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Abstract: In recent years, advances in science and technology have improved our quality of life,
enabling us to tackle diseases and increase human life expectancy. However, longevity is accompanied
by an accretion in the frequency of age-related neurodegenerative diseases, creating a growing burden,
with pervasive social impact for human societies. The cost of managing such chronic disorders and the
lack of effective treatments highlight the need to decipher their molecular and genetic underpinnings,
in order to discover new therapeutic targets. In this effort, the nematode Caenorhabditis elegans
serves as a powerful tool to recapitulate several disease-related phenotypes and provides a highly
malleable genetic model that allows the implementation of multidisciplinary approaches, in addition
to large-scale genetic and pharmacological screens. Its anatomical transparency allows the use of co-
expressed fluorescent proteins to track the progress of neurodegeneration. Moreover, the functional
conservation of neuronal processes, along with the high homology between nematode and human
genomes, render C. elegans extremely suitable for the study of human neurodegenerative disorders.
This review describes nematode models used to study neurodegeneration and underscores their
contribution in the effort to dissect the molecular basis of human diseases and identify novel gene
targets with therapeutic potential.

Keywords: ageing; Alzheimer’s disease; amyotrophic lateral sclerosis; Autosomal Dominant Optic
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1. Introduction

Battling human neurodegenerative diseases and their pervasive societal impact is
becoming a global priority. Despite their devastating effect on human quality of life and
their immense economic impact on healthcare systems, many human neurodegenera-
tive conditions remain incurable and non-preventable. Ageing is universally associated
with a marked decrease in neuronal function and higher susceptibility to neurodegen-
eration. In human populations, this is manifested as an ever-increasing prevalence of
devastating neurodegenerative pathologies, such as Alzheimer’s disease (AD), Parkin-
son’s disease (PD), several ataxias and amyotrophic lateral sclerosis (ALS). Moreover, the
steady increase in human lifespan in industrialized nations is exacerbating the prevalence
of neurodegeneration-associated disability. Remarkably, neurodegenerative diseases are
characterized by common hallmarks, including genomic instability, telomere attrition,
epigenetic alterations, protein aggregate accumulation, mitochondrial dysfunction, stem
cell exhaustion and autophagy defects, among others [1–3].

Caenorhabditis elegans is a soil dwelling, non-parasitic, free-living nematode that feeds
on bacteria. The animals are of small size, with adults reaching approximately 1 mm
in length and 80 µm in diameter, and can be easily cultivated in laboratory conditions,
either on agar plates or in liquid medium, supplemented with Escherichia coli (mainly
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OP50 strain). C. elegans is primarily a hermaphroditic species, a feature that enables the
generation of genetically identical populations and strain preservation, but males also exist
with a frequency of <0.2%, allowing the implementation of genetic crosses. Each single
hermaphrodite consists of 959 somatic cells and can produce around 300 progenies by
self-fertilization, or 1000 upon mating with males (1031 somatic cells) [4–6]. Remarkably,
the developmental and anatomical features of the nematode’s somatic cells have been
extensively studied, and its entire cell lineage has been mapped [4,7]. It is also noteworthy
that this animal is transparent at all stages of its life cycle, offering the unique ability for
easy visualization, observation and monitoring of physiological and cellular processes
by utilizing various microscopy techniques [8]. Additionally, C. elegans has a very short
reproductive life cycle, which is completed in 2.5 days at 25 ◦C and 3.4 days at 20 ◦C,
and its lifespan is about 2–3 weeks [5,6]. Its genome has been completely sequenced and
annotated (~97 Mb size) since 1998, and it displays a high degree of conservation with
human genes [9]. Overall, these characteristics render this nematode a versatile model
organism for studying diverse biological phenomena and human disorders.

C. elegans is used as an animal model in major research areas, including developmental
biology, neurobiology, cell biology and ageing, among others. Notably, it is estimated that
around 42% of human disease-associated genes have a nematode ortholog, rendering this
worm a suitable model to investigate the molecular mechanisms and cellular processes that
orchestrate disease development and progression [10–12]. The most common experimental
approaches to model a pathological condition in C. elegans are (1) to alter the expression
levels of a disease-related homolog gene, or (2) to over-express a human isoform in specific
nematode tissues, thus resulting in mutant and/or transgenic animals that display phe-
notypes reminiscent of human pathologies and can be easily studied or used in genetic
screens [8,11,12]. Consequently, C. elegans has been established as an important model or-
ganism for neuroscience research, enabling the combination of diverse approaches, such as
in vivo fluorescent imaging, neuronal activity manipulation and systematic genome-wide
genetic screen, towards a common goal [8]. The nematode provides a unique opportunity
to study neuronal function, neuronal circuit formation and neurodegeneration, because the
entire connectome of its 302 neurons has been reconstructed and well-defined [13,14]. Addi-
tionally, its neurons share many functional characteristics with those of higher eukaryotes,
including neurotransmitters, receptors, and neuromodulators [15–18]. Moreover, despite
its simple nervous system, C. elegans shows a wide variety of responses that range from a
simple aversion to mechanical stimuli to relatively complicated behaviors, such as defeca-
tion, thermotolerance, associative learning and memory [19–22]. Notably, age-associated
decline of neuronal function is evolutionarily conserved in organisms as diverse as the
nematode and humans, signifying commonalities in the underlying molecular mechanisms.
Overall, C. elegans displays several advantages towards understanding the molecular mech-
anisms that drive the development and progression of age-associated neurodegeneration
(Figure 1).

