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Abstract: Caffeine is an alkaloid with a stimulant effect in the body. It can interfere in 

transmissions based on acetylcholine, epinephrine, norepinephrine, serotonin, dopamine 

and glutamate. Clinical studies indicate that it can be involved in the slowing of Alzheimer 

disease pathology and some other effects. The effects are not well understood. In the 

present work, we focused on the question whether caffeine can inhibit acetylcholinesterase 

(AChE) and/or, butyrylcholinesterase (BChE), the two enzymes participating in 

cholinergic neurotransmission. A standard Ellman test with human AChE and BChE was 

done for altering concentrations of caffeine. The test was supported by an in silico 

examination as well. Donepezil and tacrine were used as standards. In compliance with 

Dixon’s plot, caffeine was proved to be a non-competitive inhibitor of AChE and BChE. 

However, inhibition of BChE was quite weak, as the inhibition constant, Ki, was  

13.9 ± 7.4 mol/L. Inhibition of AChE was more relevant, as Ki was found to be  

175 ± 9 µmol/L. The predicted free energy of binding was −6.7 kcal/mol. The proposed 

binding orientation of caffeine can interact with Trp86, and it can be stabilize by Tyr337 in 

comparison to the smaller Ala328 in the case of human BChE; thus, it can explain the 

lower binding affinity of caffeine for BChE with reference to AChE. The biological 

relevance of the findings is discussed. 
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1. Introduction 

In the body, two structurally close esterases with different functions can be found. While 

acetylcholinesterase (AChE) (EC 3.1.1.7.) is involved in the termination of neurotransmission, the role 

of butyrylcholinesterase (BChE) (EC 3.1.1.8.) is not understood. Acetylcholine is a low molecular 

weight neurotransmitter presented in both the central and peripheral nervous system. It is responsible 

for signal transmission from nerves to terminal glands and muscles. In the body, nicotinic (nAChR) and 

muscarinic acetylcholine receptors (mAChR) are present. The receptors are expressed in most tissues, and 

they can be found on leukocytes, endothelial cells, nerves and others [1–3]. AChE is an enzyme converting 

acetylcholine into choline and acetate. Neurotransmission is stopped by the AChE effect [4,5]. 

AChE is a target for many drugs and toxins. Organophosphorus pesticides, carbamate pesticides 

and nerve agents are examples of toxic compounds inhibiting AChE [6,7]. Huperzine and its 

derivative, ZT-1, donepezil, galantamine and rivastigmine can be mentioned as drugs for Alzheimer 

disease inhibiting AChE [8–10]. Compared to drugs for Alzheimer disease penetrating through the 

blood-brain barrier, drugs for myasthenia gravis, such as pyridostigmine and neostigmine, inhibit 

AChE in peripheral nerves [11,12]. BChE is not sensitive to all of the AChE inhibitors. Irreversible 

and pseudo-irreversible inhibitors represented by the aforementioned pesticides, nerve agents, 

rivastigmine, pyridostigmine and neostigmine have nearly equal affinity to AChE and BChE [4]. 

BChE does not have a simply defined role in the body. Drugs interacting with the cholinergic system 

are not focused on BChE for that reason. The enzyme can be found in many tissues, and the expression 

is not privileged to the closeness of nerves, like in the AChE case. Significant production of BChE can 

be found in the liver, from where the enzyme is released into the blood system, and it circulates in plasma 

in a level of 5 mg/mL [13,14]. 

Caffeine (shown in Figure 1) is a well-known plant alkaloid found in coffee beans from  

Coffea arabica, C. canephora and some other Coffea plants. It is known to be in tea leaves of  

Camellia sinensis as well. People typically accept caffeine from coffee, tea, energy and cola drinks. 

Besides the presence in the drinks, caffeine is used as a stimulant supplement and medical stimulant in 

combination with other compounds [15,16]. The caffeine’s stimulant effect is based on nonselective 

adenosine receptor antagonism [17]. However, the adenosine receptors are not the only targets of 

caffeine. It can meet acetylcholine-, epinephrine-, norepinephrine-, serotonin-, dopamine- and 

glutamate-mediated neurotransmission [18–22]. Phosphodiesterases inhibition and promotion of 

calcium release from intracellular stores can be attributed to caffeine, as well [23,24]. The implication 

in the acetylcholine-based neurotransmission is plausibly verified [25]. Caffeine regulatory potency in 

the body is an object of extensive research, and some of the caffeine related pathways probably remain 

unrevealed [26]. The present paper describes the search on caffeine potency to modulate the activity of 

cholinesterases, a crucial part of the cholinergic system. We try to answer the question whether 
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caffeine can act via acetylcholine receptors only or whether it can be involved in the regulation of the 

neurotransmitter, acetylcholine, via cholinesterases. 

