
CADP 2006: A Toolbox for the Construction
and Analysis of Distributed Processes

(Tool Paper)

Hubert Garavel, Radu Mateescu, Frédéric Lang, and Wendelin Serwe

Inria

Centre de recherche Rhône-Alpes / Vasy

655, avenue de l’Europe, Montbonnot, 38 334 Saint Ismier Cedex, France
{Hubert.Garavel,Radu.Mateescu,Frederic.Lang,Wendelin.Serwe}@inria.fr

1 Introduction

Cadp(Construction and Analysis of Distributed Processes)1 [2,3] is a toolbox for
specification, rapid prototyping, verification, testing, and performance evaluation
of asynchronous systems (concurrent processes with message-passing communi-
cation). The developments of Cadp during the last five years led to a new release
named Cadp 2006 “Edinburgh” (as a tribute to the achievements in concurrency
theory of the Laboratory for Foundations of Computer Science) that supersedes
the previous version Cadp 2001.

2 Modular Integration of Verification Techniques

Cadp 2006 includes a complete range of functionalities for the design of asyn-
chronous systems: code generation, rapid prototyping, random, interactive, or
guided simulation, explicit-state verification, test case generation, and perfor-
mance evaluation. Cadp accepts as input either networks of communicating au-
tomata or higher-level specification languages, such as the Iso standard Lotos.

Many Cadp tools operate on Labeled Transition Systems (Ltss), which are
represented either explicitly, as compact binary files encoded in the Bcg (Binary
Coded Graphs) format, or implicitly, as C programs implementing the tran-
sition relation according to the Open/Cæsar Api (Application Programming
Interface). Three forms of verification are supported by Cadp: visual checking
(graphical inspection of an Lts), model checking (satisfaction of a modal μ-
calculus formula by an Lts), and equivalence checking (comparison of two Ltss
with respect to some equivalence/preorder relation).

To address the state space explosion problem, Cadp 2006 provides the fol-
lowing verification techniques2:

– Compositional verification builds the Lts of a concurrent system incremen-
tally by generating, minimizing, and recomposing the Ltss of individual

1 http://www.inrialpes.fr/vasy/cadp
2 Related verification tools are listed at http://anna.fi.muni.cz/yahoda

W. Damm and H. Hermanns (Eds.): CAV 2007, LNCS 4590, pp. 158–163, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



CADP 2006: A Toolbox for the Construction and Analysis 159

processes. Refined compositional verification uses interface constraints (spec-
ified manually or synthesized automatically) that restrict the behaviour of a
process depending on its environment, thus limiting the size of intermediate
Ltss.

– On-the-fly verification avoids the complete construction of an Lts by explor-
ing only the portion relevant for verification. Model checking and equivalence
checking are reformulated in terms of Boolean Equation Systems (Bess),
which are solved on-the-fly using specialized linear-time algorithms.

– Partial order reductions, performed on-the-fly, reduce the Lts size by elimi-
nating redundancies arising from the interleaving of independent transitions,
still preserving various equivalence relations (branching bisimulation, weak
trace equivalence, etc.).

– Static analysis aims at reducing the size of the Ltss generated from a system
description, still preserving strong bisimulation.

– Massively parallel verification handles very large Ltss by using the comput-
ing resources of machine clusters and grids.

A key feature of Cadp is to allow all these techniques to be combined in a
highly modular way within the same software environment. Examples of such
combinations that cumulate the reductions and scale up to larger systems are:

1. One can use a grid to generate the Lts corresponding to a Lotos specifi-
cation, while applying static analysis and on-the-fly τ -confluence reduction
simultaneously.

2. One can model check on-the-fly whether a μ-calculus formula is satisfied by
a network of communicating Ltss, while applying partial order reduction.

3. One can compare on-the-fly an Lts to a network of communicating Ltss
that have been previously generated (taking into account refined interface
constraints) and minimized for some bisimulation.

The tools of Cadp can be invoked either interactively, by using the
Eucalyptus graphical user interface, or in batch mode, by describing the de-
sired verification scenario as a script in the Svl language.

3 New and Enhanced Tools in CADP 2006

Cadp 2006 offers 42 tools and 20 generic software libraries dedicated to verifi-
cation. Numerous tools existing in Cadp 2001 were entirely rewritten or signif-
icantly improved, and 15 new tools and code libraries were added:

– Bcg Graph generates several useful kinds of Ltss in the Bcg format, such
as bags, Fifo queues, and chaos Ltss.

– Bcg Merge [5] produces a single Bcg file from a Pbg file (see the
Distributor tool below). It is equipped with a graphical tool to monitor
the Lts generation interactively.



160 H. Garavel et al.

– Bcg Steady and Bcg Transient [7] perform steady-state and transient
analysis of an (extended) Ctmc (Continuous-Time Markov Chain) encoded
in the Bcg format.