In this review, we present some of the most eminent nematode models of neurodegen-
erative pathologies and underline their importance in the elucidation of pathophysiological
mechanisms and the identification of novel therapeutic intervention strategies against them
(Figure 1).
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Figure 1. Examples of C. elegans models used to study neurodegenerative disorders by expressing 
human disease-associated genes in specific cell types. The GABAergic neurons are illustrated in 
green, and magnified are the body wall muscle cells (red) and the dopaminergic neurons (orange). 
AD = Alzheimer’s disease, PD = Parkinson’s disease, ALS = amyotrophic lateral sclerosis, HD = 
Huntington’s disease, ADOA = Autosomal Dominant Optic Atrophy. 
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fect the ability of patients to function independently. 

At the cellular level, the presence of insoluble amyloid β-peptide (Aβ) plaques and 
tau-associated neurofibrillary tangles (NFTs) in the brain are the most well appreciated 
pathological features of AD [24–26]. Aβ is a small peptide that is generated through the 
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evidence indicates that the Aβ cascade hypothesis is debatable [27], Aβ plaques play a 
major role in the progression of the disease [28], while mutations in the APP gene, along 
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onset familial forms of AD [29,30]. Tau is a protein that binds to microtubules and stabi-
lizes them, thereby supporting cellular function and viability via vesicle and organelle 
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role in neuronal physiology, hyperphosphorylation of tau triggers its aggregation and 
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Figure 1. Examples of C. elegans models used to study neurodegenerative disorders by express-
ing human disease-associated genes in specific cell types. The GABAergic neurons are illustrated
in green, and magnified are the body wall muscle cells (red) and the dopaminergic neurons (or-
ange). AD = Alzheimer’s disease, PD = Parkinson’s disease, ALS = amyotrophic lateral sclerosis,
HD = Huntington’s disease, ADOA = Autosomal Dominant Optic Atrophy.

1.1. Alzheimer’s Disease

Alzheimer’s disease (AD) is the leading cause of dementia worldwide and represents
a major public health concern [23]. Predictions mention that by 2030, the prevalence of
AD will reach 66 million cases, and by 2050, it is indicated that the prevalence of dementia
will be tripled worldwide [24]. Although AD is strongly connected with heritability, at
a percentage of 60–80%, several lifestyle and environmental factors can contribute to
disease development and progression [24–26]. AD pathology starts with mild cognitive
impairments that gradually evolve into behavioral and neuropsychiatric changes and
deficits. Eventually, the progressive cognitive decline and the deterioration of social skills
affect the ability of patients to function independently.

At the cellular level, the presence of insoluble amyloid β-peptide (Aβ) plaques and
tau-associated neurofibrillary tangles (NFTs) in the brain are the most well appreciated
pathological features of AD [24–26]. Aβ is a small peptide that is generated through
the proteolysis of amyloid precursor protein (APP) by β- and γ-secretases. Although
recent evidence indicates that the Aβ cascade hypothesis is debatable [27], Aβ plaques
play a major role in the progression of the disease [28], while mutations in the APP gene,
along with those in presenilin 1 (PSEN1) and presenilin 2 (PSEN2) genes, are linked to
early-onset familial forms of AD [29,30]. Tau is a protein that binds to microtubules and
stabilizes them, thereby supporting cellular function and viability via vesicle and organelle
transportation along neuronal compartments [31–33]. Despite its beneficial and pivotal role
in neuronal physiology, hyperphosphorylation of tau triggers its aggregation and leads to
the formation of NFTs, while both wild type (wt) and mutant isoforms of tau are found to
be hyperphosphorylated in AD patients [34–36].

1.1.1. Aβ Models

Many C. elegans strains have been created over the years to recapitulate human AD
pathology [37,38]. Among these, a variety of transgenic AD models have been generated
by expressing human Aβ peptide in specific cell types, such as body wall muscle cells and
neurons [39]. Notably, nematodes expressing Aβ1–42 peptide in body wall muscle cells
exhibit accumulation of Aβ toxic oligomers and age-dependent progressive paralysis [40].
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Likewise, AD models that overexpress human Aβ1–42 specifically in glutamatergic neurons
demonstrate progressive, age-dependent neurodegeneration and have been used to vali-
date the functional link between Aβ toxicity and endocytic trafficking [41], while models
with pan-neuronal Aβ1–42 expression that demonstrate neuromuscular and age-dependent
behavioral defects have contributed to the understanding of AD metabolic pathogenesis by
revealing that reduced ATP levels and deficits in electron transport chain (ETC) complexes
precede global metabolic failure [42]. Moreover, growing evidence indicates that accumula-
tion of damaged mitochondria is a hallmark of age-dependent neurodegeneration and plays
a detrimental role in the pathogenesis of AD [43]. Recent studies indicated that mitophagy,
a selective form of autophagy that targets damaged and/or superfluous mitochondria, is
impaired in AD patients and relevant animal models, including C. elegans. Indeed, the
administration of potent mitophagy inducers, such as nicotinamide adenine dinucleotide
(NAD+) boosters or urolithin A (UA), reverses memory impairment and cognitive deficits
in Aβ- and tau-expressing C. elegans models [36]. These findings provide new insights into
the mechanisms of mitophagy and neurodegenerative diseases and establish C. elegans as a
platform for screening mitophagy modulators with therapeutic potential in AD.

