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BACKGROUND: The epigenetic effects of individual environmental toxicants in tobacco remain largely unexplored. Cadmium (Cd) has been associated
with smoking-related health effects, and its concentration in tobacco smoke is higher in comparison with other metals.

OBJECTIVES:We studied the association of Cd and smoking exposures with human blood DNA methylation (DNAm) profiles. We also evaluated the
implication of findings to relevant methylation pathways and the potential contribution of Cd exposure from smoking to explain the association
between smoking and site-specific DNAm.

METHODS:We conducted an epigenome-wide association study of urine Cd and self-reported smoking (current and former vs. never, and cumulative
smoking dose) with blood DNAm in 790,026 CpGs (methylation sites) measured with the Illumina Infinium Human MethylationEPIC (Illumina Inc.)
platform in 2,325 adults 45–74 years of age who participated in the Strong Heart Study in 1989–1991. In a mediation analysis, we estimated the
amount of change in DNAm associated with smoking that can be independently attributed to increases in urine Cd concentrations from smoking. We
also conducted enrichment analyses and in silico protein–protein interaction networks to explore the biological relevance of the findings.

RESULTS: At a false discovery rate (FDR)-corrected level of 0.05, we found 6 differentially methylated positions (DMPs) for Cd; 288 and 17, respec-
tively, for current and former smoking status; and 77 for cigarette pack-years. Enrichment analyses of these DMPs displayed enrichment of 58 and 6
Gene Ontology and Kyoto Encyclopedia of Genes and Genomes gene sets, respectively, including biological pathways for cancer and cardiovascular
disease. In in silico protein-to-protein networks, we observed key proteins in DNAm pathways directly and indirectly connected to Cd- and smoking-
DMPs. Among DMPs that were significant for both Cd and current smoking (annotated to PRSS23, AHRR, F2RL3, RARA, and 2q37.1), we found
statistically significant contributions of Cd to smoking-related DNAm.

CONCLUSIONS: Beyond replicating well-known smoking epigenetic signatures, we found novel DMPs related to smoking. Moreover, increases in
smoking-related Cd exposure were associated with differential DNAm. Our integrative analysis supports a biological link for Cd and smoking-associated
health effects, including the possibility that Cd is partly responsible for smoking toxicity through epigenetic changes. https://doi.org/10.1289/EHP6345

Introduction
Numerous studies have evaluated the association of tobacco
smoke, a complex mixture of compounds, with several epigenetic
marks, in particular with blood DNA methylation (DNAm)
(Harlid et al. 2014; Joubert et al. 2012; Shenker et al. 2013; Sun
et al. 2013; Tsaprouni et al. 2014; Wan et al. 2012; Zeilinger et al.
2013). For instance, DNAm of multiple CpGs (methylation sites)

in the AHRR [Aryl Hydrocarbon Receptor Repressor, which
mediates dioxin toxicity and is involved in cell growth and differ-
entiation (Haarmann-Stemmann et al. 2007)] and F2RL3 [coagu-
lation factor II receptor-like 3, also known as PAR-4, which
plays a role in blood coagulation, inflammation, and response to
pain, (Heuberger and Schuepbach 2019)] genes has been associ-
ated with former and current smoking status, cumulative smok-
ing, and shorter time since smoking cessation in several studies
(Bojesen et al. 2017; Breitling et al. 2012; Fasanelli et al. 2015;
Gao et al. 2015; Joehanes et al. 2016; Reynolds et al. 2015;
Zhang et al. 2013b). In addition to AHRR and F2RL3, other genes
have also been consistently and specifically associated with
smoking in methylome-wide epidemiological studies investigat-
ing as many as 450,000 CpGs (Gao et al. 2015; Joehanes et al.
2016). The potential epigenetic effects of individual environmen-
tal toxicants in tobacco, however, remain largely unexplored.

Cadmium (Cd) is one of the main metals found in cigarettes
(Nordberg et al. 2015; Tellez-Plaza et al. 2012). Its concentrations
are extremely high in comparison with those from other metals
such as arsenic or lead (Chiba and Masironi 1992). It is one of the
most relevant heavy metals in terms of potentially explaining
adverse health effects of smoking because it has been associated
with tobacco-related health outcomes, including cardiovascular
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disease (CVD) and cancer (Agarwal et al. 2011; Andersson et al.
2018; García-Esquinas et al. 2014; Navas-Acien et al. 2004).
Increased exposure to Cd has been associated with differences in
global DNAm in human (Ruiz-Hernandez et al. 2015) and animal
(Nica et al. 2017; Šrut et al. 2017) studies, possibly related to
Cd-induced alterations of DNA methyltransferases (Benbrahim-
Tallaa et al. 2007; Jiang et al. 2008; Poirier and Vlasova 2002;
Takiguchi et al. 2003; Yuan et al. 2013) and ten-eleven transloca-
tion (TET) (Ravichandran 2017; Xiong et al. 2017) enzymes activ-
ity. Some reports have suggested that TETs activity is influenced
by oxidative stress (Delatte et al. 2015). Cd has been related to oxi-
dative stress (Chia et al. 2011; Domingo-Relloso et al. 2019; Lee
et al. 2009; Moitra et al. 2014; Srivastava et al. 2014) and could
interfere in the DNAm pathways by promoting redox unbalance.
We hypothesized that Cd exposure from tobacco could induce
changes in genomic DNAm and mediate well-known smoking-
related methylation alterations. In vitro and in vivo studies have
shown both gene-specific hypermethylation and hypomethylation
in relation to Cd exposure (Hossain et al. 2012; Sanders et al. 2014;
Vidal et al. 2015; Virani et al. 2016; Zhang et al. 2013a). The
number of studies evaluating the association of Cd exposure with
differences in CpG-specific DNAm in humans, however, is not
sufficient (Ruiz-Hernandez et al. 2015).

