set of attributes for which
the values are highly repetitive in LPCi. Formally we define:

DEFINITION 3.1. Local Frequent Attributes. Let vi ∈ V and LPCi be its local
profile collection. Let Ak ∈ S be an attribute from the profile schema and let Pϑ

k ⊆ LPCi

be the set of profiles in LPCi having the same value for attribute Ak. That is, Pϑ
k =

{pm ∈ Pϑ
k |pm.ak = ϑ, where ϑ is a given value}. Let LFAi ⊆ S be the set of attributes

such that, LFAi = {Ak ∈ LFAi|
|Pϑ

k
|

|LPCi|
≥ ǫ}, where ǫ is the average frequency of the

repetitive attribute values in LPCi.

For a given pair of attributes from LFAi, its support is defined as:

DEFINITION 3.2. Support of an attributes pair. Let vi ∈ V be a node in the OSN.
Let LPCi be its local profile collection and let LFAi be its local frequent attributes set.
Let BA = (Aj , Ah) be a pair of attributes from LFAi. The support of BA defines the
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percentage of co-occurrence of the same paired values for the two attributes Aj and Ah

to the total number of values in LPCi:

Support(BA) =
values-co-occurrence (Aj , Ah)

all-values (Aj , Ah, LPCi)
(1)

Where,
values-co-occurrence (Aj , Ah)=|{(pe, pm) ∈ LPCi|pe.aj = pm.aj ∧ pe.ah = pm.ah}|.

and,

all-values (Aj , Ah, LPCi)=|{ϑ |∃p ∈ LPCi s.t., p.aj = ϑ ∨ p.ah = ϑ}|

Based on Definition 3.2, we define a Local Correlated Attribute Set a follows:

DEFINITION 3.3. Local Correlated Attribute Set - LCAS. Let vi ∈ V . Let
LFAi ⊆ S be its local frequent attributes set. Let BA = (Aj , Ah) be a pair of attributes
from LFAi. BA is a local correlated attribute set, denoted as LCAS, if: Support(BA) ≥
β, where β is the average support value of attribute pairs over LFAi.

3.2. Local Learning

As aforementioned, we implement a node-centric ARM algorithm to extract the associ-
ations which reflect the causal structures among different profile attributes. However,
investigating the causality among all possible attribute pairs could be computation-
ally expensive. Therefore, nodes start by finding the candidate attributes for the ARM
according to Definition 3.1. Specifically, nodes consider the set of profiles of their direct
friends (i.e., LPC) and select those attributes with high frequency of repetitiveness in
their values. For example, a job value teacher that is repeated in more than 25% of
the profiles in LPC makes the attribute Job a frequent one; whereas, one satisfying
less than this threshold is not a frequent attribute. Moreover, the threshold value is
determined locally by every node, such that it is equal to the average frequency of the
repetitive attribute values in LPC. So as, having different threshold values increases
the degree of freedom and flexibility to reflect the repetitive patterns at every node
independently in the social graph.

Example 3.1. Assume Alice as another OSN user. To learn his LCAS, Alice collects
the available profile attributes from all her direct friends to construct LPCAlice. As-
sume he finds that Education and Interests are in LFAAlice; that is, their values are
highly frequent in LPCAlice. Alice computes the number of profile pairs in LPCLuka

for which these two attributes’ pair have similar values. Assume in more than 40% of
the profiles in LPCAlice, this pair is co-occurring. Also, he calculates the average sup-
port value and finds it to be 27%, thus the LCAS threshold β = 0.27. Thus, the pair
(Education, Interests) is an LCAS for Alice.

Given the LFAi, a node vi investigates all the possible attribute pairs and computes
the support of each attributes pair using formula mentioned in Equation 1. Once the
support is calculated for all pairs from its LFAi, node vi selects the ones for which
the support is high enough according to the Definition 3.3 to represent its local cor-
relations (i.e., LCAS). Similarly, we define the minimum value of the support of an
attribute pair to be selected in LCAS to be greater than the average support of all
extracted attribute pairs. Algorithm 1 shows the pseudocode of the steps executed by
all nodes to extract their LCASes. Nodes start by initializing their LCASes with all
possible attribute pairs from LFA with support value equals to 0. Afterwords, nodes
iterate over their LPCs to estimate the support of attribute pairs according to the ex-
isting repeated values. Accordingly, nodes get the sets of overlapping words in different
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profiles for an attribute pair (A1, A2) values using tokenize() method that retrieves all
the words associated with an attribute. Then, the support of an attribute pair is in-
creased by the normalized support value computed by dividing the size of the smallest
overlapping between word lists over the total number of words in the two attributes.
After computing the support for the existing attribute pairs, nodes calculate the aver-
age support value and assign it to the threshold for selecting their LCASes. Therefore,
any attribute pair with support lower than the threshold is removed from the LCAS.

ALGORITHM 1: LCAS Learning at node vi

Data: Require LFAi and LPCi

Result: Ensure list of correlated attribute pairs with their local support: LCASi

forall the (A1, A2) ∈ LFAi do
insert(LCASi,(A1, A2), 0)
W1 = tokenize(LPCi, A1)
W2 = tokenize(LPCi, A2)
forall the pk, pj ∈ LPCi do

X = tokenize(pk.a1) ∩ tokenize(pj .a1)
Y = tokenize(pk.a2) ∩ tokenize(pj .a2)
if X 6= ∅ and Y 6= ∅ then

s = min(|X|,|Y |)
|W1|+|W2|

LCASi[get index(A1, A2)].s += s
end

end

end
β = average support(LPCi)
forall the (A1, A2) ∈ LCASi do

if LCASi[getIndex(A1, A2)].c < β then
remove(LCASi, (A1, A2))

end

end

3.3. Forming Community CAS

Our model extends the ensemble learning paradigm such that nodes generate their
LCASes by accessing only their local data, so as user’s privacy is maintained. There-
fore, the next step is to build up the final CAS by aggregating the locally generated
LCASes. We perform community-aware aggregation of the locally generated LCASes
to reflect the underlying topological structure of the social network. In particular, in
our model topological communities are identified and that all the nodes belonging to a
community exchange their LCASes. Commonly, finding communities is well-know as
community detection and is defined as:

DEFINITION 3.4. Community Detection. A community detection Φ, also known as
graph clustering, is a mapping

Φ : G → G′
1 × ...×G′

c (2)

that partitions G into c non-empty, node-disjoint subgraphs G′
1 × ...×G′

c representing a
set of communities or clusters. A widely used quality measure for community detection
is the modularity Q of the clustering Φ(G) [Newman, 2006], which is a mapping

Q : Φ(G) → R (3)
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that assigns a quality value q ∈ [-0.5,1] to the clustering Φ(G), as defined by

q :=
∑

i

(eii − b2i ) (4)

Where bi =
∑

j eij , and eij is the fraction of edges in community i for which the target

node of the edge lies in community j. The higher the quality value q is, the better the
detected community is. One possible definition for Φ is to maximize Q over all clustering
Φ(G) [Newman, 2006], which was shown to be an NP-hard problem [Brandes et al.,
2008].

Majority of research in community detection focuses on partitioning social networks
into disjoint communities. However, in social networks, every person typically belongs
to more than one community, such as the community of family members, that of friends
and classmates, that of co-workers, etc. Therefore, for high quality results it is initia-
tive that we perform overlapping community detection. Thus, in our model nodes are
allowed to have multiple community memberships. As aforementioned, we provide two
different implementations of CADIVa. In the first one, the community detection phase
is executed first and performed separately from the aggregation phase, whereas in the
second implementation we combine both the community detection and LCASes aggre-
gation to minimize the overall communication overhead.

3.3.1. Separate Phases: Community Detection followed by LCAS Aggregation.

The first implementation of CADIVa follows the modular design where each phase
is an independent module that contains everything necessary to execute the desired
functionality. So as, the community detection module is separate from the community
aggregation one.

Overlapping Community Detection. For DOSNs, a compliant solution for community de-
tection should follow the decentralization requirement by which every node can only
be aware of and contact its direct neighbors. Therefore, CADIVa employs recently de-
veloped decentralized diffusion-based community detection strategy [Rahimian et al.,
2014]. In particular, every node starts by joining the node with the maximum identi-
fier among its direct friends to form a community. Afterwards, in successive iterations
every node chooses to quit its current community and join one of its neighbour’s if this
brings some modularity gains. For example, as illustrated in Figure 2(a), in the first
iteration nodes 1, 2 and 3 join the community of node 7 that has the largest identi-
fier among them. Then, nodes inform their direct neighbors with their current status
by sending a message that contains the community they belong to. Later on, nodes 0,
4 and 5 reevaluate their states and join the community of node 7 as it becomes the
dominant identifier among their direct friends (see Figure 2(b)).

Moreover, every node calculates the modularity gain locally by finding the dominant
community identifier among its direct friends. If a node does not find a dominant iden-
tifier among its neighbours, it changes to the highest ID between its own and the ones
of the communities of its neighbours. This step is iteratively repeated until no node
wants to change its community identifier as it already represents the dominant one
of all its neighbors. To allow nodes to join multiple communities, every node keeps a
membership lists to order the top dominant communities identifiers in the surround-
ing neighbors. When the community detection algorithm converges, every node in the
network becomes aware of the communities to which it belongs.

Gossip for aggregating LCASes. In our algorithm, we apply gossip-based peer sampling
where peers periodically exchange small random subsets of the identifiers of their di-
rect friends and paths to reach them. Thus, after sufficient number rounds, nodes
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ALGORITHM 2: Gossip Exchange Scheme at node vi

Data: Require community identifier Ci, number entries n for exchange
Result: Ensure a random subset of community members: CRMi and community CAS
CAS ← LCAS
Procedure GossipSampling()

Loop
wait(△)
RM ← select random member(Ci)
RCE = select random cache entries(Ci, n)
send(RM,RCE)

EndLoop

Procedure OnReceivedCRM(message m)
forall the e ∈ m.RCE do

if new entry(e) then
add new entries (CRMi, e)

end

end

Procedure ExchangeLCASes
forall the vj ∈ CRMi do

sendLCAS (vj , LCASi)
end

Procedure OnReceivedLCAS(message m)
forall the lcas ∈ m.LCAS do

if new entry(lcas) then

add(CAS, (lcas.A1, lcas.A2),
lcas.s

2
)

else
new s = average(CAS[get index(lcas.A1, lcas.A2)].s, lcas.s)
CAS[get index(lcas.A1, lcas.A2)].s = new s

end

end

are going to have a local random sample of the nodes belonging to their communi-
ties and the routing paths towards them. The advantage of gossip-based sampling in
our setting is that samples are available locally and without delay. Furthermore, the
messages related to the peer sampling algorithm can piggyback the locally generated
LCASes, thereby avoiding any overheads in terms of communication overhead. More
formally, each node maintains a fixed-sized cache of c entries (with typical value 20
or 50 entries). A cache entry contains identifier and routing path of another node in
the community. Each node vi repeatedly initiates a neighbor exchange operation, by
executing Algorithm 2. As shown, the algorithms consists of 4 procedures. The first
procedure GossipSampling is the one responsible for constructing a random sample of
the communities members for each node. Initially, every node maintains a local repos-
itory named CRM to refer to community random members, and stores the identifiers
of those random nodes and paths to reach them. Periodically, every node randomly
selects a partner from its CRM for the gossip exchange and selects a random subset
entries from its CRM to be send in the gossip message. On receiving a reply form the
contacted node during the gossip exchange, the receiving node updates its CRM by
adding the entries of the new nodes that are not included in CRM as described in pro-
cedure OnReceivedCRM. Thereafter, by executing the gossip exchange for sufficient
number of rounds, nodes start to execute the procedure ExchangeLCASes by sending
their LCASes to all the nodes in their CRM. Then, on receiving LCASes from other
nodes, every node starts to update its repository that represents the community CAS
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by averaging the received LCASes from other nodes as described in procedure OnRe-
ceivedLCAS.