1.1.2. APOE Models

Apolipoprotein E (APOE) is thought to be responsible for the transport of cholesterol
to neurons via astrocytes [44,45], and its isoforms are characterized as risk factors for AD
development [46]. Although APOEe2 isoform is linked with reduced risk, APOEe4 is con-
nected with increased risk of disease development and has been suggested to exacerbate
early- and late-onset forms of AD [47], whereas APOEe3 is neutral [48]. The generation
and analysis of transgenic C. elegans models expressing human APOE alleles, with or
without the presence of Aβ1–42, has provided valuable insights into the involvement of
these isoforms in AD pathogenesis [49]. A recent study showed that the co-expression
of APOEe2 and Aβ results in the protection of glutamatergic neurons from degeneration
and restores mechanosensory behavior. However, APOEe4 and Aβ co-expression does not
protect against Aβ neurotoxicity, while the co-expression of APOEe3 has an intermediate
phenotype [11]. APOE alleles do not affect neuronal function in the absence of the Aβ, high-
lighting their neuroprotective function. Indeed, the neuroprotective effects of specific APOE
alleles can be modulated by pharmacological and/or genetic manipulations of endoplasmic
reticulum (ER)-associated Ca2+ [49]. Notably, the decreased lifespan of C. elegans strains
expressing APOEe4 and Aβ can be rescued by the simultaneous expression of APOEe2 or
APOEe3 [49]. In conclusion, C. elegans recapitulates the degeneration phenotypes linked to
APOE polymorphisms and, thereby, can be used as a model to uncover new directions in
AD research.

1.1.3. APP Models

Aβ is a small peptide produced by the sequential enzymatic processing of APP. The
C. elegans genome encodes for a single APP protein (APL-1), which is an ortholog of
human APLP1-2 (amyloid beta precursor-like) proteins [50]. Single-copy pan-neuronal
expression of human APP, in addition to the endogenous ALP-1 of the nematode, results
in neurodegeneration and neurobehavioral dysfunction [51]. Similarly, the pan-neuronal
overexpression of endogenous apl-1 gene promotes memory, neurobehavioral and sensory
plasticity deficits [52]. Conversely, the knockdown of apl-1 gene causes rapidly progressing
paralysis [53]. Investigation of APL-1 in the adult nervous system may provide further
insights into the molecular function of APP and the pathways in which it is involved [54].
In conclusion, using C. elegans as a model to study APP activity could lead to a better
understanding of its role in disease development and progression.

1.1.4. Presenilin Models

Presenilins (PSENs) are transmembrane proteins found predominantly in the ER and
are enriched in compartments that are in contact with mitochondria [55,56]. PSENs are
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a component of the γ-secretase complex, which plays a key role in the cleavage of APP
into Aβ peptides [57]. Although mutations in PSEN1 and PSEN2 lead to early-onset
familial AD, their functional consequences are not yet well-defined [58]. In congruence
with the mammalian studies, mutation of the PSEN ortholog sel-12 in C. elegans results in
the dysregulation of ER Ca2+ homeostasis [58,59]. Particularly, sel-12 mutants have elevated
ER–mitochondrial Ca2+ signaling, triggering increased mitochondrial Ca2+ content, which
subsequently leads to enhanced mitochondrial superoxide production. Moreover, sel-
12 mutants show mitochondrial metabolic defects that promote neurodegeneration [60].
However, the reduction of ER Ca2+ release, mitochondrial Ca2+ uptake or mitochondrial
superoxide in mutant worms prevents neurodegeneration and rescues mitochondrial
metabolic defects [60]. These findings suggest that mutations in PSEN alter mitochondrial
metabolic function via ER–mitochondrial Ca2+ signaling, providing insights for new targets
in the effort to tackle neurodegenerative diseases.

1.1.5. Tau Models

The tau protein binds and stabilizes microtubules in order to support the neuronal
cytoskeleton network [61]. In AD, tau becomes abnormally phosphorylated, leading to its
aggregation and the formation of NFTs [62]. These molecular events mediate the blockage
of the neuronal transport system and, thereby, impair synaptic communication between
neurons. In C. elegans, ptl-1 encodes for a tau-like protein that has 50% homology to
mammalian tau [63]. Loss of ptl-1 triggers incompletely penetrant lethality during embryo-
genesis, decreases lifespan, impairs touch sensitivity, and causes abnormal morphology in
ALM touch neurons, recapitulating some aspects of AD pathology [64,65]. Accumulating
evidence indicates that there is some functional conservation between tau and PTL-1, as
human tau can rescue touch insensitivity in ptl-1 mutants, while defects caused by tau
expression are ameliorated in the absence of endogenous PTL-1 [65]. There are many
C. elegans models that overexpress either wt or mutant forms of the human tau protein, with
the latter exhibiting greater toxicity [66,67]. Pan-neuronal expression of tau in the nematode
leads to the accumulation of insoluble phosphorylated aggregates, age-dependent neurode-
generation, locomotion defects and abnormal motor neuron morphology. Moreover, tau
pathology and phenotypes seem to be dose-dependent, since worms with higher levels of
pan-neuronal expression display more severe locomotion defects [68,69]. Notably, the pan-
neuronal expression of A152T tau mutation, a rare risk factor for frontotemporal dementia
(FTD) and AD, results in decreased lifespan, locomotion defects and excessive degeneration
of GABAergic neurons in nematodes, mimicking several aspects of AD pathology [70].

Forward and reverse genetic screens in C. elegans have identified sut-1 and sut-2 as medi-
ators of tau neurotoxicity. Indeed, sut-2 overexpression intensifies tau-associated pathology,
while sut-2 knockdown protects against tau-induced neuronal dysfunction [71,72]. Likewise,
a genome-wide RNAi screen [73] in a nematode model that overexpresses the human
tau pan-neuronally, unveiled that the unfolded protein response of the ER (UPRER) is a
potential modulator of tau proteostasis [74]. Consequently, expressing XBP-1, the driving
transcription factor of UPRER, enhanced the clearance of tau aggregates and improved
neuronal survival [74]. Congruently, animals expressing XBP-1 in their neurons or intestine
seem to have protection against multiple proteotoxic species, including Aβ1–42 peptide. Fur-
ther supporting this notion, neuronal expression of XBP-1s rescued the loss of chemotaxis
defects in animals that expressed Aβ1–42 pan-neuronally [5,74]. Recent studies demon-
strated that neuronal XBP-1s upregulates lysosomal genes and mediates the enhancement
of lysosomal acidity and function in the intestine. Taken together, these findings suggest
that intestinal lysosomal function is required for increased proteostasis and longevity in
the XBP-1 over-expressing nematodes [75].