– Bisimulator [11,1] compares two Ltss on-the-fly modulo one out of 14
behavioural relations (strong, branching, observational, τ∗.a, safety, trace,
or weak trace equivalences — and their associated preorders). The equiva-
lence checking problem is reformulated as a Bes, which is solved using the
Cæsar Solve library below. When both Ltss are not related, Bisimulator

generates a counterexample, i.e., an acyclic Lts containing distinguishing
transition sequences. Compared with former Cadp tools, Bisimulator is
more efficient and generates smaller counterexamples.

– Cæsar 7.0 [6] is a compiler for the behaviour part of Lotos. Among other
improvements, Cæsar 7.0 implements a static analysis based on live variable
analysis, which assigns a canonical value to variables that are no longer used,
thus avoiding to distinguish states that only differ by values of variables not
used in the future. Compared to its previous version 6.2, Cæsar 7.0 can
reduce Lts size by several orders of magnitude (e.g., 104), thus allowing
larger Lotos specifications to be handled.

– Cæsar.Bdd uses Binary Decision Diagrams to perform various structural
analyses on basic Petri nets, such as exploring reachable markings to deter-
mine the set of “dead” transitions and the pairs of “concurrent” units.

– Cæsar Solve [11] is a generic software library for on-the-fly resolu-
tion of Bess, represented as implicit boolean graphs similarly to Ltss in
Open/Cæsar. It offers 6 resolution algorithms, based on breadth-first search
or depth-first search (with memory-efficient variants for acyclic or disjunc-
tive/conjunctive BESs) strategies, which also generate diagnostics (boolean
subgraphs) explaining the truth value of boolean variables.

– Determinator [7] takes as input an extended Ctmc encoded in the Bcg

format and tries to extract on-the-fly a pure Ctmc (i.e., containing only
stochastic transitions). Doing so, the tool checks a sufficient condition en-
suring that the resulting Ctmc is unique, or returns an error otherwise.

– Distributor [5] performs distributed Lts generation and on-the-fly
reduction by τ -compression and τ -confluence [10] using several machines
connected by a network. It launches a remote process on each machine to
generate a fragment of the entire Lts. The result of the distributed genera-
tion is a Pbg (Partitioned Bcg Graph), i.e., a set of Lts fragments located
on remote machines. Distributor is equipped with a graphical tool to
monitor the Pbg generation in real-time.

– Evaluator 3.5 [12,11] evaluates on-the-fly, on an Lts, temporal properties
expressed in regular alternation-free μ-calculus. The model checking problem
is reformulated as a Bes, which is solved using the Cæsar Solve library.
The tool generates full diagnostics (examples and counterexamples) and op-
timizes memory consumption (i.e., does not store the transitions, but only
the states of the Lts) for a large spectrum of properties. Evaluator 3.5 is
3 times faster and consumes 3 times less memory than Evaluator 3.0.



CADP 2006: A Toolbox for the Construction and Analysis 161

– Exp.Open 2.0 [8] maps communicating Ltss composed using synchroniza-
tion vectors, parallel composition operators (from Ccs, Csp, μCrl, Lotos,
and E-Lotos), and/or generalized hide, rename, and cut operators onto the
Open/Cæsar Api. It implements partial order reductions preserving vari-
ous equivalences (e.g., branching, stochastic, weak trace equivalence). It can
also translate communicating Ltss into the Pep, Tina, and Fc2 formats,
and can synthesize interface constraints for refined compositional verifica-
tion [9]. Exp.Open 2.0 uses 2 times less memory and is up to 45 times
faster than Exp.Open 1.0.

– Projector 2.0 [13] reduces an Lts on-the-fly with respect to interface con-
straints represented by another Lts and a set of labels. Among its new fea-
tures, Projector 2.0 allows to describe the set of labels more compactly by
the way of regular expressions. Experiments indicate that Projector 2.0
is up to 4 times faster than Projector 1.0.

– Reductor 5.0 reduces an Lts on-the-fly, either partially or totally, modulo
one out of 8 relations (trace, weak trace, τ∗.a, and safety equivalences, τ -
confluence, τ -compression, τ -divergence [10], and strong bisimulation), pos-
sibly displaying the equivalence classes of the quotient graph. Some of these
reductions perform a local resolution of a Bes using Cæsar Solve. The
algorithm used by Reductor 5.0 to eliminate invisible transitions has a
lower average complexity than in earlier versions.

– Seq.Open [4] maps traces onto the Open/Cæsar Api. It implements an
optimized representation of a trace as an Lts without storing the whole trace
in memory, which is also significantly more efficient (up to 50 times faster)
than converting the trace first into a Bcg file.

Notice that the Aldébaran tool (available since the origin of Cadp) was
replaced in Cadp 2006 by a (upward-compatible) shell script that invokes
Bisimulator, Bcg Info, Bcg Min, and Reductor to provide the same func-
tionalities as Aldébaran.