3.3.2. One Phase: Combining Community Detection and LCAS Aggregation.

It is important to be noticed that there is high similarity between the communica-
tion process that is executed during the community detection phase and random peer
sampling during the aggregation phase. Therefore, in our second implementation of
CADIVa we combined the two phased into one part to eliminate the communication
overhead of the entire phase of LCASes aggregation. So, the nodes executes only two
phases starting with LCAS learning and then start the phase of community detection
and LCAS aggregation. Basically, in the second phase the messages to be exchanged
for community detection additionally contain a random sample of nodes direct neigh-
bors. Thus, nodes execute the same steps to identify the communities they belong to,
in the mean while they are going to update their CRMs to add random member that
are belonging to the same communities. Consequentially, there is no need to execute
the procedure GossipSampling in Algorithm 2 and nodes proceed with executing the
other procedures after the community detection algorithm converges.

4. SECURITY, PRIVACY, AND COMPLEXITY ANALYSES

In this section, we study the security and the privacy properties of CADIVa and we
provide its complexity analysis.

4.1. CADiVa Security Properties

We consider a malicious adversary model whereby an attacker would try to subvert
the correct functioning of the system’s processes. Given that the outcome of our system
is collections of CASes that reflect identity trends of communities and that would be
used to validate the identities of new members to the OSN, the most prominent inter-
est of an attacker would be to corrupt the CASes learning to reflect identity patterns of
malicious nodes and not of honest ones. This can be achieved in one of two ways. First,
a malicious attack could target invalidating a valid CAS in a community. Second, it
can work on introducing another fake CAS that would match the malicious behavior.
In both cases, the goal of the attacker would be to change the CASes in a target com-
munity to confirm the identity trustworthiness of the malicious nodes or to invalidate
the honest nodes. As discussed in [Soliman et al., 2015], this could only be achieved by
infecting a target community, introducing into it a number of malicious nodes that is
high enough to reflect corrupted CASes.

In [Soliman et al., 2015], we have provided a quantitative analysis of the effort re-
quired, in terms of number of required malicious nodes, to maliciously introduce a
fake CAS to a community or to corrupt a valid one in it. As detailed in [Soliman et al.,
2015], a community CASes could be corrupted if a malicious attack succeeds at intro-
ducing enough fake nodes (i.e., sybil nodes [Yu et al., 2006b]) into it; that is, befriending
enough honest nodes in the community to become member of it. As CADIVa adopts the
same strategy as DIVa in learning the CASes in a community, the same security prop-
erties presented in [Soliman et al., 2015] apply to CADIVa as well. In fact, CADIVa
adopts the same technique of learning a CAS based on the co-occurrence frequency of
similar attribute values within a community as in [Soliman et al., 2015]. The differ-
ence in CADIVa is w.r.t the process by which the aggregation of values is performed.
This does not affect the security properties of the system as an attacker would need, in
both DIVa and CADIVa, to introduce the same number of malicious nodes to introduce
corrupt CASes to a community. We recall these properties as follows.
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4.1.1. Introducing a Fake CAS. Introducing a new CAS, CASnew, to a community re-
quires that the community holds enough nodes within its boundaries that exhibit pro-
file values confirming CASnew. For a node x to be considered within the boundaries
of a community C, it has to befriend enough other members of C. The effort required
to befriend the needed number of an honest community’s members, to become one of
them, cannot be defined quantitatively. However, it is expected to be high given that
CADIVa is deployed and offered as a service for users to evaluate their new friendship
requests before accepting or denying them. Moreover, the structure of communities is
not known to users; hence it may not be straightforward to predict which nodes needs
to be befriended to become member of a community when this information is not avail-
able.

Regardless of what it requires for a stranger to befriend honest nodes in a com-
munity, we deterministically define z, the number of fake nodes required to become
member of a target community C, to be able to introduce a fake CASnew that reflects
the identity trends of these z fake nodes.

THEOREM 4.1. [Soliman et al., 2015] Let C ⊂ G, C = (C.V,C.E), be a community

of size n (|C.V | = n). Let suplowest be the lowest support by which a CAS is accepted in

C. For a new CAS, CASnew to appear in C, it must be inserted a group of fake nodes
Cf that successfully join C and that show profile information confirming CASnew such
that:

z = |Cf | ≥
suplowest

(1−suplowest)
∗ n.

PROOF. 1: Consider Cf of size z (|Cf | = z) is carrying a correlation CASf = {A,B},

that is unknown to the nodes in C. Assume all Cf successfully joins C. Therefore

C.V = C.V ∪ Cf and |C.V | = n + z. That is, the aggregate support of CASf in C

would be: support(CASf ) = values−co−occurrence(A,B)
n+z

. Since all nodes in Cf carry the

correlation in CASf that is unknown to C initial n nodes, the support for CASf will
be: support(CASf ) =

z
n+z

. According to the proposed method, for CASf to be recognized

as a CAS in C (support(CASf ) ≥ suplowest), this inequality shall hold: z ≥ suplowest

(1−suplowest)
∗

n.

4.1.2. Corrupting a Valid CAS. For an adversary to corrupt a valid CAS in a community,
technically by lowering its support to fall below the required threshold, it needs to
introduce to the target community a number of new profiles that are not compliant
with this CAS. This number has to be big enough to lower the support of the valid CAS
below the adopted threshold.

