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Abstract  

Plant defence compounds occur in floral nectar, but their ecological role is not well-understood. We 

provide the first evidence that plant compounds pharmacologically alter pollinator behaviour by 

enhancing their memory of reward. Honeybees rewarded with caffeine, which occurs naturally in 

nectar of Coffea and Citrus species, were three times more likely to remember a learned floral scent 

than those rewarded with sucrose alone. Caffeine potentiated responses of mushroom body neurons 

involved in olfactory learning and memory by acting as an adenosine receptor antagonist. Caffeine 

concentrations in nectar never exceeded the bees’ bitter taste threshold, implying that pollinators 

impose selection for nectar that is pharmacologically active but not repellent. By using a drug to 

enhance memories of reward, plants secure pollinator fidelity and improve reproductive success. 

Many drugs commonly consumed by humans are produced by plants as a form of toxic defence against 

herbivores (1, 2). While plant-derived drugs like caffeine or nicotine are lethal in high doses (3-5), they 

have pharmacological effects at low doses that affect mammalian behaviour. For example, low doses of 

caffeine are mildly rewarding and enhance cognitive performance and memory retention (6). 



Interestingly, caffeine has been detected in low doses in the floral nectar and pollen of Citrus (7), but 

whether it has an ecological function is unknown. 

Two caffeine-producing plant genera, Citrus and Coffea, have large floral displays with strong scents and 

produce more fruits and seeds when pollinated by bees (8, 9). If caffeine confers a selective advantage 

when these plants interact with pollinators, we might expect it to be commonly encountered in nectar. We 

measured caffeine in the nectar of 3 species of Coffea (C. canephora, C. arabica, and C. liberica) and 4 

species of Citrus (C. paradisi, C. maxima, C. sinesis, C. reticulata) using liquid chromatography-mass 

spectrometry (10, Fig. S1A). When caffeine was present, its concentration ranged from 0.003 - 0.253 

mM. The median caffeine concentration in both genera was not significantly different (Fig. 1A, Mann-

Whitney, Z = -1.09, P = 0.272). Caffeine was more common in the nectar of C. canephora than in C. 

arabica or C. liberica (Coffea: logistic regression χ2
2
 = 11.1, P = 0.004); it was always present in Citrus 

nectar. The mean total nectar sugar concentration ranged from 0.338-0.843 M (Fig. 1B, see Fig S1B for 

individual sugars). Caffeine concentration in nectar did not correlate with total sugar concentration 

(Pearson’s r = 0.063, P = 0.596). 

We hypothesized that caffeine could affect the learning and memory of foraging pollinators. To test this, 

we trained individual honeybees to associate floral scent with 0.7 M sucrose and 7 different 

concentrations of caffeine and tested their olfactory memory. Using a method for classical conditioning of 

feeding responses (proboscis extension reflex, 11), bees were trained for 6 trials with 30 s between each 

pairing of odour with reward. This inter-trial interval approximated the rate of floral visitation exhibited 

by honeybees foraging from multiple flowers on a single Citrus tree (see methods). The presence of low 

doses of caffeine in reward had a weak effect on the rate of learning (Fig. 2A), but it had a profound 

effect on long-term memory. When rewarded with solutions containing nectar-levels of caffeine, three 

times as many bees remembered the conditioned scent 24 h later and to responded as if it predicted 

reward (Fig. 2B, logistic regression, χ7
2
 = 41.9, P < 0.001). Twice as many bees remembered it 72 h later 

(Fig. 2C). This improvement in memory performance was not due to a general increase in olfactory 



sensitivity resulting from caffeine consumption (Fig. S2A). In fact, the effect of caffeine on long-term 

olfactory memory in bees was greater than that produced by high concentrations of sucrose when the 

same experimental methods were used (e.g. 2.0 M, Fig. S2B).  

Caffeine’s influence on cognition in mammals is in part mediated by its action as an adenosine receptor 

antagonist (11). In the hippocampal CA2 region, inhibition of adenosine receptors by caffeine induces 

long-term potentiation (12), a key mechanism of memory formation (13). The Kenyon cells (KCs) in 

mushroom bodies of the insect brain are similar in function to hippocampal neurons: they integrate 

sensory input during associative learning, exhibit long-term potentiation and are involved in memory 

formation (14-16). To test whether nectar-caffeine doses affect mushroom body function, we made 

whole-KC recordings in the intact honeybee brain. Caffeine (100 μM) evoked a small increase in the 

holding current (IM) and depolarized KC membrane potential (VM) towards the action potential firing 