Participants of the StrongHeart Study (SHS), a prospective cohort
that includes 13 American Indian tribes, have substantially higher
concentrations of urinary Cd in comparison with other large studies,
such as the Multi-Ethnic Study of Atherosclerosis (MESA) and
National Health and Nutrition Examination Survey (NHANES)
(Deen et al. 2017). Cd exposure in the SHSwas previously associated
with smoking-related health effects, including total, lung, and pan-
creas cancer mortality (García-Esquinas et al. 2014); incident periph-
eral arterial disease (Tellez-Plaza et al. 2013b); and incident CVD
(Tellez-Plaza et al. 2013a). The objective of this research was to con-
duct an epigenome-wide association study (EWAS) of Cd and smok-
ing exposure with differences in human blood DNAm profiles. As a
secondary objective, we assessed the implication of findings to rele-
vant DNAm and demethylation pathways and evaluated whether the
smoking-related increase in urine Cd levels can explain the associa-
tion between smoking and genomicDNAmprofiles. To achieve these
aims, we evaluated the association of urinary Cd and smoking (self-
reported active and former smoking, and cumulative smoking dose)
with blood DNAm in 790,026 CpGs determined with the Infinium
MethylationEPIC array in the SHS.Weused a causal inferencemedi-
ation approach (Pearl 2012) to estimate how much of the DNAm
changes associated with smoking can be independently attributed to
smoking-related increases in Cd exposure, as measured in urine (an
established biomarker of Cd internal dose). In addition, the associa-
tion analyses were followed by a gene set and molecular regulatory
elements enrichment and in silico evaluation of relevant biological
pathways forCd and smoking influences inDNAmmetabolism.

Methods

Study Population

The SHS is a prospective cohort study funded by the National
Heart, Lung, and Blood Institute to investigate CVDs and its risk
factors in American Indian adults (Lee et al. 1990). In 1989–
1991, a total of 4,549 men and women ages 45–75 y who were
members of 13 tribes based in Arizona, Oklahoma, North
Dakota, and South Dakota accepted invitations to participate.
All individuals were asked to fast overnight (8 h or more).
Participants without sufficient urine for metal analyses were
excluded (n=576) (Figure S1). Due to tribal request, samples
from one of the tribes were not selected for DNAm analyses,
leaving 3,516 participants. Among them, participants who were

free of CVD and not missing urinary metals or other variables of
interest at baseline (1989–1991) were eligible for blood DNAm
analyses (n=3,106). Sufficient blood was available for DNAm
analysis in 2,351 participants. After laboratory analyses, we
removed data from 18 individuals without classical bimodal dis-
tribution in DNAm levels and from 8 individuals with low me-
dian intensity levels, leaving a total of 2,325 participants for this
study. These participants were similar to those eligible in socio-
demographic and anthropometric characteristics (Table S1).

Participant Characteristics and Self-Reported Smoking

Trained and certified nurses and medical examiners collected in-
formation on sociodemographic factors (age, sex, study region,
education level), medical history, smoking status (never, former,
current), and cumulative smoking dose (cigarette pack-years) in a
personal interview. Participants having smoked≥100 cigarettes
in their lifetime and smoking at the time of the interview were
considered current smokers. Noncurrent smokers who had
smoked>100 cigarettes in their lifetime were classified as former
smokers. Cigarette pack-years were calculated as the number of
20-cigarette packs smoked per day times the number of years the
person smoked, with zero assigned to never smokers. The trained
nurses and medical examiners conducted a physical exam,
including anthropometric measures [height and weight to mea-
sure body mass index (BMI)], and collected fasting blood and
spot urine samples. Plasma creatinine was measured by an alka-
line picrate rate method (Lee et al. 1990). We calculated esti-
mated glomerular filtration rate (eGFR) from recalibrated plasma
creatinine, age, and sex using the Chronic Kidney Disease –

Epidemiology Collaboration formula (Levey et al. 2009).

Urinary Cadmium Determinations

Morning spot urine samples were collected in polypropylene tubes,
frozen within 1 to 2 h of collection, shipped buried in dry ice, and
stored at −70�C in the Penn Medical Laboratory, MedStar
Research Institute, Washington, DC, USA. In 2009, urine samples
were shipped to the Trace Metals Laboratory at Graz University,
Austria, to measure Cd and other metals using inductively coupled
plasma–mass spectrometry (ICP-MS) (Agilent 7700x ICP–MS;
Agilent Technologies). The limit of detection (LOD) for urine Cd
was 0:015 lg=L. In one participant below the LOD, the Cd con-
centration was imputed as the LOD divided by the square root of
two. Urine Cd concentrations were corrected for molybdenum ox-
ide interference. Other laboratory details and extensive quality
control/quality assurance have been published (Scheer et al. 2012).
To account for urine dilution, urine Cd concentrations were
expressed inmicrograms per gram of urine creatinine. Urine creati-
nine was measured at the Laboratory of the National Institute of
Diabetes and Digestive and Kidney Disease, Epidemiology and
Clinical Research Branch (Phoenix, Arizona, USA) by an alkaline
picrate ratemethod.

Microarray DNAm Determinations

Buffy coats from fasting blood samples were collected in 1989–
1991, at the same time as the collection of urinary samples for Cd
measures and of physical examination and interview for the assess-
ment of baseline smoking status and sociodemographic variables.
Biological specimens were stored at −70�C. DNA fromwhite blood
cells was extracted and stored at the Penn Medical Laboratory,
MedStar Health Research Institute under a strict quality-control sys-
tem. In 2015, blood DNAwas shipped to the analytical laboratory at
the Texas Biomedical Research Institute for DNAm analysis. DNA
was bisulfite-converted with the EZ DNAm kit (Zymo Research)
according to the manufacturer’s instructions. Bisulfite-converted
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DNAwas measured using the Illumina MethylationEPIC BeadChip
(850K), which provides a measure of DNAm at a single nucleotide
resolution at >850,000 CpGs. Samples were randomized across and
within plates to remove potential batch artifacts and confounding
effects, and replicate and across-plate control samples were included
on every plate. All the preprocessing was conducted using R version
3.6.1. Data were read in six different batches (of ∼ 400 individuals
each) and combined using the R package minfi (version 1.18.4).
CpGs with a p-detection value greater than 0.01 in more than 5% of
the individuals (6,159 CpGs) were removed. Single sample normal-
izationwas conducted using the preprocessNoob function in R pack-
age minfi (Fortin et al. 2017; Triche et al. 2013), which includes a
background correction with dye-bias normalization for Illumina
Infinium methylation arrays. As a result of these preprocessing pre-
liminary analyses, we had data from 2,325 individuals and 860,079
CpGs. Cross-hybridizing probes, sex chromosomes, and SNP probes
with minor allele frequency >0:05 (McCartney et al. 2016) were
removed for analysis. The final number of CpGs for analysis was
790,026. Quality checks, data normalization, statistical preprocess-
ing, and beta-value calculation, which ranges from 0 to 1 and repre-
sents the proportion of unconverted cytosines (Cs) in bisulfite-
converted DNA at specific locations, were performed using the R
packageminfi (Fortin et al. 2017).We estimated Houseman cell pro-
portions (CD8T, CD4T, NK, B cells, monocytes, and granulocytes),
also using the R package minfi, to use them as adjustment variables
in the regression models. We detected and corrected for potential
batch effects by sample plate, sample row, and DNA isolation time
with the combat function (svaR package).We conducted annotation
of CpGs to the nearest gene according to the Illumina Infinium
MethylationEPICManifest File (version 1.0 B4) (Fortin et al. 2017;
Illumina Inc. 2019).

