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ABSTRACT The results of the second Critical
Assessment of Fully Automated Structure Predic-
tion (CAFASP2) are presented. The goals of CAFASP
are to (i) assess the performance of fully automatic
web servers for structure prediction, by using the
same blind prediction targets as those used at
CASP4, (ii) inform the community of users about the
capabilities of the servers, (iii) allow human groups
participating in CASP to use and analyze the results
of the servers while preparing their nonautomated
predictions for CASP, and (iv) compare the perfor-
mance of the automated servers to that of thehuman-
expert groups of CASP. More than 30 servers from
around the world participated in CAFASP2, cover-
ing all categories of structure prediction. The cat-
egory with the largest participation was fold recog-
nition, where 24 CAFASP servers filed predictions
along with 103 other CASP human groups. The
CAFASP evaluation indicated that it is difficult to
establish an exact ranking of the servers because
the number of prediction targets was relatively
small and the differences among many servers were
also small. However, roughly a group of five “best”
fold recognition servers could be identified. The
CASP evaluation identified the same group of top
servers albeit with a slightly different relative or-
der. Both evaluations ranked a semiautomated
methodnamedCAFASP-CONSENSUS, that filed pre-
dictions using the CAFASP results of the servers,
above any of the individual servers. Although the
predictions of the CAFASP serverswere available to
human CASP predictors before the CASP submis-
sion deadline, the CASP assessment identified only
11 human groups that performed better than the
best server. Furthermore, about one fourth of the
top 30 performing groups corresponded to auto-
mated servers. At least half of the top 11 groups
corresponded to human groups that also had a
server in CAFASP or to human groups that used the
CAFASP results to prepare their predictions. In
particular, the CAFASP-CONSENSUS group was
ranked 7. This shows that the automated predic-
tions of the servers can be very helpful to human

predictors. We conclude that as servers continue to
improve, they will become increasingly important
in any prediction process, especially when dealing
with genome-scale prediction tasks. We expect that
in the near future, the performance difference be-
tween humans and machines will continue to nar-
row and that fully automated structure prediction
will become an effective companion and comple-
ment to experimental structural genomics. Proteins
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INTRODUCTION

In this postgenomic era, structure prediction, as many
fields in modern biology, is undergoing a radical change: it
is being transformed from being an art mastered by only a
few expert-artists to a computational research area being
applied by many non-expert predictors. The need for
automatic structure prediction has never been more evi-
dent, as researchers realize that in the foreseeable future
not all the protein structures will be solved, despite the
number of worldwide structural genomics initiatives.1

Paradoxically, as the number of known structures in-
creases, the number of sequences that biologists expect to
model increases. The utility of structural genomics will be
achieved only if automated, reliable tools succeed to model
most of the proteins closely and distantly related to
proteins of known structures. What non-expert biologists
need is to be able to apply automatic tools for their
prediction needs, and on a large, genomic scale. In addi-
tion, as we gain understanding in protein modeling, it has
become clear that there is little use of the expertise of
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human artist predictors, if it cannot be reproduced and
automated. Assessing the performance of automated struc-
ture prediction is thus essential to learn what the capabili-
ties and limitations of the methods alone are. In addition,
learning how much better than programs human expert
predictors are is important to identify further directions of
improvements in the automated methods.

We present here the results of the second Critical
Assessment of Fully Automated Structure Prediction
(CAFASP2). CAFASP was created in 1998,2 as a result of
the realization of many participants of CASP33 that a
significant amount of human intervention was involved in
the prediction process. Consequently, it became clear that
the CASP experiments3 were assessing the performance of
human teams using programs and that it was not possible
to measure the capabilities of the programs alone.
CAFASP1 was a small experiment carried out after CASP3,
with only a handful of participating fold recognition serv-
ers. It was a useful experiment that helped pave the way
toward CAFASP2.

In CAFASP2 the participants are fully automatic web
servers covering various aspects of protein structure pre-
diction, and the assessment is carried out over automati-
cally produced models without the human expert interven-
tion allowed (but not required) at CASP. CAFASP is a
parallel experiment to CASP, run on the same prediction
targets as those of CASP4. Thus, the CASP/CAFASP
marriage provides the unique opportunity of being able to
compare models produced by human experts with those
produced by fully automatic tools. To avoid the possibility
that a particular human group may perform better at
CASP only because it had better access to available
servers, all the automated predictions of the CAFASP
servers were made publicly available long before the
human predictions were filed to CASP. Thus, CAFASP
allowed human predictors to analyze, use, and possibly
improve the servers’ results when filing their predictions.
Their challenge was thus to produce more accurate models
than those produced by the servers. Because of this, a
direct comparison of the predictions filed by programs
versus those filed by human groups cannot be completely
fair, but it still enables us to provide an indication of how
much human expert intervention may contribute to a
better prediction.

A secondary goal of CAFASP2 was to achieve full
automation also in the assessment process. This led to the
development of evaluation methods that can be applied in
large-scale experiments.4 Thus, each model submitted to
CAFASP underwent two independent evaluations: one
carried out by the CAFASP automated methods and the
other by the CASP human assessors. These independent
evaluations also provide a unique opportunity to assess
the capabilities of automated evaluation tools.

Last, but not least, CAFASP is also extremely valuable
for the users of the servers; it provides an indication of the
performance of the methods alone and not of the “human
plus machine” performance assessed in CASP. This infor-
mation may aid non-expert users in choosing which pro-

grams to use and in evaluating the reliability of the
programs when applied to their specific prediction targets.

Our full automation goals are not meant to belittle or to
cast any doubt on the importance of the specialized
expertise in structure predictions nor in human assess-
ment capabilities. This work does not attempt to show that
automated prediction is better or more desirable than
“human expert plus machine” predictions. We believe that
a knowledgeable human will—for the foreseeable fu-
ture—do better (when using his expertise and time to
interpret the automated method’s results) than the auto-
mated method’s results alone. However, whatever is com-
putable by humans, if valuable, should be computable by
machines, so that it can be scalable and reproducible by
others. The challenge for bioinformaticians is to bring the
human expertise, when possible, into programs that can be
used by the wide community of users. Thus, the parallel
assessment of programs and human groups in the CASP/
CAFASP experiments is likely to result in significant
advances in the field.

MATERIALS AND METHODS

All the methodology, predictions, and evaluation results
are available through CAFASP’s web site at http://
www.cs.bgu.ac.il/�dfischer/CAFASP2. We present a brief
summary of the methodology applied in the following.