threshold, by increasing nicotinic ACh receptor (nAChR) activation (Fig. 3A-D). To test whether the 

observed effects of caffeine were due to interactions with adenosine receptors, we applied the adenosine 

receptor antagonist, DPCPX, and observed that it  similarly increased IM and depolarized VM but to a 

lesser extent (Fig. 3E,F). Both caffeine and DPCPX affected KC response kinetics evoked by brief, local 

application of ACh, increasing the activation rate and slowing the decay (Fig.3G,H). Our data show that 

caffeine modulates cholinergic input via a postsynaptic action, but could act via presynaptic adenosine 

receptors to potentiate ACh release (17). The resulting increase in KC excitability should lead to an 

increased probability of action potential firing in response to sensory stimulation (18), thereby facilitating 

the induction of associative synaptic plasticity in KCs (19). The enhanced activation of KCs may also 

facilitate plasticity at synapses with mushroom body extrinsic neurons (20), which exhibit spike-timing-

dependent plasticity (21). In this way, a ‘memory trace’ could be formed for the odour associated with 

reward during and after conditioning (22-23).   

Caffeine is bitter tasting to mammals and is both toxic (24) and repellent to honeybees at high 

concentrations (25, 26). If bees can detect caffeine, they might learn to avoid flowers offering nectar 



containing it (27). We found that honeybees were deterred from drinking sucrose solutions containing 

caffeine at concentrations greater than 1 mM (Fig. 4); they also have neurons that detect caffeine in 

sensilla on their mouthparts (Fig. S3). However, nectar concentrations never exceeded 0.3mM (i.e. 0.058 

mg/ml), even though levels of caffeine in vegetative and seed tissues of Coffea have been reported to be 

as great as 24mg/ml (28). This implies that pollinators drive selection towards concentrations of caffeine 

that are not repellent but still pharmacologically active.  

Our data show that plant-produced alkaloids like caffeine have a role in addition to defence: they can 

pharmacologically manipulate a pollinator’s behaviour. When bees and other pollinators learn to associate 

floral scent with food while foraging (29), they are more likely to visit flowers bearing the same scent 

signals. Such behaviour increases their foraging efficiency (30) while concomitantly leading to more 

effective pollination (31, 32). Our experiments suggest that by affecting a pollinator’s memory, plants 

reap the reproductive benefits arising from enhanced pollinator fidelity.  
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Figure 1. (A) Caffeine concentration in Coffea and Citrus sp. and a cup of instant coffee. Caffeine 

concentration depended on species within each genus (Coffea: Kruskal-Wallis, χ2
2
 = 28.1, P < 0.001; 

Citrus: Kruskal-Wallis, χ2
2
 = 6.98, P = 0.030); C. canephora had the highest mean concentration of all 

species sampled. (B) The sum of the concentration of sucrose, glucose and fructose (total nectar sugars) 

depended on species (1-way ANOVA: F5, 161 = 4.64, P < 0.001) and was greatest in Citrus maxima and 

hybrids (citron, lemons, clementines). (C. can. = Coffea canephora, N = 34; C. lib. = Coffea liberica, N  = 

31; C. arab. = Coffea arabica, N = 27; C. par. = Citrus paradisi and hybrids, Ncp = 17; C. max. = Citrus 

maxima and hybrids, N = 5; C. sin. and C. ret. = Citrus sinensis and Citrus reticulata, NCS = 7, NCR = 5 – 

data for these two species was pooled). 

Figure 2. (A) The rate of learning of bees conditioned with an odour stimulus paired with a 0.7 M sucrose 

reward containing caffeine. The rate of learning was slightly greater for the bees fed caffeine in reward 

during conditioning (logistic regression, χ1
2
 = 4.85, P = 0.028). N > 79 for all groups. (B) Memory recall 

test for odours at 10 min (clear bars) or 24 h (red bars) after bees had been trained as in (A).  Bright red 

bars indicate that the response at 24 h was significantly different from the control (0.7 M sucrose) (least-

squares contrasts: P < 0.05); dark red bars were not significantly different. Nectar-levels of caffeine are 

indicated by hatching. N > 79 for each group. (C) Bees fed 0.1 mM caffeine in sucrose (red bars) were 

more likely to remember the conditioned odour sucrose alone (white bars) (logistic regression, χ1
2
 = 9.04, 

P < 0.003) at 24 h and 72 h after conditioning. N = 40 per group. 