Statistical Methods

DMPs. Four predictors of DMPs were assessed in separate analy-
ses: total urinary Cd concentrations (log-transformed in lg=g of
creatinine units), current smoking status (vs. never smoking), for-
mer smoking status (vs. never smoking), and cumulative smoking
dose (pack-year units). Beta values (i.e., DNAm proportions at a
given CpG) were converted intoM values (logit transformation of
DNAmproportions) before conducting linear regression models as
implemented with the R package limma (version v3.28.14).
Empirical Bayes shrinkage (conducted by limma) has been
reported to work better in M values than in beta values due to the
heteroscedastic nature of the beta values (Teschendorff et al.
2018). In addition, the logistic transformation monotonically maps
values in the interval (0,1) to the whole real line (−1,1) and has
been previously used to transform proportion data to fulfill linear
modeling assumptions (Chen et al. 2017, Warton and Hui et al.
2011). Thus, we decided to logit-transform b values and then apply
linear regression. Models adjusted for biologically relevant varia-
bles: age at baseline, sex, study region, BMI, Houseman blood cell
composition, and five principal components to account for genetic
population stratification (Price et al. 2006). We further adjusted for
smoking status (never, former, current) and eGFR in Cd models.
We accounted for multiple comparisons by controlling for an FDR
(Riancho et al. 2016) at a 0.05 cutoff. Genomic inflation can lead to
inflated p-values and false positives in EWAS studies (van Iterson
et al. 2017), and it was addressed by calculating a set of surrogate
variables (SVs) (Leek et al. 2012) from fully adjusted Cd and
smoking models using the R package SmartSVA (version 0.1.3) to
estimate SVs out of the unexplained DNAm variability and further
adjusting the models for them. Although in subsequent bioinfor-
matic analysis we focused onDMPs at an FDR-corrected threshold
of statistical significance of 0.05, in the supplementarymaterial we

provide the full EWAS output, including nonstatistically signifi-
cant DMPs (Excel Tables S1–S4).

Mediation analysis. The main question addressed by causal
mediation analysis is to what extent is the total effect of changing
an exposure E mediated by an intermediate variable M on the
causal pathway to outcomeY (the indirect effect) and towhat extent
is the effect not mediated by M (the direct effect) (Pearl 2012;
Valeri and Vanderweele 2013). In our mediation framework the
“exposure” E of interest is smoking, a surrogate for many toxic
compounds in tobacco.We know that smoking is an important pre-
dictor of DNAm (outcome Y), and being a current or former
smoker as well as accumulated smoking are related to changes in
site-specific DNAm, independently of age, sex, and confounders,
in comparison with never smokers. The intermediate variable M

that we are specifically interested in investigating is urinary Cd, a
well-established exposure biomarker, because smoking can cause
changes in Cd biomarkers through direct intake through the lungs.
Alternatively, the association of Cd biomarker to DNAm is sub-
stantiated based on published experimental studies reporting that
increased exposure to Cd induces differences in DNAm.

We used the “product of coefficients” method (Pearl 2012) to
assess the contribution of increase in urinary Cd concentrations
from smoking (current, former, and cumulative smoking in sepa-
rate models) to the corresponding absolute change in DNAm pro-
portions at specific CpGs (i.e., smoking-related changes in DNAm
proportions mediated by Cd). First, for the outcome models,
because collapsibility is required for mediation analysis (Valeri
and Vanderweele 2013), we used beta regression with an identity
link for additively modelling untransformed methylation propor-
tions (instead of the M-values) in a generalized linear regression
setting with the mgcv package (version 1.8-31) of the R software.
Specifically, we fitted beta regression models for DNAm (depend-
ent variable in separate models for each CpG that was significant at
0.05 FDR-corrected p-values for Cd and current smoking (exclud-
ing former smokers), for Cd and former smoking (excluding cur-
rent smokers), and for Cd and pack-years, by smoking variables
and log-transformed urine Cd (independent variables) and con-
founders (age, sex, BMI, eGFR, study center, cell counts, and
genetic principal components). Second, for the mediator model, we
fitted linear regressionmodels for log-transformed urine Cd concen-
tration (dependent variable) by smoking variables (i.e., current and
former smoking and pack-years as independent variables in separate
models) and the same confounders included in the outcome model.
Third, we calculated the effect of smoking on DNAm mediated
through Cd (i.e., “indirect” effect) as the product of themean change
in log-Cd concentrations by smoking (smoking regression coeffi-
cient from the mediator model) and the absolute change in methyla-
tion percentages associated with log-transformed Cd concentrations
(Cd regression coefficient from the outcome model). Mediated
effects were expressed as the absolute amount of the smoking-
associated change in DNAm attributable to Cd (“absolute mediated
effect”), as well as the percentage of the smoking-associated change
in DNAm attributable to Cd out of the “total effect,” defined as the
sum of the indirect and direct effects (“relative mediated effect”).
Additionally, 95% confidence intervals were derived by simulation
from the estimated model coefficients and covariance matrices
(adapted fromLange andHansen 2011).

Sensitivity analyses. We conducted a number of sensitivity
analyses. First, we repeated the models for the top 25 significant
DMPs for current vs. never smokers in analyses stratified by center
and sex. Second, we repeated the DMP analysis for the six signifi-
cant DMPs for urinary Cd restricting the analysis to never smokers,
to assess whether the association between Cd and DNAm was only
reflecting smoking status. Third, as we do not have cotinine meas-
urements in this study and smoking is a self-reported variable, we
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used the EpiSmokEr tool (Bollepalli et al. 2019) to predict smoking
status based onDNAmdata. Fourth,we reran theCdmodels exclud-
ing the eGFR variable as well as additionally adjusting for specific
gravity. Last, because probe type bias might be an issue, we applied
Regression on Correlated Probes (RCP) normalization after snoob
normalization as implemented by the R package ENmix (version
1.8.0) (Niu et al. 2016) to seewhether the results changed.