Automated Servers and Prediction Categories

More than 30 servers, covering the five prediction catego-
ries of structure prediction, registered at CAFASP2 (Table
I). The categories with the largest number of participating
servers were fold recognition and secondary structure
prediction, with 19 and 8 registered servers, respectively.
The other three categories, namely, contacts prediction, ab
initio, and homology modeling, had two or three registered
servers each. Brief descriptions of a selected number of
servers are included in the corresponding sections below.

Targets

CAFASP2 ran in parallel with CASP4, using the same
prediction targets. Targets were classified into two main
categories: homology-modeling (HM; 15 targets) and fold
recognition (FR; 26 targets). This classification was based
on whether PSI-BLAST5 found good matches to proteins of
known structure. If on convergence PSI-BLAST found a
hit to a PDB entry with a score better than 0.001, then the
target was considered to be an HM target; otherwise, it
was considered to be an FR target. All targets were used as
queries for all servers.

Filing the Predictions

On release of a prediction target, the CAFASP meta-
server (http://cafasp.bioinfo.pl) submitted the amino acid
sequence as a query to each of the CAFASP participating
servers. The servers’ replies were compiled during the
following 48 h, and these replies were stored at the
meta-server’s site. Servers that failed to provide results
within the 48 h were allowed to submit “late” predictions,
but these predictions were not considered valid, nor were
they taken into account in the evaluation.
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The servers’ predictions were made available at all
times at the meta-server’s site. Because the CASP dead-
line for submitting human group predictions was weeks
after the release of each prediction target, human CASP
participants could make extensive use of the servers’
results. Notice that because of the fast growth rate of the
sequence and structural databases, it was possible that
between the time the servers’ results were compiled and
the time of the CASP submission deadlines, some of the
targets became easier to predict. Despite this possibility,
and to ensure full automation, we did not resubmit the
targets to the servers by the CASP deadline, which re-
sulted, in that for some cases, the human versus machine
comparison was unfavorable for the servers.

For each target, up to five alternative models were
allowed (corresponding to the top five ranks of the server’s
output). The score a server received for a target was the
score for the top rank only, but all the submitted models
were evaluated.

Automated Evaluation Methods

All evaluations in CAFASP were carried out by fully
automated methods in each of the prediction categories.

These methods, briefly described in the corresponding
sections in Results, were announced before the experiment
began, so all participants knew how they would be evalu-
ated. All evaluation methods were made available via the
Internet.

RESULTS

Because the evaluation of each CAFASP category fo-
cuses on different aspects of structure prediction, we
present the CAFASP results separately for each of the five
categories of servers. Each of the evaluations were carried
out by the corresponding coordinators and the following
are their independently written reports.

Fold Recognition and Alignment Accuracy
Evaluation method

The evaluation method used in CAFASP2 was MaxSub,6

as stated by the published rules of CAFASP2 before the
experiment began (see http://www.cs.bgu.ac.il/~dfischer/
CAFASP2/evalr.html and http://www.cs.bgu.ac.il/~dfischer/
CAFASP2/evalrfr.html). MaxSub identifies the maximum
superimposable subset of C� atoms of a model and an
experimental structure and produces a single normalized

TABLE I. ProteinStructurePredictionServersRegistered atCAFASP2†

Fold Recognition
FFAS http://bioinformatics.burnham-inst.org/FFAS
SAM-T99 http://www.cse.ucsc.edu/research/compbio/
P-Map http://www.dnamining.com
loopp http://ser-loopp.tc.cornell.edu/loopp.html
123D� http://123D.BioInfo.PL/run123D�.html
rpfold http://imtech.chd.nic.in/raghava/rpfold
M/GenTHREADER http://www.psipred.net
3D-PSSM http://www.bmm.icnet.uk/servers/3dpssm
FUGUE http://www-cryst.bioc.cam.ac.uk/�fugue
ssPsi http://130.237.85.8/�arne
threadwithseq http://montblanc.cnb.uam.es
bioinbgu http://www.cs.bgu.ac.il/�bioinbgu/
Sausage http://rcs.anu.edu.au/�arussell/TheSausageMachine.html
PDB-Blast Psi-Blast run at http://bioinformatics.ljcrf.edu/pdb_blast

Secondary Structure Prediction
PHD/PROF (Rost) http://dodo.cpmc.columbia.edu/predictprotein
SSpro http://promoter.ics.uci.edu/BRNN-PRED
SAM-T99 http://www.cse.ucsc.edu/research/compbio/
PSSP http://imtech.ernet.in/raghava/pssp
Jpred2 http://jura.ebi.ac.uk:8888
Pred2ary http://www.cmpharm.ucsf.edu/�jmc/pred2ary/
PROF (King) http://www.aber.ac.uk/�phiwww/prof
Nanoworld N.A.
Psipred http://www.psipred.net

Contacts Prediction
CORNET http://prion.biocomp.unibo.it/cornet.html
PDG_contact_pred http://montblanc.cnb.uam.es:8081/pdg_contact_pred.html

Ab initio
Isites http://honduras.bio.rpi.edu/�isites/ISL_rosetta.html
Dill-Ken http://www.dillgroup.ucsf.edu/�kdb

Homology Modeling
SDSC1 http://c1.sdsc.edu/hm.html
FAMS http://physchem.pharm.kitasato-u.ac.jp/FAMS_S
3D-JIGSAW http://www.bmm.icnet.uk/people/paulb/3dj

†For further details see http://cafasp.bioinfo.pl/server/
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score that represents the quality of the model. MaxSub is a
“sequence-dependent” assessment measure and produces
scores in the range of 0.0–1.0 (Fig. 1), where 0.0 is an
incorrect model, and 1.0 is a perfect model. A MaxSub
score � zero was considered to be a correct prediction.
MaxSub is available through the internet at http://
www.cs.bgu.ac.il/~dfischer/MaxSub/MaxSub.html.

MaxSub has been extensively tested,4,6 and a compari-
son between MaxSub’s ranking and that of the assess-
ments reported at CASP33 showed that good agreement
was found for the more accurate models and for the better
groups. The top five groups ranked by using the fully
automated MaxSub were also the top five groups ranked at
CASP3. Nevertheless, and as expected from any evalua-

tion method, some differences were observed among the
medium to poor models and groups, similar to the differ-
ences among the two CASP3 reports.3 These differences
may be due to the slight differences between the groups, to
the different criteria used, to possible weaknesses in
MaxSub, and to the subjectivity in the human assessment
used in CASP. From this comparison and from the use of
MaxSub in the LiveBench experiments4 (see the Live-
Bench-2 report in this issue), we concluded that a measure
such as MaxSub is suitable for the automatic evaluation of
models.