4 Conclusion

Cadp 2006 “Edinburgh” is the result of five years of intensive R&D in verification
technology. Four computing platforms are currently supported: Sparc/Solaris,
Intel/Linux, Intel/Windows, and PowerPC/Mac OS. As regards impact,
366 organizations have signed the Cadp license agreement already, and Cadp

has been installed on 820 machines in the world during year 2006. Cadp was
used for 94 case-studies3 and 29 research tools4 are connected to Cadp. Most
notably, in the FormalFame project, Cadp was successfully used to validate
crucial parts of Bull’s NovaScale machines, which form the core of Tera10,
Europe’s most powerful supercomputer.

Cadp will continue to be enhanced in the next years. In particular, we plan
to apply Cadp in three main areas: software environments for critical embedded
3 listed at http://www.inrialpes.fr/vasy/cadp/case-studies
4 listed at http://www.inrialpes.fr/vasy/cadp/software



162 H. Garavel et al.

systems (French projects OpenEmbedd and Topcased), high-performance mul-
tiprocessor architectures (French project Multival), and bio-informatics (Euro-
pean project Ec-Moan, where Cadp will contribute to the understanding of a
bacterial model system).

Acknowledgements. Damien Bergamini, David Champelovier, Adrian Curic,
Nicolas Descoubes, Holger Hermanns, Christophe Joubert, Bruno Ondet, Gor-
don Pace, Frédéric Perret, Irina Smarandache-Sturm, Gilles Stragier, Frédéric
Tronel, and Marie Vidal contributed to Cadp 2006. The authors are also grateful
to the 79 Cadp users5 whose suggestions led to numerous Cadp enhancements.

References

1. Bergamini, D., Descoubes, N., Joubert, C., Mateescu, R.: BISIMULATOR: A Mod-
ular Tool for On-the-Fly Equivalence Checking. In: Ziarko, W., Yao, Y. (eds.)
RSCTC 2000. LNCS (LNAI), vol. 2005, Springer, Heidelberg (2001)

2. Fernandez, J.-C., Garavel, H., Kerbrat, A., Mateescu, R., Mounier, L., Sighireanu,
M.: CADP (CÆSAR/ALDEBARAN Development Package): A Protocol Valida-
tion and Verification Toolbox. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996.
LNCS, vol. 1102, Springer, Heidelberg (1996)

3. Garavel, H., Lang, F., Mateescu, R.: An Overview of CADP 2001. EASST Newslet-
ter 4, 13–24 (2002) Also available as INRIA Technical Report RT-0254

4. Garavel, H., Mateescu, R.: SEQ.OPEN: A Tool for Efficient Trace-Based Verifica-
tion. In: Gelbukh, A. (ed.) CICLing 2001. LNCS, vol. 2004, Springer, Heidelberg
(2001)

5. Garavel, H., Mateescu, R., Bergamini, D., Curic, A., Descoubes, N., Joubert, C.,
Smarandache-Sturm, I., Stragier, G.: DISTRIBUTOR and BCG MERGE: Tools
for Distributed Explicit State Space Generation. In: Hermanns, H., Palsberg, J.
(eds.) TACAS 2006 and ETAPS 2006. LNCS, vol. 3920, Springer, Heidelberg (2006)

6. Garavel, H., Serwe, W.: State Space Reduction for Process Algebra Specifications.
Theoretical Computer Science 351(2), 131–145 (2006)

7. Hermanns, H., Joubert, C.: A Set of Performance and Dependability Analysis
Components for CADP. In: Garavel, H., Hatcliff, J. (eds.) ETAPS 2003 and TACAS
2003. LNCS, vol. 2619, Springer, Heidelberg (2003)

8. Lang, F.: EXP.OPEN 2.0: A Flexible Tool Integrating Partial Order, Composi-
tional, and On-the-fly Verification Methods. In: Romijn, J.M.T., Smith, G.P., van
de Pol, J. (eds.) IFM 2005. LNCS, vol. 3771, Springer, Heidelberg (2005)

9. Lang, F.: Refined Interfaces for Compositional Verification. In: Najm, E., Pradat-
Peyre, J.F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, Springer,
Heidelberg (2006)

10. Mateescu, R.: On-the-fly State Space Reductions for Weak Equivalences. In: Proc.
of FMICS ’05, ACM Computer Society Press, New York (2005)

11. Mateescu, R.: CAESAR SOLVE: A Generic Library for On-the-Fly Resolution
of Alternation-Free Boolean Equation Systems. Springer International Journal on
Software Tools for Technology Transfer (STTT) 8(1), 37–56 (2006)

5 listed at http://www.inrialpes.fr/vasy/cadp/news6.html



CADP 2006: A Toolbox for the Construction and Analysis 163

12. Mateescu, R., Sighireanu, M.: Efficient On-the-Fly Model-Checking for Regular
Alternation-Free Mu-Calculus. Science of Computer Programming 46(3), 255–281
(2003)

13. Pace, G., Lang, F., Mateescu, R.: Calculating τ -Confluence Compositionally. In:
Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, Springer, Heidel-
berg (2003)


	Introduction
	Modular Integration of Verification Techniques
	New and Enhanced Tools in CADP 2006
	Conclusion