Emerging findings have shown that there is a strong association between tau pathology
and mitochondrial dysfunction, but the chronological order of these phenomena remains
elusive [76,77]. A very recent study utilized a nematode model expressing low levels of
the wt human tau (PIR3 strain) and underlined that mitochondrial impairment represents
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an early pathological event in neuronal cells [78]. These animals demonstrate short lifes-
pan, impaired neurotransmission, defective locomotion, abnormal accumulation of tau
aggregates and increased neurodegeneration, recapitulating several pathological features
of the human tauopathy [77]. Moreover, pan-neuronal tau-expressing nematodes displayed
mitochondrial impairment and locomotion deficits during development and ageing [78].
These findings indicate the toxic effects of tau in organelle function and cellular physiology.
Although PIR3 nematodes do not accumulate detectable levels of tau aggregates during
larval stages, they show increased mitochondrial damage and locomotion defects [78].
Interestingly, chelation of Ca2+ through EGTA rescues pathological phenotypes by increas-
ing mitochondrial membrane potential and improving the motility of the worms. These
findings suggest that there is a positive correlation among mitochondrial function, Ca2+

homeostasis and neuronal survival, providing additional mechanistic insights into the
primary cause of mitochondrial dysfunction in early stages of tauopathy [78].

In conclusion, C. elegans models used for tauopathies and AD can shed light on the under-
lying molecular mechanisms of tau pathology and be used as screening platforms to unravel
novel genes and compounds leading to the development of novel therapeutic interventions.

2. Parkinson’s Disease

PD is the second most frequent neurodegenerative disorder, affecting around two out
of 100 people over 65 years of age, and is most likely caused by interactions among genetic,
epigenetic and environmental factors [79,80]. Notably, exposure to toxicants, such as
pesticides (rotenone and paraquat), 1-methyl-4-phenylpyridinium (MPP+) and neurotoxins
such as 6-hydroxydopamine (6-OHDA), has been linked to PD development [81,82]. In
particular, rotenone, which acts as an inhibitor of mitochondrial complex I, has already
been studied in nematodes [83,84]. Nematodes treated with rotenone displayed loss of
dopaminergic neurons, growth and motility defects as well as mitochondrial deficits [83,84].
However, a novel synthesized compound, mitochonic acid 5 (MA-5) derived from plant
hormone Indole-3-Acetic Acid (IAA), has been shown to significantly reduce mitochondrial
ROS elevation and degeneration of dopaminergic neurons, probably through its interaction
with mitofilin as previously shown in mammalian cells [81–91]. Symptoms of PD include
motor and non-motor symptoms, such as rest tremor, bradykinesia, rigidity, loss of postural
reflexes and depression, and can be mostly traced to the loss of dopaminergic neurons
in the substantia nigra, which leads to a reduction in dopamine release [79,80]. At the
cellular level, PD is characterized by the presence of Lewy bodies containing mostly
alpha-synuclein (α-syn) [92]. However, many of the molecular pathways underlying PD
pathology remain elusive.

2.1. α-Synuclein Models

The α-syn protein is normally found at presynaptic terminals and the nucleus of
neurons, mostly abundant in the brain, and encoded by the PARK1/SNCA locus in hu-
mans [93]. Although C. elegans has orthologs of many PARK genes, these do not include
PARK1/SNCA [81]. Thus, nematode α-syn models are based on the neuronal or non-
neuronal expression of wt or disease-associated forms of the human α-syn. Interestingly,
pathological phenotypes of such models are mostly influenced by the expression pattern of
α-syn, rather than the type of protein (wt or disease-associated) [94]. Indeed, overexpres-
sion of α-syn pan-neuronally or in motor neurons causes age-independent motor defects.
In contrast, these defects are not observed when α-syn is expressed only in dopaminergic
neurons [94]. However, neuron loss is induced by pan-neuronal or dopaminergic neuron-
specific α-syn expression, but not by its expression in motor neurons [94]. Moreover, such
heterologous expression of α-syn has been shown to result in the formation of aggregates
that resemble inclusions of human PD neurons, thus providing versatile platforms for
the discovery of aggregation modulators. For instance, accumulation of both wt and mu-
tant α-syn has been observed in the cell bodies and neurites of dopaminergic neurons in
C. elegans [95].
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Similarly, age-dependent formation of aggregated α-syn inclusions has been reported
in worms expressing human α-syn tagged with yellow fluorescent protein (YFP) in body
wall muscle cells [96]. An RNAi screen on this model uncovered 80 genes that cause
premature accumulation of inclusions, when knocked down. A significant number of these
genes are related to ageing, while 49 out of 80 identified genes have a human ortholog [96].
In this context, it was found that loss of tdo-2 in C. elegans, coding for the tryptophan 2,3-
dioxygenase (TDO-2), leads to lifespan extension, decreased α-syn toxicity and augmented
tryptophan levels, indicating tryptophan-dependent toxicity regulation by TDO-2 [97].
Likewise, an RNAi screen in worms expressing α-syn in dopaminergic neurons unveiled
five genes with potential neuroprotective roles. Most of them are genes correlated to vesicle
trafficking [98]. These results, combined with the neuroprotective effect of TOR-2 (the
nematode ortholog of human torsin family 1 member B) and mammalian Rab1A, a GTPase
involved in ER-to-Golgi transport, indicate a correlation between impaired ER-to-Golgi
vesicular transport and α-syn toxicity [99,100]. Moreover, the same model was used to dis-
play that heat preconditioning, mediated by the heat shock transcription factor HSF-1 and
the small heat-shock protein HSP-16.1, decreases the loss of dopaminergic neurons [101].
HSP-16.1 interacts with PMR-1 (plasma membrane-related Ca2+—ATPase 1), and thereby,
maintains Ca2+ homeostasis and prevents neuronal cell death [101]. Similarly, loss of CPS-6
(EndoG homologue in C. elegans) or depletion of the oleic acid (OA)-generating enzyme
stearoyl-CoA-desaturase (SCD) in these animals also leads to decreased dopaminergic
neurodegeneration, pointing to novel targets for PD treatment [102,103]. Notably, the
mechanisms mentioned above are evolutionarily conserved, as similar results have been
obtained from yeast, rodent and human neuronal models [103]. Finally, recent studies
showed that intestinal over-expression of α-syn mutants leads to mitochondrial accumu-
lation, excessive fragmentation and energetic stress, as well as increased activation of the
mitochondrial unfolded protein response (UPRmt), thus establishing a link between the
mitochondrial quality control system and α-syn toxicity [104].