THEOREM 4.2. [Soliman et al., 2015] Let C ⊂ G, C = (C.V,C.E), be a community of

size n (|C.V | = n). Let suplowest be the lowest support by which a CAS is accepted in C.

For a valid CAS, CASvalid with support Sv, to disappear from C, it must be inserted in
C a group of fake nodes, Cf , that does not have profile information confirming CASvalid

such that:

z = |Cf | >
Sv∗n

suplowest

− n.

PROOF. 2: Let CASv = {A,B} be a valid CAS in C with aggregate support Sv:
Sv = m

n
≥ suplowest, where m = values−co−occurrence(A,B). Let Cf of size z (|Cf | = z)

be not carrying the correlation between attributes A and B. Assume all the nodes in Cf

successfully join C. Therefore C.V = C.V ∪Cf and |C.V | = n+z. That is, the aggregate
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support of CASv in C becomes: Sv1 = values−co−occurrence(A,B)
n+z

. Since all nodes in Cf do

not carry the correlation in CASv, values − co − occurrence(A,B) is still equal to m;
therefore Sv1 = m

n+z
. For CASv to no more be a valid CAS, its new support shall be:

Sv1 < suplowest. That is, m
n+z

< suplowest. From where m < suplowest ∗ (n + z). Dividing

the inequality by n (n ∈ N
+andn > 0), we get: m

n
< n∗suplowest+z∗suplowest

n
. Therefore,

dividing the inequality by the positive number suplowest gives, Sv

suplowest

<n+z
n

. From

that, z > Sv∗n
suplowest

− n

4.1.3. Cloning attacks. In addition to the above detailed attack approaches, that a ma-
licious node can adopt to compromise the CADIVa system, another possible attack is to
design fake profiles that would exhibit the correlations and identity trends expected by
CADIVa in order to infiltrate within honest communities. This approach may be seen
intuitive and inescapable. However, to be able to achieve such an attack, the adversary
needs first to be aware of the target OSN graph, of the community structures, and of
the CADIVa defined CASes in detected communities. Moreover, the adversary needs to
have knowledge on common values for these CASes in the communities target of the
potential attack. However, CADIVa is designed for DOSNs where information about
the network graph, its structure, and its properties is inherently protected by the na-
ture of the system’s design. Therefore, such an attack is mitigated by the underlying
design of the system; i.e., the decentralize nature of CADIVa.

There could still be one feasible option for such an attack to succeed. This is related
to deploying cloning techniques. Cloning is a known attack in OSNs where an adver-
sary creates a fake account by mimicking the values in a real one [Jin et al., 2011]. The
clone account, though fake, would appear as honest as the profile it clones. We admit
that CADIVa may be blind to clone profiles; however, we put the accent on the fact that
CADIVa employs both public and private profile attributes in the CASes it extracts. It
is thus crucial for the clone profile to correctly clone both public and private profile val-
ues of the honest profile it copies. As access to private profile values is only possible by
befriending the honest node, we consider that clone profiles may not qualify as perfect
clones under the validation rules of CADIVa.

4.2. CADIVa Privacy Property

CADIVa guarantees the aggregation process of the LCASes to form consensus on a
community’s CAS in a fully decentralized manner. This happens by nodes exchang-
ing the LCASes learned at their local level with other nodes in their community. This
exchange does not subvert the privacy of the nodes involved in the process as the in-
formation communicated between foreign nodes consists of groups of attributes only.
As such, an adversary node can only learn that some group of attributes is correlated
in a community without being able to learn any specific information about individual
nodes. However, we note that one of the strategies of CADIVa is to also form consen-
sus on the top n values related to a given CAS in a community. This might sound to
result in revealing private information about nodes; however, this set of top n values
for a CAS in a community reflects a statistical representation of the data available in
that community as a whole. This is relating to the concept of differential privacy that,
in the field of data anonymization, suggests the generation of anonymized data sets
based on statistical disturbances to the data [Li et al., 2011]. That is, some statistical
perturbation is added to the result of a given query on the data such that, there is a
deterministic probability that one data record in the dataset is identified regardless
of whether or not it participated in the anonymized dataset [Li et al., 2011]. This ex-
presses a privacy guarantee on every data item as an equal probability to be identified
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whether or not it belongs to the anonymized dataset. In our system, every node col-
lects the profile information of all its direct friends. The node aggregates this data to
generate its set of LCASes and their corresponding top n values. These LCASes and
the corresponding top n values are the result, obtained from the original dataset of all
profile information of the node’s friends, that is shared by the node with other nodes
in the network. This shared result could be viewed as an anonymized data generated
from the original dataset containing all the information of the node’s direct friends.
Following this approach, we model the privacy preservation guarantee of our system.

Assuming the malicious adversary model, a malicious node a would be interested in
learning as much information as possible from the system’s processes. More precisely,
a malicious node a would participate in the system’s process to reach consensus on
community level CASes for the communities it belongs to, with the intention of collect-
ing data and revealing from it private information about other nodes. We prove that a
cannot identify any other node in its community that is not its direct friend, and that it
cannot reveal any private information related to them with a deterministic probability
of non-disclosure. We formulate this privacy preservation guarantee as follows:

THEOREM 4.3. Let C ⊂ G, C = (C.V,C.E), be a community in the OSN and let
m ∈ C.V be a member node of it. Let CASc be a CAS in C and let d be the number of top
values shared for CASc in C. Let δ be the support achieved by CASc. Assume that node
m has private values for CASc (i.e., CASc V alues(m) is private information). Let B be
the event that CASc V alues(m) is revealed based on CASc and the corresponding d top
values. CADIVa guarantees that the probability that B is true (i.e., P (B)) is less than a
privacy guarantee threshold expressed as:

P (B) ≤ δ
d
.