As preannounced in the CAFASP2 rules published be-
fore the contest, “participation in CAFASP-2 implied accep-
tance of these procedures and rules.” After the CAFASP2

Fig. 1. Examples of good server predictions as identified by
MaxSub.6 a: Model no. 5 from server 220 on target T0114. b: Model no.
1 from server 109 on target T0109. c: Model no. 1 from server 132 on
target T0092.
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rules were announced, other fully automated evaluation
methods have been developed. These include the sequence-
dependent and -independent measures called lgscore and
lgscore24 and an experimental contact map overlap mea-
sure called touch (unpublished, but see http://cafasp.bioinfo.
pl/touch/ for more details). For comparison and verification
purposes, but not for official assessment purposes, these
new additional evaluation methods were also applied. In
addition, and only for comparison purposes, we also ap-
plied a CAFASP1-like evaluation and other variations of
MaxSub by using different thresholds and normalizations,
or considering the best of the five models submitted. All
these additional evaluations (not shown) arrived at very
similar results to those reported below. Because the main
aim of this report is to assess the performance of prediction
servers, and not the performance of evaluation methods,
here we concentrate on the former and refer the interested
reader to CAFASP’s url at http://www.cs.bgu.ac.il/~dfischer/
CAFASP2/ALevaluation/additional.html, where full de-
tails of the additional evaluations are listed. For a detailed
comparison of many evaluation methods see ref. 37.

Only models number one for each target and server were
considered in the official CAFASP-2 evaluation. For each
category (HM and FR) the total score of a server was the
sum of the MaxSub scores received for each target. To
smooth the effect of a small number of targets and to
account for the fact that the differences between a number
of servers is only slight, we computed the ranks that each
server achieves by considering the N different subsets of
N-1 targets both for the 15 HM targets and for the 26 FR
targets. For each server, the best rank achieved in any of
the N subsets was registered and is reported. This resulted
in having more than one server at a given rank.

All servers producing sequence-structure alignments or
coordinates for at least the C� atoms were evaluated here.

Evaluation results

Two aspects of the servers’ performance were evaluated:
sensitivity and specificity.
Sensitivity results. Table II shows the top performing

servers for the HM and FR targets. Detailed tables and
evaluation results considering all models per target are
available in the corresponding tables from our main web

page. Table II shows that five servers (FFAS, BIOINBGU
and some of its different components, FUGUE, m- and
GenThreader and 3D-PSSM) appear in the first three
ranks in both sets of targets, whereas SAM-T99 appears at
the top only in the HM targets. The top ranking servers
had no difficulty in producing correct models for all 15 HM
targets. However for the FR targets, the best of the servers
succeeded to produce correct models for only five.

Within each set of targets, and after analyzing the
servers’ results, a further division into easy and hard
targets was carried out (see CAFASP’s url). This division
was carried out qualitatively and rather arbitrarily, mainly
based on the number of servers having correct predictions
with confident scores. To obtain a clearer picture of the
servers’ capabilities, we evaluated the servers’ perfor-
mance on the easy (5) and hard (21) FR targets separately.
The results of this evaluation show that most of the points
the servers received came from the success within the easy
targets and that the largest number of correct predictions
by any individual server among the hard targets was only
two. The overall scores that the servers received came from
up to six targets. That is, the predictions of all other
targets were all considered incorrect and contributed no
points to the score. This small number of correct answers
makes the exact ranking of the individual servers difficult
because of the relatively large variations that can appear
in such a small set.

In summary, it is clear that according to the MaxSub
evaluation criteria, good models were predicted for all 15
HM targets and for the 5 easy FR targets. However, there
was much lower success among the 21 hard FR targets
(which included 4 new folds). The main evaluation above
considered on-time models no. 1 only. Consequently, good
predictions obtained by the servers at ranks �1 cannot be
appreciated. Examples of such good predictions are model
no. 2 from server 132 on target T0108, model no. 3 from
server 389 on target T0110, model no. 5 from server 220 on
target T0114, and model no. 2 from server 108 on target
T0121, among others (see Fig. 1). These server predictions
are among the best predictions for the corresponding
targets (including those filed by human groups). This
illustrates that often servers are able to produce good
predictions at higher ranks; obviously, the question is how

TABLE II.MainCAFASP2EvaluationResults

Target set No. targets
Max.

correcta

RANK

First Second Third

Homology Modeling Targets 15 125 BIOINBGU (093 106 107b) BIOINBGU (108) FUGUE
3D-PSMM SAM-T99 FFAS
MGenThreader GenThreader

Fold Recognition Targets 26 5 FFAS FUGUE 3D-PSMM
BIOINBGU (093 106 108) GenThreader MGenThreader

aThe maximum number of correct predictions obtained by an individual server. A number of servers filed “late” predictions after the allowed 48-h
period. These were not taken into account in the above evaluation. However, if these late predictions were considered, then a number of servers
would rank close to the servers listed in the table. A case in point is that of the 123D� server, which had a number of very good (but “late”)
predictions (see the CAFASP web site for details).
bThe BIOINBGU server reports five different results, one for each of its components; the numbers in parenthesis give the CASP ID of the
corresponding components.
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can these higher ranked predictions automatically be
identified (see below).
Human versus machine comparison. The human

groups predictions filed at CASP were not made available.
Consequently, we could not evaluate the CASP predictions
with our automated methods. Thus, the performance
comparison of servers and humans presented here is
mainly based on the CASP assessors’ evaluations. which
also evaluated the CAFASP results along with the human
predictions filed at CASP. When the human predictions
become available from the CASP web site, interested
readers can obtain the results of the automatic evaluation
by using our web facilities.

In addition, this parallel evaluation of the CAFASP
results also enables us to compare the CAFASP automated
evaluation with that of the CASP assessor. However,
because of the different evaluation methods used and
because of the slightly different sets of targets considered,
these two evaluations are not directly comparable. For
example, the second domain of target T0096 was consid-
ered in CAFASP to be a HM target, whereas the CASP fold
recognition assessor included it in his evaluation. The
CAFASP evaluation deliberately excluded two targets
(T0095 and T0124) that could not be evaluated properly
with our automated tools. Finally, the domain partitioning
of some of the multidomain targets was different (the exact
domain definitions and the targets considered at CAFASP
are listed in the CAFASP web site). Nevertheless, a rough,
qualitative comparison of the rankings assigned by these
two independent evaluations may still be valuable, if the
above differences and limitations are taken into account.

Table III shows the ranks and scores that the CASP
assessor assigned to the CAFASP servers, along with the
top performing human groups of CASP. The performance
analysis of the CASP groups is presented elsewhere by the
CASP assessor (see the assessor report in this issue). The
top CASP groups are shown here for comparison purposes
only. The names of the top performing servers are shown;
all other groups are listed with their CASP id number. The
last column of Table III shows the assigned ranks from the
CAFASP evaluation as shown in Table II.