Figure 3. The effect of caffeine on Kenyon cells. (A, B) Example traces from a KC in intact honeybee 

brain recorded under voltage-clamp (A, VH = -73 mV) and current-clamp (B; at resting VM), showing the 

increase in IM and depolarization evoked by bath application of caffeine (100 μM), and subsequent 

reversal by the nAChR antagonist d-TC (500 μM). (C, D) Mean data showing the reversal by d-TC (500 

μM) of the effect of caffeine (Caff; 100 μM) on IM (C; N = 6, t5 = 4.03, P = 0.010; t5 = 4.07, P = 0.010) 

and VM (D; N = 6, t5 = 34.1, P < 0.001; t5 = 12.0, P < 0.001). (E, F) Comparison of the mean effects of 

caffeine and DPCPX on IM (E, Caff: N = 10, t9 = 3.84, P = 0.004; DPCPX: N = 6, t5 = 4.04, P = 0.010) 

and VM (F, Caff: N = 6, t5 = 34.1, P < 0.001; DPCPX: N = 6, t5 = 3.39, P = 0.019). (G, H) Example 

traces (G; rising phase shown on an expanded time-scale below) and mean data (H, Rate of rise: N = 6, t5 

= 2.20, P = 0.079; τdecay: N = 9, t8 = 3.54, P = 0.008) showing that DPCPX (100 nM) and caffeine (100 

μM) slowed the decay and, in 6 of 9 KCs, potentiated the fast component of the response evoked by 

exogenous ACh. (Student’s paired t-test used in all comparisons). 

Figure 4.  Bees are more likely to reject sucrose solutions containing caffeine of concentrations greater 

than 1 mM (logistic regression, χ4
2
 = 23.4, P < 0.001; for 0.7M and 1.0M, 1 mM caffeine vs sucrose post 

hoc, P < 0.05; for 0.3M, 100 mM caffeine vs sucrose post hoc, P < 0.05). Bees were less likely to drink 

0.3 M sucrose (pale pink diamonds) than 0.7M (pink circles) or 1.0M solutions (red triangles) (logistic 

regression, χ2
2
 = 8.69, P = 0.013). Mean responses + SE. N0.3M = 29, N0.7M = 100, N1.0M = 20.  
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Materials and Methods 

 

Nectar sampling and analysis. Nectar from Coffea sp. was collected from the 

coffee germplasm collection at CATIE (Centro Agronomico Tropical de Investigacion y 

Ensenanza), Turrialba, Costa Rica; nectar from Citrus was collected from orchards on the 

campus of TEI (Technological Education Institute), Heraklion, Crete. Flowers were 

protected from pollinators using mesh bags overnight; nectar was collected from each 

flower using a 35 µl capillary tube and stored at -20
o
C prior to analysis. Samples were 

diluted either 5 or 10 fold prior to caffeine analysis. LC–MS analysis of the nectar 

samples and coffee was carried out using a Waters Alliance LC solvent delivery system 

with a ZQ MS detector on a Phenomenex Luna C18(2) column (150 X 4.0 mm i.d., 5µm 

particle size) operating under gradient conditions, with A = MeOH, B = H2O, C = 1% 

HCO2H in MeCN; A = 0%, B = 90% at t = 0 min; A = 90%, B = 0% at t = 20 min; A = 

90%, B = 0% at t = 30 min; A = 0%, B = 90% at t = 31 min; column temperature 30
o
C 

and flow rate of 0.5 ml min
-1

. Caffeine was purchased commercially (Sigma-Aldrich, 

Dorset, UK) and used as a chromatographic standard and producing a calibration curve 

by quantification of the [M+H]
+
  molecular ion with m/z = 195.1. Caffeine eluted at 5.14 

min. For sugar analysis, samples were diluted 1000-2000 fold prior to analysis of 

carbohydrates in nanopure water. HPLC analysis of sugars was conducted by injecting 20 

µl of sample via a Rheodyne valve onto a Carbopac PA-100 column (Dionex, Sunnyvale, 

California, USA). Sample components were eluted from the column isocratically using 

100mM NaOH flowing at 1 ml/min. The chromatographic profile was recorded using 

pulsed amperometric detection (ED40 electrochemical detector, Dionex). Elution profiles 

were analysed using PeakNET software package (Dionex, Breda, Netherlands). Daily 

reference curves were obtained for glucose, fructose, sucrose, sorbitol and mannitol by 

injecting calibration standards with concentrations of 10 ppm for each sample.   