2.2. LRRK2 Models

Leucine rich repeat kinase 2 (LRRK2) is a protein found mainly in the cytoplasm but
also interacts with the outer mitochondrial membrane [105]. Mutations in the LRRK2 gene
are the most common cause of PD, responsible for 4% of autosomal dominant cases [106].
Although the function of LRRK2 remains unknown, it has been associated with autophagy,
cytoskeletal activity and vesicular trafficking [106]. The ortholog of LRRK2 in C. elegans
(LRK-1) is localized in the Golgi apparatus and is expressed in muscle cells, neurons and
intestinal cells [107,108]. LRK-1 deficient nematodes demonstrate abnormal distribution of
synaptic vesicle proteins in neurons and display dopamine-specific behavioral defects [109].
Moreover, these worms exhibit impairments in the trafficking of the synaptic vesicles [110]
and suppress phenotypes of PTEN-induced kinase (pink-1) loss-of-function worms [111].
There are also several transgenic nematode models that express normal or mutant forms
of the human LRRK2 protein. Animals with pan-neuronal LRRK2 expression have been
used to demonstrate that mutant forms of the protein induce greater loss of dopaminergic
neurons compared to their wt counterparts [112]. Interestingly, dopaminergic neuronal
loss is rescued by kinase inhibitors, suggesting that LRRK2 inhibition could be a possible
treatment for PD [112,113]. Congruently, dopaminergic-specific overexpression of LRRK2
human variants has been shown to trigger age-dependent neuronal death, behavioral
and locomotion defects, as well as a decrease in dopamine levels [107]. In conclusion,
LRRK2 C. elegans models recapitulate several pathological features of PD, highlighting
them as ideal platforms to investigate the molecular mechanisms that regulate LRRK2-
mediated pathology.

3. Amyotrophic Lateral Sclerosis (ALS)

ALS is a fatal neurodegenerative disease and the most common motor neuron disorder;
it shows an incidence between 0.6 and 3.8 per 100,000 persons every year and a prevalence
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between 4.1 and 8.4 per 100,000 individuals [114]. ALS is characterized by the degeneration
of motor neurons in the spinal cord, motor cortex, corticospinal tracts and brainstem,
leading to progressive muscular paralysis [115]. The majority of ALS cases are sporadic,
with unknown etiology, while only about 10% are familial [116]. C. elegans has been used
to investigate genes that play a crucial role in both sporadic and familial forms, including
chromosome 9 open reading frame 72 (C9ORF72), superoxide dismutase 1 (SOD1), TAR
DNA-binding protein (TDP43) and fused in sarcoma (FUS).

3.1. C9ORF72 Models

Expansions of GGGGCC hexanucleotide repeat in the C9ORF72 gene are the most
prevalent genetic cause of ALS in Europe and North America [117,118]. Although the mech-
anism of this expansion is still unknown, a possible explanation is that AUG independent
translation of GGGGCC leads to the formation of the respective dipeptide repeats [119]. In-
deed, a C. elegans model expressing arginine-containing dipeptides exhibits age-dependent
toxicity in muscle cells and motor neurons [120]. Interestingly, the pathogenetic thresh-
old of the repeats that is required for the disease development and progression has not
been identified. In most cases, ALS patients have hundreds of repeats [117,121]. Worms
with loss-of-function mutations in the C9ORF72 ortholog alfa-1 gene demonstrate age-
dependent motility impairments, which eventually result in paralysis and GABAergic
stress-dependent neurodegeneration [122]. Moreover, alfa-1 mutants exhibit endocytosis
defects that can be partially rescued by the expression of the human wt C9ORF72 pro-
tein, revealing a degree of functional conservation [123]. However, since alfa-1 does not
carry hexanucleotide repeat expansions, transgenic nematode models are mainly used to
study human C9ORF72 toxicity. The use of such models has revealed that the transgenes
containing 29 GGGGCC repeats result in early-onset paralysis and lethality, in contrast to
those with 9 repeats, which had a less severe impact [124]. Moreover, a forward genetic
screening in such transgenic animals revealed two genes that suppress C9ORF72-induced
toxicity [124].