Although the predictions of the CAFASP servers were
available to human CASP predictors before the CASP
submission deadline, only 11 human groups performed
better than the highest ranking server, 3D-PSSM. Never-
theless, the score of the top human group (41.0) is signifi-
cantly higher than that of 3D-PSSM (24.5), indicating that
the best human predictor at CASP clearly did much better
than the best server. We notice that at least half of the
human groups that ranked at the top 20 to 30 ranks
corresponded to human groups that also had a server in
CAFASP or to human groups that used the CAFASP
results to prepare their predictions. Some of the human
groups with servers succeeded in filing better predictions
than the servers, and others (within ranks � 12) did not.
In particular, the group in rank 7 corresponded to a
semiautomated method that filed consensus predictions by
using the CAFASP results of the servers. Notice that the
CAFASP-CONSENSUS group was assigned the rank of 0

to indicate that its performance was superior to the listed
rank 1; however, we used the “0” to also indicate that it
was not a fully automated CAFASP server participant.

Finally, Table III shows that many CAFASP servers are
able to produce more correct predictions than the standard
sequence comparison tool PSI-BLAST, which ranks at the
bottom (although not at the last rank) of the table.
However, the superiority of the servers cannot be estab-
lished on the basis of only their superior sensitivity. The
servers’ specificities need also to be evaluated and com-
pared (see below).
Comparison of the CAFASP and CASP evalua-

tions. Both the automated CAFASP evaluation and that
of the human CASP assessor identified the same group of
top performing servers (the top eight servers identified by
the CASP assessor were ranked within the first three
places in the CAFASP evaluation), and both evaluations
ranked the CAFASP-CONSENSUS group above all indi-
vidual servers. However, it is clear that a number of
differences exist in the exact ranking of the top servers. As
noted above, these differences are due to the different

TABLE III. CAFASP2Automatic ServerEvaluationVersus
CASP4Assessor’sRankingofHumanGroups andServers

CASP
ranka

CASP
scorea Group IDb

CAFASP
rank

1 41.0 354-human
2 37.0 384-human
3 34.0 94-human (45)
4 33.5 126-human (12)
5 33.0 31-human (19)
6 30.5 88-human
7 27.0 359-CAFASP-CONSENSUS 0

…
12 24.5 132-3D-PSSM 3
…
19 21.0 395-FFAS 1
20 17.5 106-BIOINBGU-seqpprf 1
22 16.5 259-GENTHREADER 2
23 16.5 93-BIOINBGU-Consensus 1
27 15.5 260-MGENTHREADER 3
31 14.5 103-FUGUE 2
38 12.5 108-BIOINBGU-prfseq 1
45 11.5 111-SAM-T99
47 11.0 105-server
48 10.5 107-server
… servers and humans
90 1.5 158-PSI-BLAST 21
… servers and humans

113 455-server
127 279-human

aCASP rank and score as originally computed by the CASP assessor
(modified to include the correct FFAS predictions).
bGroup ID is the internal CASP id number assigned to each group. The
names of the top servers only follow the ID number; for the others,
“human” or “server” is appended to indicate whether the ID corre-
sponded to a CAFASP server or to a human CASP group. The
CAFASP-CONSENSUS group was not fully automated. To highlight
this and to indicate that its performance was above the best CAFASP
servers, its CAFASP rank is given as a “0.” The three top human
groups that also had a server registered at CAFASP are indicated by
listing in parenthesis the rank their server achieved.
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evaluation procedures applied, to the different domain and
target definitions, to the small size of the test set (no server
had more than five correct predictions), and to the small
differences in scores between the servers. For example,
ranks 20 and 27 are separated by only up to a difference of
2 score points; 2 points could be achieved by a moderately
correct prediction for a single target. Thus, the exact
ranking at each narrow score range may not be very
significant, and, consequently, slight differences are to be
expected from independent evaluations. Furthermore, this
also strongly suggests that rather than assigning gold,
silver, or bronze medals to the servers, the group of top
servers should be judged to have an approximately similar
performance, with the various servers having different
strengths for different targets. A similar conclusion has
been reached by the large-scale LiveBench evaluation
experiments,4 confirming the suggestion that these “best”
servers have a very similar performance.

Although the CAFASP and CASP rankings are not
directly comparable, there is one interesting difference
that may be worthwhile noticing: the difference of ranking
of the server 132 (in CAFASP-2 it ranked third, but the
CASP assessment ranked it first among the servers). By
analyzing these and other differences, we discovered that
some of them are attributable to the sequence dependency
or independency of the methods used. Because of the shifts
in the alignments, more score points are awarded by the
more lenient sequence-independent evaluations of the
CASP assessor and of lgscore-2 (see http://www.cs.bgu.ac.il/
~dfischer/CAFASP2/ALevaluation/additional.html). A dis-
cussion on whether a sequence-dependent or a sequence-
independent measure should be used is out of the scope of
this article; we refer interested readers to the references
listed above for more details.
Specificity results. We computed the specificity on FR

targets for servers whose reliability score could be parsed
from their output and which had at least one correct
prediction before its third false positive. Table IV lists for
each server the number of correct predictions with better
scores than the scores of the first, second, and third
false-positive predictions.

The magnitude of the scores of the first three false
positives help the user of an automated method to deter-
mine the reliability of a prediction. For example, the table
shows that based on the CAFASP data, a user should be
careful when interpreting a FFAS top-hit with a score
below 7. Table IV shows that FFAS, m-GenThreader, and
GenThreader are the most specific servers, followed by
BIOINBGU and 3D-PSSM. However, it is clear that the
specificities of the servers were not high. This low level of
specificity was also observed in CAFASP1 and is one of the
main aspects that all servers need to improve.

Unfortunately, we could not compare the servers’ speci-
ficities to that of humans because in CASP4, predictions
were not filed with confidence scores.

Fold recognition evaluation discussion

We conclude that it is difficult to establish an exact
ranking of the servers because the number of targets is

relatively small, and the score differences between the
servers is also small. Nevertheless, the different evalua-
tions (including that of the CASP assessor) seem to
coincide in identifying five servers performing better than
the rest: FFAS, M/GenThreader, 3D-PSSM, BIOINBGU
(and some of its components), and FUGUE. SAM-T99
appears to follow closely after the top servers, showing
excellent performance in the HM targets. All servers in
CAFASP2 performed poorly at the hard FR targets, but
the relatively small number of targets does not enable us
to draw more general conclusions. Servers for Homology
Modeling were also evaluated here, and it seems that the
FR servers produce more accurate sequence-structure
alignments for the HM targets than the HM servers do. In
general, most servers are significantly better than pdb-
blast, even among the HM targets. However, no single
approach is markedly superior to the others evaluated.
These general observations coincide with the findings of
LiveBench (see corresponding article in this issue).