 

Bee conditioning and taste assays. In the field, we measured that the average inter-

visit interval to flowers of Citrus paradisi was 20.3 s (N = 92) and that the average time 

spent on each flower was 3.77 s (N = 81). The average sum of the time between each 

reward was ~24 s (sum of inter-visit interval and time on flower). In our conditioning 

experiments, we therefore chose to use a 30 s inter-trial interval (also used by (33) in 

studies of massed conditioning in bees; it should be noted here that previous studies have 

shown that massed conditioning is less likely to produce long-term memories in sucrose-

rewarded bees than spaced conditioning (33)). Each subject was collected, restrained, and 

fed to satiety using an ‘ad libitum’ method with 0.7 M sucrose at 24 h prior to 

conditioning. In this method of feeding, honeybees are stimulated to extend the 

proboscis; the proboscis is placed in contact with sucrose solution in a 1 ml well and the 

bee allowed to drink until it reaches satiation. On the day of conditioning, each bee was 

tested for its motivation to feed by eliciting the proboscis extension response with 0.7M 

sucrose; bees that did not respond with a feeding reflex were deemed unmotivated and 

therefore not included. Each bee was trained by placing it in the conditioning arena, 

exposing it to a 4 s odour pulse with 1-hexanol (as described in (34)), and feeding it with 

a 0.4 µl droplet of 0.7M sucrose solution containing caffeine.  Bees were trained for 6 

trials; two unreinforced test trials (one with 1-hexanol and another with a novel odour, 2-
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octanone) were conducted 10 min after the last conditioning trial and 24 h later. Bees 

were fed with 0.7 M sucrose ad libitum between the 10 min and 24 h test and left in a 

closed, humid box overnight. Data for conditioning and testing represent the probability 

of a response from the population on each trial. Sample sizes for each of the treatments 

are as follows: conditioning and 10 min test: Ncontrol = 156, N10-9M = 79, N10-8M = 80, N10-

7M = 80, N10-6M = 80, N10-5M = 159, N10-4M = 160 , N10-3M = 160; 24 h test: Ncontrol = 106, 

N10-9M = 79, N10-8M = 80, N10-7M = 80, N10-6M = 80, N10-5M = 147, N10-4M = 154 , N10-3M = 

143.  (Differences in sample sizes from 10 min to 24 h were due to overnight mortality of 

subjects).The taste assay for mouthparts sensitivity to bitter compounds was conducted as 

described in (27). Determination of the taste threshold was performed by comparison 

against the sucrose-only control: we identified the threshold for the detection of caffeine 

by measuring when the drinking response towards the solution was significantly lower 

than that produced by sucrose alone.   

 

Whole-cell patch-clamp electrophysiology: Adult worker honeybees (Apis 

mellifera mellifera) were anesthetized on ice and the intact brain isolated while 

submerged in extracellular solution. Surrounding tissue and membranes were removed by 

a combination of manual dissection and treatment for 5-10 min with papain (0.3 mg.ml
-1

), 

L-cysteine (1 mg.ml
-1

), collagenase (64 μg.ml
-1

) and dispase (0.7 mg.ml
-1

)
 
(4). The 

removal of covering membranes was necessary to obtain successful whole-cell recordings 

from KCs. The brain was transferred to the recording chamber, secured with a mesh 

weight and continuously perfused with extracellular solution comprising (mM): NaCl 

(140), KCl (5.0), MgCl2 (1.0), CaCl2 (2.5), NaHCO3 (4.0), NaH2PO4 (1.2), hepes (6.0), 

glucose (14), adjusted to pH 7.4 with NaOH, 326 mOsm, at room temperature (18-22 °C) 

(35-36). Caffeine and DPCPX were bath-applied via the extracellular solution. 

Acetylcholine (ACh) was pressure-applied using a Picospritzer from a glass micropipette 

positioned 25-50 μm from the recorded KC. 

 

Whole-cell voltage-clamp and current-clamp recordings were obtained from 

visually-identified mushroom body KCs. Patch pipettes (8-10 MΩ) were pulled from 
borosilicate glass and filled with solution comprising (mM): K-gluconate (110), hepes 

(25), KCl (10), MgCl2 (5), Mg-ATP (3), Na-GTP (0.5), EGTA (0.5), pH 7.2, 284 mOsm. 