3.2. SOD1 Models

The SOD1 enzyme catalyzes the detoxification of superoxide. Although SOD1 muta-
tions account for about 2% of familial ALS cases [125], the underlying toxicity mechanism
remains to be uncovered [126]. C. elegans has five genes (sod-1, sod-2, sod-3, sod-4 and sod-5)
coding for superoxide dismutases [127]. Nevertheless, SOD1 toxicity has been mainly
studied in humanized transgenic worms. In fact, worms expressing normal human SOD1
in neurons and/or in muscles demonstrate a normal phenotype [128,129]. By contrast,
muscle-specific or pan-neuronal expression of SOD1 variants in C. elegans leads to ALS-like
phenotypes. More specifically, these worms demonstrate increased protein aggregation, im-
paired locomotion, susceptibility to oxidative stress, synaptic deficiencies, axonal guidance
defects and age-dependent paralysis [128–130]. The study of various single-copy SOD1
knock-in worm models, which reproduce mutations of ALS patients, revealed that both loss
and gain of SOD1 function can promote the pathogenesis of ALS in distinct neurons [131].
Notably, loss-of-function mutations affect glutaminergic neurons, while SOD1 gain of
function has a selective impact on cholinergic neurons [131]. Moreover, emerging findings
indicate that metformin can protect nematodes expressing mutant SOD1, by activating
autophagy, and cause a DAF-16-mediated lifespan extension [132].

3.3. TDP43 Models

TDP43 is a DNA/RNA-binding protein that regulates transcription, alternative splic-
ing and subsequently gene expression [133]. In ALS-affected neurons, TDP43 is hyper-
phosphorylated, ubiquitinated, truncated and localized in cytoplasmic inclusion bod-
ies [134,135]. The ortholog of TDP43 in C. elegans is TDP-1, which is expressed in neurons,
body wall muscle cells and the pharynx [136]. TDP-1 depleted nematodes demonstrate
locomotion, fertility and growth defects, as well as increased sensitivity to oxidative and
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osmotic stress [136,137]. On the other hand, TDP-1 deficiency ameliorates proteotoxicity in
various C. elegans models, including TDP43 and SOD1 expressing animals, and extends the
lifespan of the nematode in a DAF-16/FOXO-dependent manner [136,137]. Moreover, the
genetic ablation of TDP-1 rescues neuronal degeneration in a C. elegans model that overex-
presses mutant TDP43 in GABAergic neurons [138]. Conversely, overexpression of TDP-1
by its native promoter reduces nematode lifespan, while neuronal overexpression of either
endogenous TDP-1 or mutant human TDP43 causes uncoordinated locomotion, abnor-
mal synaptic morphology, degeneration of GABAergic motor neurons and age-dependent
motor dysfunction [138–140], indicating a dose-dependent effect of TDP43 on neuronal
function and survival.

3.4. FUS Models

FUS encodes for an RNA/DNA binding protein and is found to be localized in the
nuclear compartment and involved in the regulation of various cellular processes [141,142].
On the other hand, ALS-associated mutant FUS is accumulated in the cytoplasm and forms
neurotoxic ribonucleoprotein granules and inclusions [143,144]. At the molecular level,
mutant FUS triggers dysregulation of RNA processes, such as splicing, transcription and
stabilization, leading subsequently to neuronal dysfunction [145–147].

The homolog gene of human FUS in C. elegans is fust-1 and has been shown to be
involved the regulation of neuronal integrity, synaptic function, lifespan and stress re-
sponses [148]. Even so, transgenic C. elegans models expressing human FUS are pref-
erentially used in order to recapitulate ALS phenotypes. As a result, many nematode
strains expressing either full length of the wt FUS protein or ALS-associated FUS variants
have been generated. Such variants include both missense mutations (e.g., R514G, R521G,
R522G, R524S, P525L) and truncations (e.g., FUS513 and FUS501), associated with the
varying clinical severity of ALS patients [149]. Although worms expressing wt human FUS
pan-neuronally are normal, expression of mutant forms results in the formation of cytoplas-
mic inclusions, age-dependent motor dysfunction and reduced lifespan [149]. Moreover,
C. elegans models expressing different FUS variants display a range of phenotypic sever-
ity as seen in humans [150]. Indeed, nematodes expressing mutant FUS (FUSS57∆) in
GABAergic neurons exhibit neuronal dysfunctions, motor deficits and neurodegeneration,
symptoms that are reminiscent of human ALS phenotypes [151]. Likewise, transgenic
worms expressing an aggregation-prone FUS variant in GABAergic neurons display neu-
rodegeneration, synaptic impairment and paralysis [138], while overexpression of an
ALS-associated FUS mutation (FUS501) was recently reported to disrupt neuromuscu-
lar junction (NMJ) morphology, resulting in defective neuromuscular transmission and
synaptic deformation [152]. Taken together, these findings indicate that C. elegans is an
excellent model for biological and medical research to delineate the molecular mechanisms
of ALS pathogenesis.

4. Huntington’s Disease

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder
characterized by motor, cognitive and psychiatric problems. HD is caused by a CAG
expansion in the huntingtin (HTT) gene, resulting in the production of a mutant HTT
protein that carries extended polyglutamine repeats (polyQs) in its N-terminus, triggering
neuronal death [153,154]. Although there is no HTT ortholog in C. elegans, several HD
models have been generated, carrying variable lengths of polyQ-repeats with or without
fusion with fluorescent proteins. These models have been widely used to monitor the
accumulation of polyQ tracts upon challenging conditions and during ageing in vivo. Both
worms and humans require at least 35 to 40 polyQ repeats for the onset of aggregation,
and it has been shown that in both cases the length of polyQ tracts is correlated with the
age of onset and the severity of pathological features [155,156]. Particularly, transgenic
nematodes expressing polyQ2–Q150 in ASH neurons showed that long polyQ tracts (Htn-
Q150) trigger age-dependent protein aggregation and gradual neuronal loss [157]. The



Biomolecules 2023, 13, 478 10 of 21

expression of HTT N-terminus with 19, 88 or 128Qs in mechanosensory neurons further
validated the length-dependent nature of polyQ toxicity, as Q128-expressing animals show
axonal abnormalities and increased protein aggregation [158].