In general, the specificities of the servers on the HM
targets and on the five easy FR targets are good, but on the
hard FR targets, the specificities need to be improved. This
also was observered in the CAFASP1 experiment. Further
comparisons between CAFASP1 and CAFASP2 are hard
to make because the prediction targets appeared to be
significantly harder in CAFASP2 and because in CAFASP1,
only a limited evaluation was carried out. Now that a
number of automated tools are in hand, we hope that for
future experiments, objective and quantifiable compari-
sons to measure progress will be easier to produce.

TABLE IV. Specificities of the Servers†

Server f1 f2 f3 HM

FFAS 3 7.2 4 6.81 4 6.33 14 —
mGenThreader 2 0.92 2 0.73 4 0.58 14 —
GenThreader 2 0.92 2 0.73 3 0.58 14 —
BIOINBGU (107) 2 6.6 2 5.3 2 5.3 14 —
3D-PSSM 2 0.285 2 0.298 2 0.403 14 —
BIOINBGU 1 22.9 2 20.5 3 19.0 14 —
BIOINBGU (108) 1 6.8 2 6.3 2 6.2 14 —
PDB-Blast 1 2e-07 2 0.015 2 0.033 1 e-103
BIOINBGU (106) 1 6.0 1 5.8 2 5.6 14 —
SAM-T99 1 2e-03 1 0.096 1 0.272 14 —
123D� 1 5.37 1 4.92 1 4.86 9 —
†Specificity computed on FR targets for servers with parsable reliabil-
ity scores and with at least one correct prediction. Only model number
1 was considered per server and target. For each server, the number of
correct predictions before the first, second, and third false positives are
listed (columns f1, f2, and f3). The first number shown in each of the f1,
f2, and f3 columns corresponds to the number of correct predictions
with better scores (as reported by the server) than the score for the
corresponding false-positive prediction. The second number corre-
sponds to the score reported by the server. In this table, a prediction is
defined as correct or wrong only (i) if three of the four evaluation
methods (MaxSub, LGscore1, LGscore2, and Touch) agree (predictions
where two methods say wrong and two methods say correct, are
removed) and (ii) if the model returned by the server is longer than 25
residues (short predictions are removed). The column HM shows the
total number of correct hits obtained before the first false positive on
the HM targets (because of the above definition of “correct,” only 14 of
the 15 HM targets were considered in most cases). —, indicates there
were no false positives to report.

CAFASP2 177



In what follows we include commentaries from a group
of server-developers. These were selected either because of
their performance or because their methods appeared to be
interesting or novel. The servers’ developers were asked to
also comment on how they used the servers’ results in
filing their human CASP predictions.

Selected fold recognition servers

3D-PSSM7 uses sequence profiles from the structural
superposition of remotely homologous structures together
with standard sequence profiles, solvation terms, and
secondary structure matching. Functional information, in
the form of shared SWISS-PROT keywords, is used to
postfilter predictions (SAWTED8). 3D-PSSM performed
best overall according to the human expert CASP assess-
ment. In the automated CAFASP assessment, 3D-PSSM
performed first in the close homology section and came
third in the remote homology section. However, the remote
homology section of CAFASP had sparse data because of
the lack of reliable automatic techniques for remote homol-
ogy assessment. For the vast majority of the manual
predictions in CASP filed by the Sternberg group, we used
one of the top 10 matches from the 3D-PSSM server. A
regularly updated fold library, textual information, and
reference to other servers’ results contributed to our CASP
success (see our CASP report in this issue).
BIOINBGU9 is a consensus method computed from five

components, each exploiting evolutionary information in
different ways, all based on sequence-to-structure compat-
ibility using sequence-derived properties.10 Fischer’s CASP
predictions were mainly based on BIOINBGU’s predic-
tions, resulting in only a slightly higher rank. The time
difference between the CAFASP and CASP deadlines
resulted in one better prediction. The server’s results were
considered correct only if high scores were obtained by a
number of components, if similar results were obtained by
other servers, or by confirmation from queries of homo-
logues. This occurred for a handful of the FR targets only.
For the others, the server was only marginally useful,
requiring human intervention. This resulted in one correct
and two incorrect decisions. Improvements in the way the
consensus is computed are likely to result in a better
performance.
GenThreader11 and mGenThreader use position-spe-

cific scoring matrices (PSSMs) calculated by using PSI-
BLAST5 and a neural network based scoring system. The
GenThreader algorithm has a bias toward superfamily
level matches, and, as expected, the method clearly per-
forms well on distant homology targets and poorly on hard
fold recognition targets (analogous fold similarities). How-
ever, the method has a relatively high degree of selectivity.
Jones’s group CASP predictions were essentially based on
a consensus of methods (including GenThreader and
mGenThreader) and clues derived from biological func-
tion. The most pressing issue for improvement is to
address the fact that GenThreader is only able to identify
superfamily-level similarities.
FFAS,12 fold and function assignment system, is a

profile-profile alignment algorithm, developed to maxi-

mize the amount of information that can be extracted from
a multiple alignment of a protein family without using any
structural information. FFAS uses a two-dimensional
weighting scheme that calculates the relative contribution
of a specific sequence to the profile based on a matrix of
similarities between all members of the family. It also uses
a normalized scoring function that avoids overdependence
on most conserved regions in the sequence and uses two
directional scoring that explores a nonsymmetric nature of
the profile-profile score.

New fold recognition servers

FUGUE13 takes a (filtered) PSI-BLAST alignment and
compares it against the structure-based alignments in the
HOMSTRAD database.14 The major differences from other
methods include the use of well-parameterized environ-
ment-specific substitution tables and structure-dependent
gap penalties. FUGUE currently does not use predicted
secondary structures (which is an obvious element for
improvements). In the CASP predictions filed by Blun-
dell’s group, FUGUE and other tools were used to compile
candidate hits. FUGUE’s alignments were manually exam-
ined and modified and fed to other tools for model building
and evaluation. This resulted in better manual predic-
tions. For example, in one case (T0108), manual adjust-
ments of the input PSI-BLAST alignment led to a correct
prediction, which was missed by the server. Work is in
progress to automate some elements of the manual opera-
tions, such as model validation and its feedback to align-
ment.
LOOPP15 evaluates the sequence-to-structure fitness

by using two layers of contacts instead of the common one
layer. The multilayer picture incorporates multibody ef-
fects. The parameters of the scoring function were opti-
mized by linear programming, recognizing exactly the
native structures of the training set. Emphasis is made on
structural fitness, to detect remote homologs. Therefore, it
is expected that LOOPP may miss targets recognizable by
Psi-BLAST. Nevertheless, LOOP produced a number of
interesting results including two of the difficult targets
(T0097 and T0102).