Enrichment analyses. Among Cd- and smoking-related DMPs
with a FDR-corrected p-value <0:05,we conducted a hypergeomet-
ric analysis to identify enriched gene sets usingKyoto Encyclopedia
of Genes and Genomes (KEGG) (Kanehisa and Goto 2000;
Kanehisa et al. 2019) and Gene Ontology (GO) (Ashburner et al.
2000; The Gene Ontology Consortium 2018) as conducted by
the gometh function of the Bioconductor missMethyl package
(version 1.6.2) (Phipson et al. 2015). Among DMPs with a nomi-
nal p-value <10× 10−5, we additionally investigated enrichment
for molecular regulatory elements of statistically significant DMPs
in comparison with nonstatistically significant DMPs, including
annotated functional gene regions (TSS1500 and TSS200, 50UTR,
1 st Exon, Gene body, and 30UTR) and regions defined by the CpG
density context (Open Sea, N-shelf, N-shore, Island, S-shore, and
S-shelf). Similarly,we also investigated enrichment for 15-chromatin
states retrieved from the ROADMAP Epigenomics Mapping
Consortium (ChromHMMversion 1.10) (Bernstein et al. 2010; Ernst
and Kellis 2017; ROADMAPEpigenomics Project). Themapping of
DNAmchanges to themost probable chromatin state (combination of

histone marks associated to varying degrees of expression) using
ChromHMM is a way to identify DNA regulatory activity in a tissue-
specific manner, including coding and noncoding portions of the ge-
nome, which provides potential functional mechanisms to EWAS
findings. For regulatory elements enrichment analysis, p-values were
corrected using the Bonferroni method considering 15 chromatin
states, 6 categories relatives to functional gene region, and 6 catego-
ries relative toCpGdensity context.

Molecular characterization and in silico protein-network
analysis of DNAm metabolism. To conduct the molecular charac-
terization of DNAmmetabolismwe searched KEGG (Kanehisa and
Goto 2000) public database for key pathways directly or indirectly
related to DNAm (including factors related to methyl groups’
depletion) as of 26 June 2019, using the following descriptors:
“Glutathione metabolism” (hsa00480), “Citrate cycle” (hsa00020),
“One carbon pool by folate” (hsa00670), “Selenocompound metab-
olism” (hsa00450), and “Cysteine and methionine metabolism”

(hsa00270). The search strategy retrieved a total of 158 proteins.
TET1, TET2, TET3, SELENOP, AICDA, TDG, and APEX1 genes
were not retrieved by our search strategy, but we manually added
them to the final list of key proteins because of their potential role in
activeDNAdemethylation according to previous reports (Chia et al.
2011; Lee et al. 2009; Ruiz-Hernandez et al. 2015).

Subsequently, among DMPs with a FDR-corrected p-value
<0:05, we created a list of unique protein-coding genes attributed
to Cd-DMPs and to the union of the identified smoking related-

Figure 1. Summary of results from the epigenome-wide association study of cadmium (Cd) and smoking with DNA methylation (DNAm) and subsequent bio-
informatics analysis. After considering a false discovery rate (FDR)-corrected p-value < 0.05, we obtained 6 Cd-differentially methylated positions (DMPs)
and 312 smoking DMPs in a genomic exploration of ∼ 790,000 CpG sites with the Infinium MethylationEPIC BeadChip. We excluded nonprotein-coding
genomic regions and duplicate genes and conducted gene set enrichment analysis. We subsequently evaluated protein interaction networks among protein-
encoding genes from the STRING database, resulting in a protein interaction network of 271 nodes and 1,802 interactions. We observed highly connected
nodes, which were directly or indirectly related to DNAm metabolism key proteins.
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DMPs (Figure 1). Finally, we constructed a protein interaction net-
work of proteins encoded by the identified smoking and Cd-related
genes with respect to the DNAm key proteins selected from the
search strategy described above by obtaining protein interactions
information from STRING database version 11.0 (Szklarczyk et al.
2019). The STRING database provides a confidence score (from 0
to 1) to indicate the estimated likelihood that the annotated interac-
tion between a given pair of proteins is biologically meaningful,
specific, and reproducible, according to the evidence derived from
in-house predictions, homology transfers, and the externally main-
tained databases (Szklarczyk et al. 2019). We displayed protein
interaction networkswithCytoscape (version 3.7.1) (Shannon et al.
2003) using the yfiles Organic layout. As a result, 4 and 113 Cd and
smoking-related nodes, respectively, were included in the network,
in addition to the DNAm related-nodes, which included 159 nodes
with high confidence scores (CHAC1, CHAC2, GSTT1, GSTT2,
INMT and NAT8B nodes were excluded from the original list of
165 DNAm metabolism selected proteins because they showed
connectionswith low confidence scores).

Results

Descriptive Analysis

The prevalence of current and former smokers was 38.4% and
32.2%, respectively. Median interquartile range (IQR) accumu-
lated smoking and urinary Cd levels were, respectively, 4 (0, 18)
cigarette pack-years and 0.97 ð0:62, 1:50Þlg=g. Older participants
had higher levels of Cd, as did women in comparison with men
(Table 1). As expected, current smokers showed higher urine Cd
concentrations. The difference in Cd levels between smoking status
groups was statistically significant (p-value<2× 10−16, data not
shown). The geometric mean ratio (GMR) of urine Cd comparing
current and former smokers with never smokers was 1.45 [95%
confidence interval (CI): 1.39, 1.52] and 1.10 (95% CI: 1.04, 1.17),
respectively, in models adjusting for age, sex, BMI, center, and
eGFR (data not shown). The corresponding GMR per a 10-pack–
year increase was 1.10 (95%CI: 1.06, 1.14) (data not shown).