C. elegans HD models have been used to identify potential modulators of polyQ aggre-
gation and toxicity. To this end, the cytoprotective effect against polyQ tracks of several nat-
urally occurring and synthetic chemical compounds, such as Rutin and diphenyl diselenide
(Ph2Se2), have been identified using the C. elegans HD models. Rutin supplementation
promoted polyQ aggregate reduction, neuroprotection and lifespan extension through
elevated autophagy, insulin/IGF1-like signaling (IIS) modulation [159] and increased an-
tioxidant activity [160]. Further supporting the beneficial role of autophagy, Htn-Q150-
or polyQ40-expressing nematodes displayed aberrant accumulation of the toxic polyQ
aggregates, leading subsequently to increased neurodegeneration upon autophagy inhi-
bition [161]. Chronic administration of Ph2Se2 resulted in diminished polyQ aggregation
and subsequent neuroprotection via a molecular mechanism that is dependent on DAF-16,
HSP-16.2 and SOD-3 to enhance antioxidant capacity and proteostasis [162]. Interestingly,
glucose supplementation reduced the misfolded proteins and delayed neurodegeneration
in polyQ128-expressing nematodes in a DAF-16 dependent manner [163]. During the last
decade, nematode HD models have been used as screening platforms, resulting in the char-
acterization of synthetic and/or natural bioactive agents to tackle polyQ cytotoxicity and
neurodegeneration [155–159]. In addition to the neuronal polyQ-expressing nematodes,
several C. elegans HD models have been generated to express polyQ peptides fused with
fluorescent proteins in body wall muscle cells and, thereby, to assess the rate of polyQ
aggregate formation. Such a newly developed HD model expressing polyQ128 tagged with
YFP demonstrated increased cytotoxicity, motor deficits and reduced lifespan [164]. Recent
studies showed that the polyQ expression in body wall muscle cells mediates increased
mitochondrial network fragmentation, indicating an intricate association between polyQ
toxicity and mitochondrial dynamics [165,166]. Interestingly, body wall muscle-expressing
polyQ nematodes displayed improved locomotion upon knocking down several genes that
reduced mitochondrial fragmentation [165,166]. In conclusion, C. elegans is a promising
model organism for studying HD and other polyglutamine-based diseases [167].

5. Cockayne Syndrome

Cockayne syndrome (CS) is a rare autosomal recessive neurodegenerative disorder
with an incidence of 2.5 cases per million [168]. The syndrome is characterized by premature
ageing, dwarfism, mental retardation, microencephaly and severe photosensitivity. CS is
caused by mutations in the ERCC6 and ERCC8 genes coding for Cockayne Syndrome group
B protein (CSB) (accounting for 80% of cases) and Cockayne Syndrome group A protein
(CSA) (accounting for approximately 20% of the cases), respectively. These genes play a
vital role in the transcription coupled (TC) nucleotide excision DNA repair mechanism
(NER) by initiating the cascade of events that occurs upon RNA polymerase II stalling
and serves to remove helix distorting lesions, such as UV-induced cyclobutane pyrimidine
dimers (CPDs) [169–171]. CSA and CSB proteins are evolutionarily conserved across
species, and mutations in csa-1 and csb-1, homologues of ERCC6 and ERCC8 human genes,
respectively, have already been characterized in C. elegans, with CSA-1 and CSB-1 deficient
nematodes displaying developmental growth retardation and lifespan shortening upon UV
treatment [172–174]. Moreover, loss of csb-1 causes reduced somatic tissue functionality
and mechanosensory and neuronal defects along with progressive neurodegeneration
upon UV-induced DNA damage [175]. Notably, in both human cells and C. elegans, CSB-
1/CSB deficiency promotes accumulation of dysfunctional mitochondria and mitochondrial
network hyperfusion, leading to altered energy metabolism [175]. Since C. elegans has many
common disease manifestations with human pathology of CS, this model can shed light on
the underlying role of DNA damage in age-associated progressive loss of neuronal integrity.

Conversely, CSA-1 seems dispensable for global genome nucleotide excision repair
mechanisms (GG-NER), which act throughout the entire genome but target mostly helix
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distortions [171,176], since UV irradiation of csa-1 mutant worms has no significant effect on
germline maintenance, which requires active GG-NER [177]. However, CSA-1 participates
in the regulation of TC-NER, which is vital in the transcriptionally hyperactive context
of early larval development and cooperates with CSB-1 and XPC-1 to repair UV-induced
DNA lesions [177]. As result, csa-1 mutants are more sensitive to UV irradiation during
larval stages and exhibit developmental defects and growth arrest, thus providing a pow-
erful system to further explore and define the role of TC-NER during development and
ageing [173]. Moreover, these observations indicate the requirement for TC-NER during
development, and GG-NER in proliferating cell types is conserved in C. elegans, rendering
nematode models suitable for the study of distinct developmental pathologies that are
observed in CS patients and the investigation of the differential utilization of the two NER
branches during development.