PROOF. 3: Let C be a community in the OSN and let CASc be a CAS in C. Let δ
be the support achieved by CASc. This means that a percentage of at least δ nodes
from C have the same pattern suggested by CASc. That is, the probability that a node
m ∈ C exhibits CASc is: P (m shows CASc) ≤ δ. Let now d be the number of top values
provided for CASc in an ordered uniform manner. That is, the top d values are not
given in order of importance and the probability to hold any of these d values is equal.
Assume the worst case wherein d reflects the number of all available values for CASc in
the population of C that exhibit CASc. This means that the probability that the value
of m for CASc (i.e., CASc V alues(m)) is one of the d provided values is: 1

d
. Assume now

that CASc V alues(m) are private. The probability that CASc V alues(m) is revealed
based on the d provided values and on CASc requires that m exhibits CASc and that
it holds one of the d values. Therefore, P (CASc V alues(m))is revealed based on CASc

and d) ≤ P (m shows CASc)×
1
d
≤ δ × 1

d
.

By Theorem 4.3, the probability to reveal private information related to a CAS of
a node in a community is relative to the support achieved by the CAS in question.
In fact, the higher the support of a CAS in a community is, the more nodes in the
community exhibit it. Therefore, the higher the probability to identify a node in the
community as exhibiting the CAS in question. However, this would only identify the
target node as exhibiting the CAS in question without revealing any information about
what the exact values it holds for it are. This information can be revealed from the top
n values provided only and can be determined based on the number of these top n
values. Therefore, we suggest sharing small numbers of top n values only.
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4.3. Complexity Analysis

The model’s cost is expected to be low given that every node performs its local compu-
tation independently of the other nodes. Besides, the bottleneck that the DIVa nodes
could have constituted, as suggested in [Soliman et al., 2015], is overcome by the
completely decentralized model exploited by CADIVa. We discuss the complexity of
CADIVa in what follows.

First, every node computes its LCAS. The complexity of this is a function of the
number of node’s friends (i.e., its degree d) and of the number of profile attributes
in the profile schema. Indeed, the LCAS learning requires computing for every pair

of attributes (a profile schema of m attributes results in p =
(

m
2

)

= m2−m
2 number

of pairs), its value-co-occurrence among all the node’s direct friends. Therefore, the

number of performed checks per attributes pair is, c =
(

d
2

)

= d2−d
2 . Accordingly, the

LCAS learning’s complexity is O(c ∗ p). By this, the nodes with higher degree would be
the bottlenecks in the LCAS learning step; however, this step is node dependent and
does not require the simultaneous online availability of all the nodes.

In addition to that, the community detection and gossip exchange of LCASes costs in
terms of communication traffic between all the nodes in the OSN. By our adopted work
for decentralized community detection, the algorithm’s complexity is a O(N ∗ D ∗ R),
where N is the total number of nodes in the OSN graph, D is the average node degree,
and R is the total number of rounds needed for the algorithm to converge6 [Rahimian
et al., 2014]. This step requires that all the nodes are online at the time of its exe-
cution; however, it is also a process that is performed once and that is incrementally
updated only. Moreover, as we demonstrate through experiments on real OSN data,
the convergence time of our solution is very realistic and achievable (see Section 5.3).

5. EXPERIMENTS AND RESULTS

In this work our objective is to provide unsupervised and fully decentralized iden-
tity validation model using only profile information without violating any privacy con-
strains. As aforementioned and to the best of our knowledge, Bahri el al. [Bahri et al.,
2014] is the solely existing work that addresses online identity validation by exploit-
ing profile information to generate a trustworthiness probabilistic measure for new
profiles instead of classifying them as real or fake. However, Bahri el al. [Bahri et al.,
2014] neglect the underlying social graph connecting users and process all the profile
collection at once. Therefore, in this section we compare CADIVa, with our previously
developed semi-centralized model DIVa, and the global approach that processed all
profiles at once similar to Bahri el al. [Bahri et al., 2014].

Particularly, we evaluate the other approaches with the different implementations
of CADIVa in terms of the ability of providing fine grained community-aware identity
validation on real-world datasets. The results for the global approach are obtained by
collecting all profiles are at one central repository, then executing the same steps of
CAS extraction process by considering the whole profile collection. As aforementioned,
DIVa operates in three phases such that nodes start by executing a decentralized com-
munity detection algorithm, then generate their LCASes and finally communicate with
the diva nodes to decide the final communities CASes. In DIVa, the frequency and sup-
port threshold values (Definition 3.1 and Definition 3.3) are equal to 0.2.

Besides, we evaluate the communication overhead of CADIVa. We have implemented
two different versions of CADIVa using GraphLab [Low et al., 2012]. The First imple-
mentation, CADIVa S, has two different distributed execution modules, such that the
first module executes our adopted community detection algorithm until it converges so

6
R depends on the topological properties of the underlying graph
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Table I. Real OSN datasets used in
experiments.

Dataset Nodes Edges
Facebook 23,332 28,972
GpJUL 2,417,014 25,016,154
GpAUG 4,349,414 35,544,682
GpSEP 4,388,907 43,060,890

Table II. CADIVa extracted CAS vs. DIVa and global CAS for the Facebook dataset.

CADIVa CAS for Community1
Attribute Pair Support
1:{education, employer} 0.582
2:{education, interest} 0.499
3:{h.country, job} 0.113
4:{f.name, h.country} 0.0798
5:{gender, job} 0.0779
6:{f.name, gender} 0.0754
7:{job, employer} 0.0436

DIVa CAS for Community1
Attribute Pair Support
1:{education, employer} 0.582
2:{education, interest} 0.499
3:{h.country, job} 0.113

Global CAS
Attribute Pair Support
1:{job, interest} 0.335
2:{gender, interest} 0.179
3:{education, interest} 0.138
4:{job, h.country} 0.137
5:{gender, h.country} 0.126
6:{education, job} 0.1

Table III. CAS extraction results for the Google+ datasets.