Differentially Methylated Positions

We found differential methylation in 6 CpGs for urinary Cd at the
FDR-corrected significance level of 0.05 (Table 2; Figure S2;
Excel Table S1). Two CpGs (cg14391737 and cg17739917) were
new from the Illumina InfiniumMethylationEPIC array and there-
fore have not been reported before. One CpG was annotated to
AHRR, one to F2RL3, one to PRSS23, two to 2q37.1, and one to
RARA. Among those six significant CpGs in the overall population,
four remained significant after restricting the models to never
smokers (Table 2). A total of 288 CpGs were differentially methyl-
ated in relation to current smoking (Table 3; Figure S2; Excel
Table S2). A total of 149 CpGs were new from the Illumina
Infinium MethylationEPIC array. The top DMPs annotated to
smoking-related genes in a previous meta-analysis was replicated
in our study (Table 3, Joehanes et al. 2016). Among the top 25
DMPs for current smoking (Table 3), 5 were annotated to AHRR, 2
to F2RL3, 1 to PRSS23, 3 to 2q37.1, and 1 to RARA. A total of 17
CpGs were differentially methylated in relation to former smoking
(8 of them were also associated with current smoking) (Figure S2;
Table S2; Excel Table S3), 5 of them being new from the Illumina
Infinium MethylationEPIC array. A total of 77 CpGs were differ-
entially methylated in relation to cigarette pack-years [62 of them
also associated with current smoking (Figure S2; Table S3; Excel
Table S4), and 29 of them being new from the Illumina Infinium
MethylationEPIC array]. The genomic inflation factors (GIF) asso-
ciated with the nominal p-values for the Cd, current and former
smoking, and pack-years analyses before SV adjustment were
1.49, 2.91, 1.02, and 1.30, respectively. In the final models, which
included SVs adjustment, the corresponding GIFs were, respec-
tively, 1.05, 1.02, 1.02, and 1.003.

Sensitivity Analyses

Results were similar when excluding the eGFR variable from the
Cd models. However, we still wanted to keep eGFR in the final
model because the filtration rate affects metal levels excreted in the
urine (Zheng et al. 2015). Adjusting for specific gravity slightly
attenuated the results but did not change them in a substantial way.

Table 1.Median (IQR) of urine cadmium (lg=g) and accumulated smoking dose (pack-years) levels and percentage of former and current smoking status by
participant’s characteristics.

N Cadmium (lg=g) Former smoking (%) Current smoking (%)
Cumulative smoking

(pack-years)

Overall 2,325 0.97 (0.62, 1.50) 32.2 38.4 4 (0, 18)
Age (y)
<50 669 0.89 (0.56, 1.31) 47.3 56.9 4 (0, 17)
50–64 1,246 1.00 (0.64, 1.55) 32.6 30.7 3 (0, 18)
≥65 410 1.03 (0.64, 1.59) 20.1 12.4 2 (0, 20)

Sex
Men 964 0.71 (0.47, 1.10) 51.1 53.4 9 (0, 27)
Women 1,361 1.16 (0.77, 1.78) 48.9 46.6 1 (0, 12)
Smoking status
Never 684 0.86 (0.54, 1.36) 0.0 0.0 0 (0, 0)
Former 748 0.81 (0.55, 1.25) 100.0 0.0 7 (2, 20)
Current 893 1.17 (0.77, 1.81) 0.0 100.0 14 (5, 30)
Center
Arizona 312 0.76 (0.53, 1.19) 15.5 6.3 0 (0, 5)
Oklahoma 981 0.86 (0.55, 1.33) 45.5 37.3 2 (0, 16)
Dakota 1,032 1.11 (0.75, 1.78) 39.0 56.4 7 (0, 23)
Obesity
No 1,238 1.05 (0.66, 1.63) 44.8 62 6 (0, 23)
Yes 1,087 0.87 (0.57, 1.35) 55.2 38 2 (0, 13)
eGFR (ml/min/1.73 m2)
<60 76 0.91 (0.53, 1.51) 32.89 32.89 7 (2, 25)
≥60 2,249 0.97 (0.62, 1.50) 32.15 38.59 11 (3, 26)

Note: IQR, interquartile range.
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In stratified analysis by sex and center for the top 25 DMPs in cur-
rent smoking models, all the DMPs remained statistically signifi-
cant and directionally consistent (Tables S4 and S5) except for
those from Arizona, where the results where attenuated and 4 of
the 25 sites did not reach the statistical significance, probably due
to the much smaller sample size in comparison with Oklahoma and
North and South Dakota. The contingency table of the self-
reported smoking status vs. predicted values by EpiSmokEr can be
found in Table S8. Overall, only 1,179 of the 2,325 patients were
classified correctly. However, most of the people predicted to
be current smokers also reported to be current smokers. We saw
similar results when applying RCP and snoob normalizations to
those obtained when only applying snoob normalization (data not
shown).

Mediation Analysis

The number of significant DMPs associated with smoking decreased
from 288 to 247 when adjusting for urinary Cd levels (data not
shown). The mediated effect in the relationship between current
smoking and DNAm through urinary Cd was statistically significant
for the six CpGs that were commonly differentially methylated for
both Cd and current smoking using the FDR-corrected p-values
(Table 4).Median (minimum,maximum) total effects for the associa-
tion between current smoking and DNAmwere −6:83% (−13:19%,
−5:70%). The corresponding absolute mediated effects through Cd
were−0:70% (−0:88%,−0:44%), respectively. Total effects for for-
mer smoking (four CpGs) and cigarette pack-years (six CpGs) and
correspondingmediated effects byCd are shown in Tables S6 and S7.
Excel Tables S5, S6, and S7 show mediation analysis for each of the
CpGs associatedwith the smokingvariables (current smoking, former
smoking, and pack-years).

Enrichment Analyses

Among smoking- and Cd-DMPs with an FDR p-value<0:05
(6 DMPs for Cd; 288 and 17, respectively, for current and former
smoking status; and 77 for cigarette pack-years), we identified a
total of 58 GO and 6 KEGG enriched pathways (out of 17,479
GO and 336 and KEGG available gene sets), respectively. The

full list of evaluated GO terms and KEGG pathways can be found
in Excel Tables S8 and S9. The top 10 GO terms and KEGG
pathways were related to cancer (GO:0007229; GO:0071498; GO:
0010595; GO:0060574; GO:0005886; GO:0060534; GO:0043149;
GO:0002068; hsa05206; hsa04072; hsa05200; hsa05202), CVD
and risk factors (GO:0071498; GO:0010595; GO:0060534; GO:
0007155; GO:0043149; GO:0002068; GO:0072678; hsa05202;
hsa04070; hsa04810), inflammation (GO:0071498; GO:0010595;
GO:0007155; GO:0043149); and others (Tables S8 and S9).