6. Autosomal Dominant Optic Atrophy (ADOA)

Autosomal Dominant Optic Atrophy (ADOA) is a rare genetic neurodegenerative
disease that causes progressive and irreversible loss of vision in humans. At the molecular
level, ADOA is caused by mutations in optic atrophy 1 (OPA1), an inner mitochondrial
membrane protein that is implicated in the process of mitochondrial fusion [178–180].
Recent studies utilized C. elegans as an animal model for ADOA to understand the patho-
physiological mechanisms of the disease. Mutations in the OPA1 homolog gene eat-3, or
heterologous expression of mutant human OPA1K301A, lead to the accumulation of au-
tophagosomes and mitochondrial dysfunction, ultimately causing decreased mitochondrial
content in axons of GABAergic neurons, neuronal degeneration and impaired defeca-
tion cycle. Interestingly, autophagy inhibition restores axonal mitochondrial density and
downstream pathological manifestations [178]. Moreover, overexpression of OPA1K301A or
EAT-3 deficiency triggered excessive and uncontrolled Ca2+-dependent mitophagy, lead-
ing to reduced mitochondrial content in axons, a response that is tightly dependent on
Ca2+calcineurin-AMPK signaling cascade [181]. Congruently, Ca2+ chelation restores the
defective autophagosomal and mitochondrial distribution in neuronal processes [181]. All
of these findings, in combination with the promising results from rodents, underscore
that inhibition of excessive autophagy/mitophagy and the modulation of AMPK activity
could lead to the development of novel therapeutic interventions to improve or even rescue
the visual deficits in ADOA patients. Interestingly, accumulating evidence suggests that
mitochondrial dysfunction and mitophagy impairment are hallmarks of multiple neurode-
generative diseases [182], implying that such insights into the molecular mechanism of
ADOA pathogenesis and the contribution of autophagy could also apply to the treatment
of other neurodegenerative diseases.

7. Concluding Remarks

Despite the benefits of C. elegans for modeling human neurodegenerative diseases,
some limitations of this model should be considered. The nematode has a simple nervous
system, without myelin sheaths, and lacks many mammalian anatomical features, including
a circulatory system and blood–brain barrier [183]. In addition, C. elegans does not have
a first-pass liver metabolic pathway or a kidney that filters blood [183]. Although such
limitations render C. elegans unable to completely summarize the pathophysiology of
human neurodegenerative diseases, nematode models carry various benefits that are useful
for this field of research (Figure 2). The ease of laboratory culture and manipulation, along
with the short life cycle, make this model cost-effective and less time-consuming compared
to others. Moreover, the application of unbiased forward and reverse genetic screening
approaches, as well as its high susceptibility to RNAi and transgenesis, establish C. elegans
as a malleable experimental tool. An additional advantage of the worm is found in its
transparent body structure, which enables the tracking of fluorescent markers in vivo
and the assessment of cellular and physiological processes [184]. Therefore, modeling a
human disease in C. elegans allows the investigation of complex molecular pathways and
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the identification of their components. Last but not least, the nematode has no bioethical
limitations, thus allowing the scientific community to implement fast-track experimental
protocols and interventions that could not be applied to other animal models.
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As a result, recent years have seen a significant increase in the use of C. elegans as a
high-throughput screening platform for drug discovery [185–187]. This approach has led
to the identification of several chemical compounds and/or small molecules with poten-
tial therapeutic benefits against neurodegenerative disorders [188]. The most renowned
examples of such discoveries include the potential of using α-Methyl-α-phenylsuccinimide
(MPS) as a treatment for TDP43-related proteinopathies, the identification of neuroleptics
as promising anti-ALS compounds that stabilize neuromuscular transmission, and the
suggestion that LRKK2 inhibitors can be used as effective drugs against PD [113,189,190].
Likewise, nematode models have been extensively used for the in vivo validation of anti-
neurodegenerative properties of drugs, suggested by in vitro assays and/or screens in
unicellular organisms. Such a workflow has been successfully applied to uncover the bene-
ficial effect of clioquinol (CQ) on Aβ aggregation and toxicity, as well as in the discovery
of SynuClean-D, CNS-11 and CNS-11g, small compounds that inhibit α-syn aggregation
and mitigate its toxicity, among other instances [191–193]. Moreover, the development
of microfluidics devices and the recent integration of machine learning algorithms have
provided additional improvements to nematode-based drug discovery methodologies by
facilitating the design, execution and analysis of more elaborate screens. Such advanced
approaches have led to the identification of novel substances with therapeutic potential,
such as the FDA-approved clinical compounds tofranil, dronedarone, bendrofluazide
and buspar, which hold promise as anti-HD drugs, enasidenib, ethosuximide, metformin
and nitisinone as candidates for late PD treatment, as well as the natural compounds
Kaempferol and Rhapontigenin, which induce mitophagy and improve cognition in AD
models [194–196].

Finally, the powerful genetics of C. elegans have contributed immensely to the unveil-
ing of molecular mechanisms that underly the activity of candidate drugs, as well as to
the discovery of key endogenous molecules and processes that are involved in disease
pathogenesis and consist of potential targets for therapeutic interventions. Such discoveries
include the function of UPRER as a modulator of tau aggregation, the participation of SUT-1
and SUT-2 in the activation of tau, the protective effect of the glycolytic enzyme GPI against
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α-syn toxicity, the tendency of dopamine to exacerbate α-syn induced neurotoxicity, as
well as the nature of autophagy and mitophagy as substantial factors in the pathogenesis
of PD and other neurodegenerative disorders [72–74,98,197–201]. Overall, the aforemen-
tioned advantages establish C. elegans as a powerful and versatile preclinical model, with
a great contribution to the understanding of the pathophysiological mechanisms of age-
associated neurodegeneration.
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