Are the servers as a group useful?

When observing the number of correct predictions of all
the servers as a group, we find that the servers identified
roughly double the number of correct targets than the best
of the servers. This indicates that each server appears to
have its strengths in different targets and that the com-
bined predictions of all servers can lead to a much better
performance. The CAFASP organizers wanted to test the
idea of how useful the combined results of the servers can
be for a non-expert predictor and how a fully automated
consensus prediction would compare with the individual
servers and human groups. To this end, we aimed at a fully
automated procedure that uses all the servers’ results.
Unfortunately, by the time CAFASP took place, our meth-
ods were not fully automated, and we had to register this
consensus method as a CASP participant, named CAFASP-
CONSENSUS. We emphasize that its success must be
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attributed to each CAFASP participant who allowed us to
use his/her server results. The performance of this CASP
participant illustrates the utility of the servers’ results as
a group. We include here a description of the method used
in CASP and of its newly developed fully automated
version Pcons,38 already available as a server (see the
LiveBench-2 report elsewhere in this issue and http://
www.sbc.su.se/�arne/pcons/).
CAFASP-CONSENSUS. The process of both the auto-

matic Pcons server and the manual consensus predictions
filed at CASP4 can be described in three steps. The first
step is to detect structural similarities between predic-
tions. In the manual procedure we listed the SCOP folds
for each prediction. In the automated version the struc-
tures of the produced models are compared with one
another. The second step is to identify related predictions.
In the manual predictions we simply counted the number
of predictions corresponding to each SCOP fold. In the
automated version, the number of other models that are
similar to a particular model is counted. The third step is
to select one model. In the automated consensus predictor
this is done by a neural network that combines the
assigned score of a model with the information about the
number of other similar models. For the manual consensus
predictions we used the same information as input to our
human neural networks. The CAFASP-CONSENSUS com-
putations used at CASP4 were published at http://
www.cs.bgu.ac.il/~dfischer/CAFASP2/ summaries before
the submission deadlines of the targets. Thus, CASP
predictors were able to use this information in filing their
own predictions to CASP. In CASP4 we detected three
scenarios. The first scenario consisted of trivial predic-
tions, where most methods predicted the same fold. These
predictions all turned out to be correct, including the
“easy” FR targets. The second scenario was when no server
produced a significant hit, but a particular SCOP fold was
selected more frequently than all others. In the third
scenario, no fold was significantly more frequent than the
others. These predictions all turned out to be wrong.

Secondary Structure Prediction
Statistics about the results

Eight secondary structure prediction servers submitted
predictions to CAFASP2 (see Table I). In total, we could
analyze predictions for 40 proteins. Twenty-nine of the 40
proteins had no significant sequence similarity to any
known structure (�25% pairwise identical residues in
�100 residues aligned). For 2 of the 40 proteins an iterated
PSI-BLAST search detected a clear similarity to a known
structure; for 9 of the 40 the structural homologue was
found by pairwise database searches. Most servers submit-
ted results for most CASP targets; the highest number of
submissions came from PROF_king, SAM-T99sec and
SSpro, and the lowest number came from PROF-PHD. All
results are available at: http://cubic.bioc.columbia.edu/
mirror/cafasp_sec/. The particular details of the evaluation
are explained in detail at http://cubic.bioc.columbia.edu/
mirror/cafasp_sec/evaluation.html.

Results

Methods appeared more accurate than those at CASP2.
All secondary structure prediction methods that were
submitted to CAFASP2 submitted predictions for only 12
sequence-unique proteins. This set was too small to draw
other conclusions than the following. (i) As expected,
methods not using alignment information (PSSP) were
less accurate than methods using evolutionary informa-
tion. (ii) All methods using alignment information sur-
mounted the accuracy we reached at CASP2; the best ones
now appear to reach levels of 76% three-state per residue
accuracy (percentage of residues correctly predicted in
either of the states helix, strand, or other). (iii) The I-sites
server was the only method evaluated that was not
optimized to predict secondary structure; nevertheless, it
predicted secondary structure rather accurately. All align-
ment-based methods were slightly worse when measuring
the overlap of segments (SOV 9) and had similar levels of
accuracy for helix and strand. Did methods perform better
on proteins with homologues of known structure? The
answer appeared affirmative for proteins with close se-
quence similarity to known structures and negative for
proteins with only PSI-BLAST similarities to known struc-
tures. However, these statements were based on nine
(close relation) and two (PSI-BLAST relation) proteins.
Given these small sets, the differences in performance
between proteins with structural homologues and proteins
without were not significant.

How can we obtain significant comparisons between
methods? The CASP4 assessors also evaluated secondary
structure predictions, and to the best of our knowledge,
their conclusions were similar to the ones obtained by us.
Were these conclusions invalid due to the small data sets?
The problem with small data sets is not that we cannot
draw any conclusion. Rather, the task is to separate
between significant and nonsignificant statements. One
important issue at the CASP meetings is the ranking of
methods. Neither the human expert CASP evaluation nor
our automatic evaluation in CAFASP could nor did rank
the methods in detail. However, users may assume that
methods do in fact differ. To better rank the different
methods, we need to evaluate all methods on equal data
sets of significant size. Such an evaluation is described in
this issue (see the EVA report in this issue).

Homology Modeling

Only two comparative modeling servers were entered in
CAFASP2: FAMS and 3D-Jigsaw. These two servers pro-
duced complete models of targets, including insertions/
deletions and side-chain coordinates. Servers that did not
produce side-chain coordinates were not considered in this
category.

FAMS (“Full Automated Modeling Server”) developed by
Ogata and Umeyama16,17 begins with a Smith-Waterman
alignment of the target sequence to structurally aligned
template proteins with a substitution matrix derived from
structure alignments.18 C� coordinates are obtained from
the template proteins by a process maximizing “local space
homology,” or sequence similarity of residues within a

CAFASP2 179



sphere of 12 Å radius to each segment to be modeled. The
backbone model is then completed by borrowing from the
template structures and simulated annealing. Conserved
side-chains are kept in their crystallographic conforma-
tions, and the backbone model is adjusted to fit the
side-chains of these residues. Other side-chains are then
constructed by a procedure based on principal component
analysis of local structural environments around side-
chains in the PDB. Alternating cycles of Monte Carlo
optimization of the backbone and side-chains are then
used to optimize the predicted structure according to an
objective potential function.