Among DMPs with a nominal p-value<10−5 (40,443 for Cd;
44,092 for current smoking; 42,000 for former smoking; and
45,612 for pack-years), the molecular enrichment relative to CpG
density context (Figure S3, Panel A) showed underrepresentation
of CpG Islands for current smoking [odds ratio ðORÞ=0:36,
p=2:4× 10−5] and open sea (OR=0:26, p=5:3× 10−5) for for-
mer smoking DMPs. However, CpGs located in S. Shores showed
an overrepresentation in former smoking-DMPs (OR=2:96,
p=7:4× 10−3) (Figure S3, Panel B). The enrichment analysis rela-
tive to functional gene region revealed some significant findings
(Figure S3, Panel B). For current smoking-DMPs, we observed an
overrepresentation of sites located at 50UTR (OR=1:60, p=0:02)
and underrepresentation at first exon (OR=0:50, p=0:02), TSS200
(OR=0:08, p=7:1× 10−8) and TSS1500 (OR=0:57, p=0:03).
Cumulative smoking-DMPs showed a statistically significant under-
representation of TSS200 (OR=0:10, p=5:6× 10−3). We observed
a strong enrichment of several chromatin states for all smoking-
related analyses (Figure 2). In particular, there was a consistent
over-representation of CpGs in enhancer for current (OR=4:76,
p=4:8× 10−9), former (OR=2:88, p=5:9× 10−3) and cumulative
(OR=4:81, p=4:9× 10−7) smoking-DMPs.

In Silico Protein-Interaction Analysis

The list of candidate proteins for DNAm-related pathways are
shown in Excel Table S10. From the protein–protein interaction,
we obtained a network of 271 nodes with 1,802 interactions
(Figures 1 and 3). Among nodes with more than 20 interactions,
we mostly found smoking-only nodes (MYO1G, GFI1, CDKN1A,
GNG12, and CYP1B1), smoking and methylation metabolism
nodes (ANPEP), and 1 Cd and smoking node (F2RL3). Seven

Table 2. Top differentially methylated positions (DMPs) associated to log-transformed urine cadmium (Cd) levels (i.e., Cd DMPs).

CpG Chr Position Gene Function

Overall Never smokers

Odds ratio
(95% CI)a

Nominal
p-value

FDR
p-value

Odds ratio
(95% CI)a

Nominal
p-value

FDR
p-value

cg14391737b chr11 86513429 PRSS23 Encodes Serine prote-
ase 23. May be an
important ovarian
protease

0.92 (0.9, 0.94) 1:01× 10−12 6:18× 10−7 0.94 (0.89, 0.98) 0.003 0.006

cg21566642 chr2 233284661 2q37.1 Uncharacterized 0.92 (0.9, 0.94) 1:56× 10−12 6:18× 10−7 0.97 (0.92, 1.01) 0.1 0.2
cg05575921 chr5 373378 AHRR Mediates dioxin toxic-

ity. Involved in cell
growth and
differentiation

0.84 (0.8, 0.88) 1:12× 10−11 2:96× 10−6 0.85 (0.77, 0.94) 0.002 0.006

cg01940273 chr2 233284934 2q37.1 Uncharacterized 0.96 (0.94, 0.97) 2:41× 10−8 0.004 0.98 (0.95, 1.02) 0.3 0.3
cg03636183 chr19 17000585 F2RL3 Blood coagulation,

inflammation, and
response to pain

0.96 (0.94, 0.97) 1:60× 10−7 0.02 0.96 (0.93, 1.00) 0.03 0.04

cg17739917b chr17 38477572 RARA Development, differen-
tiation, apoptosis,
granulopoeisis,
clock genes
transcription

0.95 (0.93, 0.97) 2:63× 10−7 0.03 0.93 (0.88, 0.97) 0.002 0.006

Note: BMI, body mass index; CI, confidence interval; FDR, false discovery rate.
aLinear regression models were fitted using logit-transformed DNAm proportions as dependent variables separately for each CpG and were adjusted for smoking status (never, former,
current), age (years), sex (male/female), BMI (kg=m2), Houseman cell proportions (CD8T, CD4T, NK, B cells, monocytes and granulocytes), study center (Arizona, Oklahoma or
North and South Dakota), five genetic principal components and estimated glomerular filtration rate (ml=min=1:73 m2).
bNot available CpGs in the Illumina HumanMethylation450 BeadChip array.
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smoking-only nodes (GFI1, CYP1B1, NFE2L2, TSHZ1, SIN3B,
ALPP, and ARRB1) were directly connected to 27 DNAm metab-
olism nodes. The four Cd and smoking nodes were indirectly
connected to DNAm metabolism nodes through six smoking-only
nodes. The Cytoscape session is provided so that readers can inter-
actively explore the network (Cytoscape Additional_file.cys sup-
plementary file; publicly available Cytoscape software can be
downloaded at https://cytoscape.org/index.html), and the general
statistics from the Cytoscape file can be found in Excel Tables S11
(network nodes) and S12 (network edges).

Discussion
After a conservative FDR correction, we found DMPs associated
with current smoking, cumulative smoking dose, and urinary Cd
levels, being all Cd-DMPs also smoking-DMPs. We replicated the
association of well-established smoking-associated DNAm sites,
including sites mapped to the genes AHRR, F2RL3, PRSS23, RARA,
and 2q37.1. In addition, we found several smoking-associated
DMPs that had not been previously reported. Our mediation analy-
sis supports that Cd is a partial mediator of the association between
smoking and differential DNAm at specific sites. The integrative in
silico analysis provides further support for interconnected epigenetic
mechanisms of both Cd- and smoking-associated health effects,
including the possibility of Cd influencing smoking-related DNAm
changes at relevant loci.

A large evidence base supports the association between smok-
ing and differential methylation of several genes, with AHRR,
F2RL3, and 2q37.1 being the most documented (Bojesen et al.
2017; Fasanelli et al. 2015; Gao et al. 2015; Joehanes et al. 2016;
Reynolds et al. 2015; Zhang et al. 2013b). Little is known about the
2q37.1 region. Although it is one of the most commonly deleted
subtelomeric regions (Leroy et al. 2013), the health implications of

the differential methylation in this region are not clear. The two
Cd-related DMPs located in this region were no longer significant
when restricting the Cd models to never smokers, whereas all the
other DMPswere still significant among never smokers.