CADIVa Generated CAS
Google+ July

Attribute Pair Support
1:{employer, places} 0.148
2:{major, employer} 0.122
3:{school, employer} 0.273
4:{school, major} 0.108
5:{school, places} 0.033

Google+ August
Attribute Pair Support
1:{employer, places} 0.083
2:{major, employer} 0.103
3:{school, employer} 0.134
4:{school, major} 0.135
5:{school, places} 0.06

Google+ September
Attribute Pair Support
1:{employer, places} 0.161
2:{major, employer} 0.141
3:{major, places} 0.03
4:{school, employer} 0.133
5:{school, major} 0.09

Globally Generated CAS
Google+ July

Attribute Pair Support
1:{major, employer} 0.153
2:{major, places} 0.149
3:{school, major} 0.326
4:{school, places} 0.315

Google+ August
Attribute Pair Support
1:{major, employer} 0.135
2:{major, places } 0.272
3:{school, major} 0.313
4:{school, places } 0.292

Google+ September
Attribute Pair Support
1:{major, employer} 0.356
2:{major, places} 0.293
3:{school, major} 0.379
4:{school, places } 0.41

that every node knows the communities it belongs to. Thereafter, the control is moved
to the second module that executes the gossip protocol for LCASes aggregation and
extracts CASes for every detected community. The second version, CADIVa C, is im-
plemented as one distributed execution module where every node starts by extracting
its LCAS, afterwords it starts engaging in the gossip protocol of detecting the commu-
nities and exchanging LCASes. Then after convergence, every node calculates its final
communities CASes by averaging the collected LCASes in their caches.

We conducted several experiments to validate the effectiveness of CADIVa using real
profile datasets from Facebook and Google+ (shown in Table I). We used the Facebook
dataset collected and used in [Akcora et al., 2012], and the Google+ dataset publicly
available from [Gong et al., 2011]. The profile schema in the Facebook dataset contains:
First Name, Gender, Home County, Education, Job, Current Country, and Interests.
Meanwhile, the profile in Google+ datasets has fewer attributes, specifically Occupa-
tion, Employment, Education, and Places Lived. The Google+ dataset represents three
crawled parts of the OSN collected on July, August, and September in 2011.

5.1. Extracted CASes

Tables II and III list the extracted CASes for the Facebook and Google+ datasets, re-
spectively. Tables show the extracted CASes and their equivalent support values for

Social Network Analysis and Mining, Vol. V, No. N, Article A, Publication date: January YYYY.



CADIVa: Cooperative and Adaptive Decentralized Identity Validation Model for Social NetworksA:21

different communities using CADIVa, DIVa, and the global approach. It is illustrated
that with tuning the support threshold value, CADIVa allows communities to have
more attribute pairs in their CASes compared to DIVa. For example, the CAS gener-
ated by CADIVa for one of the communities in the Facebook dataset, as show in Table
II, contains 7 attribute pairs, whereas CAS extracted by DIVa contains only 3 attribute
pairs.

Consequently, by having more attribute pairs inside CAS, CADIVa provides denser
identity validation criteria compared to DIVa and the global approach as well. Par-
ticularly, using our validation scheme, the trustworthy index of any target profile is
calculated by summing up the support values of the attribute pairs compatible with
community’s CAS in that target profile. Thus, users can make more confident decision
regarding regarding the new friendship requests they are going to receive by having
more validation rules.

Furthermore, CADIVa validation is not restrictive in terms of prohibiting new users
from joining their targeted communities. The results show that these new attribute
pairs extracted by CADIVa are not the dominant factors in communities CAS, such
that the most important rules are the ones with the highest support values that are
commonly extracted by DIVa with the higher threshold value. Therefore, CADIVa is
not restricting any new community membership users are seeking to achieve.

5.2. Adaptive Threshold

CADIVa allows communities to have different threshold values derived from the need
to tune the threshold according to size of the detected communities and the homophily
level expressed in each community. To illustrate further these differences among com-
munities and the need to have adaptive threshold values, Figure 3 shows the sup-
port values of different attribute pairs extracted at some communities in the Facebook
and Google+ datasets. As a first observation, communities have different patterns not
only in terms of extracting different attribute pairs in their CASes, additionally the
associated support values have different patterns. The support values represent the
statistical significance of attributes pairs, also they represent the homophily existing
in each detected community with regard to these profile attributes. Therefore, having
one global threshold value disregards reflecting the expressed homophily inside every
individual community.

Additionally, a second observation is that the support value is decreasing in non-
linear manner, more preciously it decreases sharply after the average value of all ex-
tracted pairs from node’s LFA. Although, DIVa extracts the stronger pairs with the
highest support, however, there are some other pairs that are statistically significant
as well. For example, as shown in Figure 3(a), only 2 attribute pairs have support
greater than 0.2. On the other hand, if the threshold value is going to be similar to the
average support of all extracted pairs, these two communities are going to have 6 at-
tribute pairs in their CASes instead of 2. The same scenario applies with the Google+
datasets as illustrated in Figure 3(b), (c) and (d).

Therefore, in CADIVa we specify a size-dependent lower bound to the threshold
value. Thus, the LCAS learning considers a node’s LFA (Definition 3.1) with values-
frequency greater than the average values-frequency in node’s LPC. Similarly, node’s
LCAS (Definition 3.3) is pruned by considering only the attribute pairs with support
greater than the average support value of attribute pairs over node’s LFA. Figure 4
depicts the average CAS sizes reported for the detected communities across all the
datasets. As illustrated, CAS size varies with respect to community size. For example,
in the Google+ datasets the CAS size slightly increases with respect to the increase
in community size. On average, CADIVa extracts 4 attribute pairs for every commu-
nity out of 6 (i.e, the maximum count that equals to

(

ac
2

)

, where ac is the number of
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Fig. 3. The support values of different attribute pairs extracted at some communities in the Facebook and
Google+ datasets.