The 3D-Jigsaw server is an automated version of a
homology modeling procedure of Bates and Sternberg that
was successful at CASP3.19 The backbone model is con-
structed from as many as five parent structures, whereas
loops are constructed from fragment database searches
and a mean-field algorithm for selecting the best conforma-
tions. Side-chains are constructed with the aid of a second-
ary structure-dependent rotamer library.20

Fold Assignments

To produce accurate homology models obviously re-
quires correct fold assignment. In nine cases, the FAMS
web server based its model on incorrect fold assignments,
indicating a need for assessment of actual homology before
proceeding with model building. By contrast, 3D-Jigsaw’s
fold assignments were uniformly correct, although it did
not attempt targets with only very distant relatives in the
PDB.

Backbone Models

Because alignments with parent structures were not
provided by the servers, it was impossible to tell what
loops contained insertions or deletions from the parent
structures and therefore, were constructed ab initio. There-
fore, the backbone models of these servers were assessed
by comparing the backbone dihedrals � and � with those in
the experimentally determined structures for two sets of
residues: those aligned by MaxSub within 3.5 Å of the
experimental structure after structure alignment; and all
residues in the model. These results are presented in Table
I in our web site at http://www.fccc.edu/research/labs/
dunbrack/cafasp-results.html. Backbone conformation for
a single residue is considered “correct” if the value of D is
� 60, where D is the root-mean-square deviation (mod
360) of the � and � dihedrals for the residue from the
experimental structure. The MaxSub results indicate that
FAMS aligned correctly larger portions of each target
sequence to template structures. The number of residues
within 3.5 Å in the MaxSub alignments for several targets
is much higher in the FAMS predictions than in the
3D-Jigsaw predictions. Of the correctly aligned residues,
the rate of correct prediction of conformation does not
differ substantially between the FAMS and 3D-Jigsaw
predictions. This is to be expected because “correctly
aligned” is correlated with reasonably correct backbone
conformation. When considering all residues in the pre-
dicted structure, FAMS performed better than 3D-Jigsaw

for most targets. Because FAMS structures contained
more residues in total, the portions of the target protein
(not just of the predicted portion) were also higher.

Side-chain conformations

Side-chain conformations were also compared with the
experimental structures in two groups: those within 3.5 Å
in the MaxSub structure alignment and all residues. The
results are shown in Table II in our web site. Side-chain
conformations were considered “correct” if �1 was within
40° of the experimental structure values. The FAMS
server produced somewhat better side-chain conforma-
tions than 3D-Jigsaw, although this may be due to the fact
that larger portions of the structures were modeled cor-
rectly on the basis of the available parents. Most of the
template-target sequence identities were well below 50%,
and so the side-chain accuracy results are not particularly
surprising.21 It should also be noted that a backbone-
independent rotamer prediction of 	60° for all side-chain
types except Val (180°), Ser (�60°), Thr (�60°), and Pro
(	30°) would achieve an accuracy rate of approximately
56%.

It is clear that the accuracy of homology models depends
heavily on the initial alignment. Thus, we suggest that to
obtain a detailed assessment of the side-chain and loop
predictions, standard alignments be provided in future
experiments, so that the capabilities of the methods in this
aspect be better assessed.

Contacts Prediction

A detailed description of the evaluation for contacts
prediction can be found at http://montblanc.cnb.uam.es/
cnb_pred/abcp_eval.html. The evaluation has been imple-
mented as a server that accepts as input a list of poten-
tially contacting residues or a PDB file plus the associated
confidence values for each pair of residues.

The results of the evaluation of contact prediction serv-
ers can be found at http://www.pdg.cnb.uam.es/cnb_pred/
cafasp2_cp_eval/. Twenty-two predictions of CORNET
server16 and five of PDGCON (unpublished) were evalu-
ated. To give an idea of the volume of data for the L/2 class,
2087 pairs of contacting residues predicted by CORNET
were evaluated.

CORNET is based on previous work in training neural
networks with family sequence profiles, under a carefully
designed schema of sequence separation and protein size
classes.22 The new version incorporates information from
correlated mutations,23 sequence conservation (as in
Ouzounis et al.24), and predicted secondary structure.
PDGCON implements the original methods of correlated
mutations25 as in Pazos et al.23 Even when it is recognized
that contact prediction with correlated mutations can be
improved by different procedures,26 they are unfortu-
nately too slow for their use in the server.

Despite the relatively small number of predictions evalu-
ated in this first round, it is quite clear that the contact
predictions based on a Neural Network (CORNET) are
almost two-fold better (“Acc” value at 0.1xL of 0.22) than
the simple correlated mutations implemented in the PDG-
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CON server, but this level of accuracy is still relatively
low, leaving significant room for future improvements. All
the evaluation details are available at the url listed above.

Ab initio

Here we describe the evaluation of ab initio servers in
CAFASP2. To better describe the type of methods used in
this category, the ab initio category was renamed as “New
Fold Methods.”

Evaluation method

Model evaluation was based on a new method for
structural alignment and comparison, which enables us to
compare an experimental protein structure with an arbi-
trary low-resolution three-dimensional protein model (Or-
tiz and Olmea, submitted). The method, called MAMMOTH
(http://transport.physbio.mssm.edu/services/mammoth), pro-
vides a structural similarity score between either two
proteins or two different conformations of the same pro-
tein, derived from the likelihood of obtaining a correct fold
prediction by chance. We briefly describe the four steps of
the MAMMOTH algorithm.

1. From the C� trace, compute the unit-vector U-RMS
between all pairs of heptapeptides of both model and
experimental structure.27 This is a measure sensitive to
the local structure.

2. Use the matrix derived in step 1 to find an alignment of
local structures that maximizes the local similarity of
both the model and the experimental structure. For
that, use a global alignment method with zero end
gaps.28

3. Find the maximum subset of similar local structures
that have their corresponding C� close in Cartesian
space. Close is considered here as a distance �4.0 Å.
The method to find this subset is a small variant of the
MaxSub algorithm.6

4. Obtain the probability of obtaining the given proportion
of aligned residues (with respect to the shortest protein
model) by chance (P value). The P value estimation is
based on extreme-value fitting.29

Results

Two different servers took part in CAFASP2: I-sites
server (IS) and the Dill-Ken (DK) server.
I-sites is the first public ab initio protein structure

prediction server. I-sites uses a very similar method to the
one used for CASP3 by the Bystroff/Baker group, a combi-
nation of Bystroff’s I-sites Library30 and Baker’s Rosetta
algorithm,31 scaled down in the public version. I-sites
ranked at the top in the CASP3 ab initio category. I-sites
did not use the structures of known homologs. Instead, it
generates a sequence profile5 to search for matches to the
short sequence-structure motifs in the I-sites library.
Where there are strong matches, the local motif structure
is fixed by restraining the backbone torsion angles. Where
there are multiple weak matches, those motifs become the
moveset for a Rosetta conformational search.