Whether epigenetic modifications are a biological mechanism
for well-known smoking-related health effects remains a focus of
ongoing investigations. In fact, altered DNAm of AHRR and
F2RL3 has been suggested to be part of the biological links
between cigarette smoking and several diseases, especially lung
cancer and atherosclerosis (Reynolds et al. 2015), in addition to
being strong predictors of all-cause mortality in several studies (de
Smith et al. 2017; Fasanelli et al. 2015; Zhang et al. 2014). Other
smoking-related DMPs in our data such as CPOX, KIAA0087,
PRSS23,GPR15, and RARA, among others, have also been consis-
tently documented (Harlid et al. 2014; Tsaprouni et al. 2014).

Two different Illumina microarrays have been used in previous
studies, the Illumina Infinium HumanMethylation27 BeadChip
array (which interrogates DNAm at 27,000 CpGs located mostly in
promoter regions) and Illumina HumanMethylation450 BeadChip
array (including 450,000 CpGs). This is the first human study
to use the Illumina Infinium MethylationEPIC BeadChip array to
assess differential DNAm in relation to smoking, which led to
novel insights. For instance, some new genes that warrant further
investigation include a zinc finger protein (ZNF83), with a role of
coordinating zinc ions (Cassandri et al. 2017), PTPN1, which is
involved in oncogenic transformations (Zhu et al. 2007), and
RAB32, amember of theRAS oncogene family, whose overexpres-
sion has been shown in 20% to 25% of all human tumors and up to
90% in pancreatic cancer (Downward 2003). For former smoking,
however, we only found six significant CpGs, which indicates that
current smoking is more relevant for methylation changes than for-
mer smoking. In fact, several studies suggested that methylation
changes associated to smoking can be reversed on cessation

Figure 2. Enrichment analysis of top significant cadmium (Cd) and smoking-related differentially methylated positions (DMPs) (p-value< 10−5) for 15-chro-
matine states from the ROADMAP project. The area of the solid dots is directly proportional to the strength of the statistical evidence in favor of being anno-
tated to a given chromatin state category comparing statistically significant vs. nonstatistically significant DMPs in our data.

Environmental Health Perspectives 067005-9 128(6) June 2020

https://cytoscape.org/index.html


(Li et al. 2018; Tsaprouni et al. 2014). It is interesting to note that
significant current, former, and cumulative smoking-DMPs were
enriched in several categories of blood-specific enhancer regions.
These findings support the hypothesis that identified DMPs may be
biologically relevant, because it is known that enhancers regulate
gene expression in a tissue-specific manner, in this case blood,
which is our target tissue. Overall, our findings frommolecular reg-
ulatory elements enrichment analysis are consistent with the hypoth-
esis of epigenetic dysregulations being involved in mechanisms by
which smoking induces diseases.

An interesting aspect is that Cd exposure has been consistently
associated with several human health disorders in common with
smoking, including CVD (Chowdhury et al. 2018; Tellez-Plaza
et al. 2013a) and several types of cancer (García-Esquinas et al.
2014; McElroy et al. 2017), as well as kidney disease (Grau-Perez
et al. 2017; Navas-Acien et al. 2009; Orr and Bridges 2017), bone
disease (Akesson et al. 2006; Chen et al. 2009), and premature
mortality (Larsson and Wolk 2016). Cd has also been related to
biomarkers of inflammation (Fagerberg et al. 2017) and oxidative
stress (Domingo-Relloso et al. 2019; Nemmiche 2016) in epidemi-
ological studies. Given that smoking is known to be a major source
of Cd exposure (Nordberg et al. 2015), several studies have

assessed whether Cd could be a mediator between smoking and
adverse health effects. In a study conducted in a Swedish cohort
(Andersson et al. 2018), about two-thirds of the association
between smoking and atherosclerosis was found to be mediated by
Cd. In a representative sample of the U.S. general population, Cd par-
tially explained the association of smoking on peripheral arterial dis-
ease, which is characterized by the atherosclerotic narrowing of the
arteries of the lower extremities (Navas-Acien et al. 2004). Cd also
displayed a potential role as mediator of the association between
smoking and lung cancer (García-Esquinas et al. 2014).

To our knowledge, however, no studies have evaluated the
potential mediating role of Cd in the association between smok-
ing and DNAm. This hypothesis is relevant, given the increasing
evidence on the connection of DNAm with relevant biological
pathways by which environmental exposures could cause disease.
Although some studies have assessed the potential effects of Cd
exposure in DNAm, many of them were conducted in experimen-
tal settings or interrogated only a reduced number of specific
CpGs and genes (Ruiz-Hernandez et al. 2015). Few EWAS, how-
ever, have been conducted for Cd exposure in adults. None of our
DMPs for Cd have been found in previous studies; nevertheless,
these studies were not comparable with ours. One EWAS

Figure 3. Protein-interaction network between proteins attributed to cadmium (Cd)- and smoking-differentially methylated positions (DMPs) and key proteins
in DNA methylation (DNAm) metabolism pathways from KEGG. The nodes correspond to proteins involved in DNAm-related pathways, and proteins
encoded by genes associated to Cd-DMPs and smoking-DMPs. The size of the nodes is proportional to the number of connections. The STRING database pro-
vides a confidence score (from 0 to 1) to indicate the estimated likelihood that the annotated interaction between a given pair of proteins is biologically mean-
ingful, specific, and reproducible, according to the evidence derived from in-house predictions, homology transfers, and the externally maintained databases
(Szklarczyk et al. 2019). Increasingly darker solid edge lines indicate a protein interaction with increasingly higher confidence scores. The nodes included
among the top 25 statistically significant Cd- and/or smoking-DMPs in our EWAS show thicker node lines.
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involved placental Cd and placental DNAm and is therefore not
comparable to blood DNAm given the tissue-specificity of
DNAm (Everson et al. 2018). Another EWAS specifically looked
at differences in DNAm age by urinary Cd concentrations
(Demanelis et al. 2017). A study evaluated DNAm differences
associated with Cd in 4.6 million CpGs. However, the sample
size was very small (n=17), and none of the sites were signifi-
cant after correcting for multiple comparisons, so top hits may be
unstable (Sanders et al. 2014). In our data, changes in Cd levels
from smoking were associated to DNAm changes in the most
broadly known smoking-associated genes, suggesting common
epigenetic dysregulations due to smoking and Cd exposure at
these sites. Nonetheless, only 6 DMPs were found for Cd as
opposed to the 288 found for current vs. never smoking. There
are more than 7,000 chemicals in cigarette smoke, from which 93
are classified as harmful and potentially harmful constituents
(HPHCs), which include Cd and other metals (Morgan et al.
2017). More studies exploring the epigenetic effects of other
harmful chemicals from smoking are needed.