Fig. 4. The average size of communities CASes generated by CADIVa.

attributes in the profile scheme). For the Facebook dataset, communities have on av-
erage 9 attribute pairs in their CASes out of 21 possible attribute pairs.

Additionally, Figure 5 shows the average support value that is used for the threshold
across all detected communities in the used datasets. Besides, it also depicts a compar-
ison of the average total support of the CASes extracted by different approaches. As
illustrated, the results reflect the strength of the validation criteria provided by differ-
ent approaches. Figure 5 shows that CADIVa provides stronger validation than other
validation approaches as the average total support in CADIVa is the highest across
all detected communities in the datasets. In general, CADIVa achieves average im-
provement up to 36% and 50% across all the datasets than DIVa and global approach,
respectively.
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Fig. 5. The average support values computed as a lower bound for the threshold, and comparison of average
total support of extracted CASes by CADIVa, DIVa, and the global approach.

5.3. Communication Overhead

We conducted several experiments to evaluate the communication overhead of
CADIVa, particularity the overhead of the implemented gossip algorithm for LCAS
aggregation (see Algorithm 2). The algorithm is simple: each node knows a small and
continuously changing set of other nodes belonging to its communities stored in node’s
CRM (i.e., local repository for storing random community members information). Then,
each node forwards its LCAS to this set of nodes and receives back their LCASes and
merges them with its LCAS to construct the final CAS. Therefore, the GossipSampling
procedure in Algorithm 2 is executed for sufficient number of cycles to fill nodes RCMes
with a random sample of their community members. In each cycle, a node gossips twice
with two randomly selected nodes from its CRM: exactly once as an initiator and once
as a responder. It, therefore, sends two gossip messages and receives another two for
each contacted entry in each cycle. If l is the number of exchanged entries, the gossip
message then consists of l cache entries. We used two different values for l such that
we executed two set of experiments, in the first one we set l = 5, whereas in the second
one l = 10.

Figure 6 depicts the average converge speed of the gossip exchange algorithm with
respect to different exchange size and communities size as well for all the datasets.
As shown, the number of rounds increase with both of exchange size and community
size. Larger communities require larger number of rounds so that nodes succeed in
sampling random members from their communities. Similarly, by comparing Figure
6(a) and Figure 6(b) where the cache size increases from 20 to 50 entries, we can
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Fig. 6. The convergence speed with respect to community size and number of entries exchanged in a single
gossip message.

Fig. 7. The communication overhead reported by DIVa and different CADIVa implementations.

see that the number of rounds increases. Consequently, this will directly affect the
communication overhead that will increase as well.

Figure 7 shows the total communication overhead. The figure starts by showing the
communication overhead of DIVa that is reported during the community detection and
LCAS aggregation. Then, the second column shows the overhead of CADIVa S, the first
implementation of CADIVa where the phases of community detection and LCAS aggre-
gation are separate, with CRM size equals to 20 entries. Similarly, the third column is
the communication overhead of CADIVa S but with CRM size equals to 50. Finally, the
last column represents the communication overhead of CADIVa C, the second version
of CADIVa where community detection and LCAS aggregation is combined into one
single phase. The results show that CADIVa C has the lowest communication over-
head compared to other implementations.

5.4. Incremental Updates on Dynamic Graphs

Each of Google+ datasets contains timeID with values 0, 1, or 2, indicating which snap-
shot a directed link between two users appeared in. Thus, we execute our experiments
incrementally to update the social graph by adding edges among nodes using timeIDs.
When a node is added to the graph, this node determines its community memberships
based on the dominant communities among existing nodes with which it is going to
connect. Furthermore, the new node receives the communities CASes form its direct
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Fig. 8. Percentage of nodes changing their communities at each snapshot.

friends and store the CASes on its cache. Subsequently, this new node starts the Gos-
sipSampling procedure in order to have random samples from the nodes belonging to
the same communities informing them of its existence and exchanging LCASes with
them.

5.4.1. Incrementally Updating Communities. In this set of experiments, we study the ef-
fect of the newly added nodes and edges in the social structure of previously detected
communities, which requires the re-computation of community memberships and CAS
aggregation. Specifically, previously existing nodes monitor topological changes that
affect their community membership, and re-execute the community detection module
followed by CAS aggregation module when required. Figure 8 shows the percentage
of nodes re-performing CASes extraction due to topological changes in their communi-
ties. In particular, the lower bound of change should be the percentage of new nodes,
where only those nodes execute the community detection module and gossip sampling
procedure. Meanwhile, the upper bound would mean that the process will start all over
from the beginning such that all nodes execute the community detection and LCASes
aggregation. The vertical error bars in Figure 8 represent the range of expected change
in the graphs after adding the new nodes.

Intuitively, in the first snapshot all nodes execute both modules. As shown in Fig-
ure 8, 60%, 50%, and 80% of Google+ July, Google+ August, and Google+ Septem-
ber, respectively were loaded at the beginning. In the second snapshot 30%, 45%, and
15% new nodes were added to Google+ July, Google+ August, and Google+ Septem-
ber graphs, respectively. The results of the three datasets show that, on average, 17%
of old nodes got affected by topological changes caused by the new joining nodes and
performed community detection followed by LCASes extraction. The average change
reported for adding the last snapshot across all three datasets is only 6%. Conse-
quently, in our framework nodes are able to detect the topological changes surround-
ing them. Moreover, the results show that these changes are localized and require
re-computations only for changed regions not the whole graph.