Membrane current (IM) and voltage (VM) were recorded via an EPC-10 patch-clamp 

amplifier controlled by Patchmaster software (HEKA). Holding potentials (VH) and 

measured VM were corrected after the experiment for a liquid junction potential of +13 

mV. Voltage-clamp recordings were made at a VH of -73 mV. Series resistance (RS), 

input resistance (RI) and membrane capacitance (CM) were calculated from a double-

exponential fit of the capacitative current. Mean CM and RI of neurons used for the 

experiments were respectively 5.2 ± 0.7 pF and 1.42 ± 0.13 GΩ (n = 18). Recordings 
were not used if IM or VM changes were accompanied by changes in RS. Off-line analysis 

was performed using IgorPro software (WaveMetrics). Pooled data are expressed as 

mean ± SEM; statistical significance was assessed using paired or unpaired Student’s t 

tests as appropriate, with P < 0.05 considered significant (*).  

 

Tip recording electrophysiology. An electrophysiological recording was made 

from neurons located in a sensilla chaeticum located at the tip of the galea on the 
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honeybee’s proboscis using the tip recording technique (27). All stimulating solutions 

contained 1 mM KCl as a conductive electrolyte. A glass electrode with a tip ~20 µm in 

diameter was used both for stimulating and recording. Recording commenced when the 

open end of the glass electrode was placed over the tip of the sensillum. It was connected 

to a TastePROBE amplifier (Syntech) and further amplified and filtered (CyberAmp 320, 

Axon Instruments; gain: 1000; eighth order Bessel pass-band filter: 1 Hz–2800 Hz). Each 

stimulus trial was digitised (sampling rate 10 kHz, 16 bits; DT9803 Data Translation), 

stored on a computer, and then analysed with the software, dbWave 

(http://taste.versailles.inra.fr/deterrents/tk/dbwave/). 

 

http://taste.versailles.inra.fr/deterrents/tk/dbwave/
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Fig. S1. 

(A-B) Total Ion Chromatogram of Coffea canephora nectar using electrospray ionisation 

in both negative (A) and positive (B) mode and diluted 1:5 with distilled water. A 10 µl 

injection showing the well resolved single peak for caffeine in the nectar with inset mass 

spectrum extracted at 5.706 min  characterised by a prononated molecular ion at m/z 

195.1 [M+H]
+
, as the major secondary metabolite detected in the nectar. The molecular 

ion was used to quantify concentrations in all nectar samples analysed against a 

calibration curve of an authentic standard of caffeine. The trailing peak between T = 1.5 – 

4.00 min is typical of a column overloaded with sugars from nectar. (B) The relative 

concentrations of glucose, fructose, and sucrose in nectar depended on the species 

sampled (2-way ANOVA: F10, 483 = 7.31, P < 0.001). Sucrose was higher in concentration 

than glucose and fructose in nectar in Coffea liberica and Coffea canephora (lsc, P < 

0.05), and glucose was greater in concentration than fructose and sucrose in Citrus 

paradisi (lsc, P < 0.05); in the other species, the concentration of glucose, fructose, and 

sucrose was not significantly different (lsc, P > 0.05). Ncc = 34, Ncl = 31, Nca = 27, Ncp = 

17, Ncm = 5, Ncs = 7, Ncrcs = 5.  
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Fig. S2 

(A) Caffeine consumed during acquisition did not increase the general olfactory 

responsiveness of bees during the 24 h test. Data represents the responses of honeybees 

conditioned and tested in Figures 2 and S2 to the conditioned odour (clear bars) and a 

novel odour (grey bars). The average response to the conditioned and novel odours 

depended on the concentration of caffeine (logistic regression, χ7
2
 = 14.6, P = 0.040), but 

the responses elicited by the novel odour of the bees conditioned with caffeine was not 

greater than the responses of bees conditioned with 0.7 M sucrose (lsc, P > 0.10 for all 

comparisons). N > 80 for all groups. (B) Reward sucrose concentration does not 

influence long-term memory formation. Bees were massed-conditioned for 6 trials with 

an odour paired with 0.3 M, 1.0 M, or 2.0 M sucrose, and then tested with the odour at 10 

min and 24 h after conditioning. At 24 h, honeybees were less likely to respond to the 

conditioned odour (logistic regression, χ1
2
 = 51.6, P < 0.001). Reward concentration did 

not affect the response at either time during the test (logistic regression, χ2
2
 = 1.66, P = 

0.439). N > 40 for all 3 groups 
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Fig. S3 

Gustatory neurons in sensilla on the honeybee’s mouthparts can detect caffeine in sucrose 

solution. A tip recording was made from the honeybee’s galeal sensilla as reported in 

Wright et al. (2010) (27). Recordings were made for 2 s; traces are representations from 

the same sensillum. (A) The response to 0.3M; (B) the response to 0.01 M caffeine; (C) 

the response to a mixture of 0.3M sucrose and 0.01M caffeine. 
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