The protein–protein interaction network, on the other hand,
deepens into the potentially close relationship between DNAm
metabolism pathways and genes attributed to smoking and Cd-
DMPs. For instance, the Aminopeptidase N (ANPEP), which
belongs to the glutathione metabolism pathway showed the high-
est number of connections (directly interacting with 16 other
methylation-related proteins and 15 smoking nodes including
F2RL3 and RARA, also associated with Cd). It is interesting to
note that negative APN (the ANPEP encoded protein) immunore-
activity has been suggested as a prognostic factor for prostate
cancer (Sørensen et al. 2013), which has been associated with
both Cd and smoking (García-Esquinas et al. 2014; U.S.
Department of Health and Human Services 2010). Moreover, the
F2RL3 gene, which encodes a protease-activated receptor that
plays a role in blood coagulation, inflammation, response to pain,
and cancer, is also highly connected in the network and directly
interacts with RARA, which has been associated with increased
sensitivity to retinoids in T-cell lymphoma in experimental set-
tings (Wang et al. 2017). Other highly connected smoking-DMPs
in the network, such as MYO1G, GFI1, CDKN1A, GNG12, and
CYP1B1, have been previously reported as smoking-DMPs in
other epigenetic studies (Gonseth et al. 2016; Steenaard et al.
2015; Stueve et al. 2017; Wiklund et al. 2019) and have also
been implicated in cancer (Groth-Pedersen et al. 2012; Möröy
and Khandanpour 2019; Yao et al. 2018) or cardiometabolic dis-
eases (Dempsie et al. 2013; Parmar et al. 2018). All of them are
directly connected to Cd-associated nodes.

Our study has some limitations. First, because smoking is a
major source of Cd, and smoking status was based on self-report,
a possible concern is whether Cd serves as a biomarker of
tobacco exposure rather than reflecting Cd per se. However, in a
confirmatory sensitivity analysis for the Cd-associated DMPs
among never smokers, we found that four of the six signals
remained significant after excluding current and former smokers.
This supports the hypothesis that Cd in urine could come from
other exposure sources such as diet. A previous study (Olmedo
et al. 2017) evaluated the association between several dietary
products and urinary Cd levels in the SHS, reporting the potential
importance of processed meat products as a dietary source of Cd.
Occupational exposure to Cd occurs mainly during mining,
smelting, and work with Cd-containing minerals (ATSDR 2012).
We do not have occupational data in our study; however, some
people might do handmade work with minerals and Cd pigments
(e.g., jewelry making) and might be exposed to Cd that way. In
addition, secondhand tobacco smoke exposure could also be
related to urinary Cd levels in never smokers. In a sensitivity

analysis with EpiSmokEr, most of the misclassification was from
participants who self-reported to be former smokers but for which
the algorithm predicted them to be never smokers. Given that it is
unlikely that people would indicate they smoked in the past with-
out doing it (i.e., reporting to be a former smoker when he or she
is a never smoker), this aspect could be related to the previously
reported reversible nature of some of the smoking-related epige-
netic marks (Reynolds et al. 2015). In the same way, many self-
reported current smokers were predicted to be former smokers by
the algorithm. This prediction could be related to the small num-
ber of cigarettes per day smoked by many smokers in our popula-
tion (median cigarette pack was 4, which would mean that one
person could have smoked, for example, 2 cigarettes per day
through 40 y, or 4 cigarettes per day through 20 y). Finally, we
cannot discard misclassification due to secondhand smoke,
because in this study there was a median (IQR) of 1 (0, 6) h of
self-reported exposure to secondhand smoke per day. In addition,
mediation analysis is subject to strong assumptions (Pearl 2012;
Valeri and Vanderweele 2013), for instance, the assumption of
no unmeasured confounders. Residual confounding cannot be
discarded in observational studies. It is important to note that we
obtained essentially identical mediated effects when we used the
difference of coefficient methods instead of the product of coeffi-
cient methods (data not shown), which indicates that the no
exposure-mediator interaction assumption holds in our data.

Another limitation is the fact that we conductedmediation analy-
sis in the setting of a cross-sectional study design. However, ciga-
rettes are known to contain Cd, so the directionality between
smoking andCd exposure relation over time is clear. The directional-
ity between Cd exposure and blood DNAm is less clear, but—given
the long half-life of urinary Cd (15–30 y) and the fact that Cd is an
exogenous nonessential metal—it is likely that Cd exposure pre-
cedes blood DNAm. Finally, although replication of results in inde-
pendent study populations is required in studies conducting genomic
explorations of the methylome, this concern may be a relatively
minor one in our case, given the robustness of our data with respect
to well-replicated smoking-related signals across a wide range of
other population studies (Gao et al. 2015; Joubert et al. 2012).

The strengths of our study include the large sample size,
including methylation data for the largest amount of CpGs possi-
ble with current microarray technology (Illumina Infinium
MethylationEPIC BeadChip); the high quality of the study proto-
cols; and the availability of information to account for potential
confounders.

In conclusion, this work supports the hypothesis that Cd, one
of the principal toxicants in cigarettes, could be partially explain-
ing well-established associations of smoking with DNAm
changes. Cd exposure could thus be linked to smoking adverse
health outcomes through epigenetic mechanisms. Although
smoking exposure has declined in recent decades, public health
interventions are still needed for controlling smoking exposure
among the population. Additional strategies are also needed to
reduce Cd exposure from other sources beyond tobacco (Ruiz-
Hernandez et al. 2017). Findings from our in silico study needs
functional confirmation in experimental settings, as relevant pro-
teins in our protein-interaction network can contribute to the
understanding of Cd and smoking-related adverse health out-
comes and mechanisms.
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