5.4.2. Incrementally Updating CASes. In this set of experiments we analyzed the change
occurred in CASes while the communities evolve. We performed hierarchical commu-
nity detection to show how CASes change with the increase of community size. Figure
9 depicts the average change occurred in CAS size by incrementally loading the nodes
belonging to different communities in the Google+ datasets. We started by loading
only 20% of nodes and calculating the average CAS size in the detected communi-
ties. Then, we incrementally added more nodes to reach 50% of communities members
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Fig. 9. The average size of communities CASes generated by CADIVa by incrementally adding nodes.

till all the nodes were added to the graph. The results emphasize the ability of our
model to extract the community-level CASes that reflect the topological structure of
the underlying communities and the properties of the user population belonging to
each community.

6. RELATED WORK

Personal identity, its formation process, and its components have been the subject of
scientific discussion and research work across multiple scientific disciplines such as
sociology [Stets and Burke, 2003], psychology [Spears et al., 1997], criminology [Lynch
et al., 2000], etc. With the growth of the Internet as a world wide virtual platform that
connects data, devices, people, etc, new dimensions for humans’ interactions have seen
the light of day. Online human to human interactions developed from basic open chat
rooms connecting virtual personas to nowadays popular and widespread OSNs with
more sophisticated communication and data exchange forms. Within these emerging
online socializing realms, identity has had its place as a pole of attraction for re-
searchers from different disciplines. From a computer science perspective, resolving
identities in the sense of differentiating between real and fake ones has been the main
research concern related to identity. As a result, we find many pieces of work study-
ing and formalizing online identities patterns with the objective of classifying them
as good or bad. This gave birth to classifications for bad identities such as sybil (a
fake identity operated, along with many other sybils, by one same physical entity)[Yu
et al., 2006b; Yu et al., 2008], clone (an identity created by a malicious entity based on
information collected about another honest entity)[Jin et al., 2011], compromised (an
honest identity but taken control of by a malicious entity)[He et al., 2014] , etc. There-
fore, we find works such as SybilyGuard [Yu et al., 2006b] and SybilLimit [Yu et al.,
2008] that study OSN topological properties to detect sybil identities. We find [Jin
et al., 2011], a framework for the detection of clone identities based on attribute and
friends’ network similarities, or [He et al., 2014] where the authors address identity
theft across multiple social networks. These works, with others on the same line, share
the common goal of detecting malicious nodes classified under formalized identity at-
tack trends. However, identity concerns on OSNs go beyond binary classification. For
example, some ‘good’ identities are created with the aim of fooling a category of users,
such as child abuse over social networks [Hope, 2013][Chorley, 2012].

Studying identity related attacks is unquestionably an important thread of work,
but there is also a parallel need for empowering users themselves to evaluate the
trustworthiness and the validity of the online identities they interact with. The liter-
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ature provides us with works such as [Sirivianos et al., 2012] where it is suggested to
evaluate an identity on a given network based on feedback of her connections on an-
other one. [Cai et al., 2011] suggests people to people recommendations for friendships’
acceptance by relying on collaborative filtering techniques. In [Chairunnanda et al.,
2011], users are suggested to be identified from their typing patterns; whereas chat-
ting patterns are exploited for users’ identification in [Roffo et al., 2013]. More recently,
[Goga et al., 2013] suggests identifying users across networks based on geo-location
and time-stamp information attached to their posts and on their writing styles. All
these pieces of work still do not provide users with a framework to evaluate, by them-
selves, their perceived trustworthiness of their new online contacts. At this level comes
[Bahri et al., 2014] to suggest using community feedback to assign trustworthiness lev-
els to identities on a social network. More precisely, identities in [Bahri et al., 2014]
are validated based on community validations of homogeneity between values of some
defined correlated profile attributes. However, [Bahri et al., 2014] relies on a central
repository of all the profiles of the OSN, on the existence of a group of trusted users for
the learning of the correlated profile attributes, and on the responsiveness of the OSN
community to evaluate available target identities.

In contrast to the centralized and supervised approach exploited in [Bahri et al.,
2014] to extract the correlations among profile attributes from a profile schema, we
previously proposed DIVa [Soliman et al., 2015] that adopts decentralized and pri-
vacy preserving approach. Instead of supervised learning that requires human feed-
back, DIVa successfully conceptualizes users online identities by extracting the corre-
lations among profile attributes from the user population. Additionally, DIVa provides
community-based validation by mining the correlations form the individual commu-
nities not from the user population as a whole. DIVa regulates the validation based
on communities; however, it relies on a central role within each community of a diva
node that is responsible of aggregating the observed identity patterns. For this, in this
paper, we present CADIVa that operates without the reliance on any central roles and
that is based on more reliable, scalable and commonly observed assumptions. CADIVa
is fully automated, fully decentralized, and proves efficiency and effectiveness with
real OSN data. To the best of our knowledge, this work is a first in addressing identity
validation based on fully unsupervised and fully decentralized learning from profile
information only.

7. CONCLUSION

In this paper, we have introduced CADIVa that is unsupervised, reliable and fully
decentralized identity validation model for DOSNs in contrast to existing centralized
approaches. CADIVa conceptualizes user online identities by mining the correlations
among user profile attributes not from user population as a whole, but from individual
communities, where the correlations are more pronounced. Furthermore, CADIVa em-
powers users with identity validation scheme that they themselves can use to evaluate
the trustworthiness and the validity of the online identities they interact with. In our
experiments we show that reliance on revealing the highly expressed patterns inside
communities resulted in extracting community-aware validation rules with average
improvements up to 36% and 50% than semi-centralized and global approaches, re-
spectively. Furthermore, our model maintains users’ privacy during the learning phase
as users profiles information are processed only by their direct friends. The experi-
ments show the effectiveness and scalability and reliability of our proposed model.

As a natural continuation of the work, we plan to enrich the process of extracting
profile attribute correlations with text-based analysis to map words to broader topics.
Therefore, CAS learning is enhanced such that exact word matching will be replaced
by ontology and topic models.
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