ELAN-PROT (ELAstic Net prediction of PROTein
structures) ab initio server uses the elastic net method to
approximate the free-energy landscape of a protein by
using deterministic annealing methods. ELAN-PROT uses
a C�-only model of residues connected by springs and
includes the following non-local interactions: hydrophobic
burial, a statistical interresidue potential, and restraints
for secondary structure predictions from the PHD server.32

The method is still relatively undeveloped and may be
useful as a fast front-end to higher-resolution methods.

A total of 152 models were evaluated, belonging to 33
different targets. The IS server submitted 125 models,
whereas the DK server provided 27 models. All models
provided by the new folds methods servers were analyzed
with MAMMOTH, and the results are summarized in the
CAFASP2 web site. The most apparent finding is that
neither of the two servers provided a single correct fold
prediction. Score values �4.0 indicate substantial similar-
ity between parts of the model and target, that is, a
similarity of model and target that has very low probabil-
ity to have been obtained by chance. Only 4 of the 152
models had a score larger than this threshold, all gener-
ated by the IS server, although 3 additional models from
the IS server were close to the threshold and provided
parts of the models correct. To obtain some additional
perspective for these numbers, the best scoring models
were compared by using MAMMOTH, with all models
submitted to CAFASP2, either by fold recognition or ab
initio folding. It was found that these models were among
the best models in CAFASP2 (T0095TS216_4 ranked
second overall, and T0097TS216_1 ranked fifth, whereas
T0106TS216_1 ranked 3rd). Thus, it is encouraging to find
that the best new fold methods predictions are also among
the best models overall and correspond to some of the
targets classified as “difficult” in CASP-4. We emphasize,
however, that the detailed ranking values are not very
significant when the structural similarities are so close to
the random level. However, one of the goals of this
experiment is not to determine the position of the ab initio
prediction in the ranking of the threading models, but
rather, to check whether the predictions are, with our
score, of different qualitative nature between both ap-
proaches. This check is of interest for those cases where ab
initio provides at least a correct partial structure, because
it enables us to answer the question of “how far” the
prediction is from that obtained on average with a thread-
ing server. A more detailed description of these data is
available in our web page. In summary, although neither
of the two serves provided a fully successful fold predic-
tion, as assessed by the MAMMOTH scoring system, the
IS server was able to predict for some difficult targets
conformations of fragments with statistically significant
scores.

DISCUSSION

CAFASP represents one of a number of current automa-
tion efforts aimed at meeting the challenges of the post-
genomic era. CAFASP2 enables for the first time a direct
comparison of the blind prediction capabilities of servers
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with those of human teams. CAFASP2 showed that only a
handful of human groups performed better than the
servers, this despite the fact that the comparison was
somewhat unfair toward servers (see Materials and Meth-
ods). In many cases, the human predictions required
extensive human intervention involving a number of pre-
dictors in the group, applied additional biological knowl-
edge or used the servers’ results. The servers’ performance
in CAFASP2 is thus encouraging and signifies a bright
future for automated structure prediction. However, it is
important to notice that ranking high in CASP does not
mean you are doing well; it only means you are doing as
well as the best groups in the world. Even the best
predictors at CASP produced accurate models for only a
fraction of the harder targets. This means that there is still
much room for improvement both in the human expertise
and in the automated methods.

In addition, CAFASP proved to be a useful experiment
in that (i) it allowed to measure how much better than
servers humans are at predicting; (ii) it showed to the
community of biologists and other predictors what the
servers can and cannot do (a reality check); (iii) it was an
open experiment where all was known and open to all:
the participants and coordinators were known at all times,
the evaluation rules and methods were defined before the
experiment began, the evaluation methods were publicly
available, all the predictions were available to all as soon
as they were collected, and all the results were released as
soon as they were obtained; (iv) it applied fully automatic,
reproducible, quantitative, objective, and publicly avail-
able evaluation methods; (v) it enabled us to gain insights
to improve future experiments such as CAFASP3 and the
large-scale evaluation experiments LiveBench and EVA;
and (vi) it helped to promote the development of auto-
mated tools that can be used by the wide community of
users.

Assessing the performance of automated methods is of
utmost importance to evaluate their applicability at
genomic scales, in particular in the area of structural
genomics.1 Automated approaches for structure prediction
are essential if the wealth of data in genomes is to be
exploited (e.g., Refs. 1, 33, and 34). The CAFASP2 results
indicate that progress in this direction has been made and
that it seems that automated structure prediction has just
begun to be ready to meet this challenge.

As a by-product of the CASP/CAFASP experiments, a
new community wide effort, named The Most Wanted, has
been launched.35 This will be a joint effort of predictors
that will attempt to tackle a number of important predic-
tion targets with no experimental structure soon to be
solved. Thus, rather than investing considerable time in
competing on predictions of proteins that are soon to be
solved anyway, many predictors will contribute their
expertise on prediction targets that are relevant to the
biological community. The automated servers for struc-
ture prediction will provide an invaluable infrastructure
for this project, by producing an initial set of automated
results that could be used by the expert predictors. Beyond
this prediction effort, it is evident that automated struc-

ture prediction is effectively extending and reinforcing the
impact of the current experimental structure genomics
projects.1

Despite the success of the CAFASP2 experiment, it is
important to notice that there is a long way to go before
automatic structure prediction becomes a solved problem.
We noted above that the success of the fold recognition
servers among the harder FR targets is still modest and
that the automated prediction of new folds is not yet
accurate enough. Thus, there is still much room for
significant improvements. It is evident that for the develop-
ment of a new drug, extensive expert human intervention
is still required, but as the automated methods are opti-
mized, so is the efficiency of human experts’ time. Another
aspect of CAFASP that needs improvement is in the area
of automatic evaluation. One of the main limitations of
small-scale experiments, such as CASP/CAFASP, is the
relatively small number of prediction targets. This re-
quires that some caution is taken when interpreting the
results of the experiment. To better assess the capabilities
of servers, large-scale experiments, such as LiveBench and
EVA, are required. These provide an important comple-
ment to the CASP/CAFASP experiments and together
provide a better picture of the capabilities in the field.36

Finally, we hope that the success and prospects of
CAFASP2 encourage many more developers of methods to
fully automate their programs and to make them available
through the Internet so that in future experiments we see
a much larger number of server participants in each of the
CAFASP prediction categories.
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NOTE ADDED IN PROOF

A number of new fold-recognition servers are currently
being evaluated in LiveBench. Among others, there is a
new version of pcons, pcons2, and a new meta-predictor
named 3D-SHOTGUN (Fischer, in preparation). Visit the
LiveBench web-site at http://bioinfo.pl/LiveBench to see
an up-to-date evaluation of their performances.
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