Figure 1. Structure of caffeine. 

 

2. Results and Discussion 

Donepezil and tacrine were assayed as standard non-competitive inhibitors of AChE. The inhibitors 

have no significant affinity to BChE. The inhibition constant, Ki, for donepezil was assayed to be  

23.8 nmol/L. Tacrine was scored to have an inhibition constant, Ki, equal to 189 nmol/L. The 

experimental values are in compliance with the literature search, where Ki equal to 12.5 nmol/L for 

donepezil and 105 nmol/L can be found for AChE from rat erythrocytes [27]. The differences between 

the values subtracted from the literature and the results reported here can be caused by the fact that 

human AChE was used in our experiment. Small structural alteration between AChE from different 

organisms can be responsible for the result difference. 

An assay of caffeine using human AChE is shown in Figure 2. Non-competitive mechanism of 

inhibition can be easily assumed from the plot. Experimental values for the lines and calculated  

Ki values for each line are depicted in Table 1. The correlation coefficients, R, are quite high, which 

confirms the precision of the assay. The Ki value for caffeine and human AChE was calculated to be 

(mean ± standard deviation) 175 ± 9 µmol/L. Comparing to AChE, BChE had only minimal sensitivity 

to inhibition by caffeine. Experimental data for caffeine and human BChE are depicted in Table 2.  

As the affinity of caffeine to BChE was low, the fitted lines had low slopes, and correlation 

coefficients were not good for the reason. The Ki value for BChE was nearly 80,000 times higher than 

for AChE: 13.9 ± 7.4 mol/L. 

The crystal structure of human AChE with donepezil was considered for docking [28], because it 

would obtain a more accurate basis for the explanation of the structural feature than the previously 

available ones. Firstly, donepezil was re-docked to the same binding orientation, as in the crystal 

structure (the predicted free energy of binding was −12.2 kcal/mol). The phenyl ring was stacked on 

Trp86 with a π–π interaction. Additionally, galantamine was docked in a similar orientation, as in the 

crystal structure (pdb code 4ey6 [28]; the predicted free energy of binding is −10.1 kcal/mol). It 

occupied a whole internal cavity with the active site. Finally, the molecule of caffeine was docked 

(predicted free energy of binding, −6.7 kcal/mol). The predicted binding orientation of caffeine is 

stacked toward Trp86 (3.6 Å) with π–π interaction similar to the phenyl cycle of donepezil. 

Furthermore, there can exist two hydrogen bonds between caffeine and Ser125 (3.1 Å) and a weaker 

hydrogen bond with Tyr133 (3.6 Å). The binding orientation of caffeine can be stabilized by Tyr337 

(3.7 Å) in comparison to human BChE, where it is in the position situated on Ala328, which is not able 

to extend to the predicted caffeine binding orientation. This can explain the weaker binding activity for 
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BChE in comparison to AChE. The docked orientation of caffeine in the AChE structure is depicted in 

Figure 3. BChE has very low binding affinity; thus, it was not modeled by docking, as the program is 

not suitable for such weak interactions. 

Figure 2. Dixon plot for human acetylcholinesterase (AChE). The concentration of the 

substrate is indicated beside each line. The data are extrapolated to cross the X-axis. Error 

bars reflect a standard deviation for n = 4.  

 

Table 1. Search on inhibitory mechanism using human AChE. 

Substrate (mmol/L) Slope (s × L/mol 2) Interception (s/mol) Correlation coefficient Ki (mmol/L)

1 4.49 × 10 13 8.23 × 10 9 0.978 0.183 
0.5 5.75 × 10 13 9.43 × 10 9 0.976 0.164 
0.2 9.64 × 10 13 1.64 × 10 10 0.981 0.170 
0.1 2.38 × 10 13 4.41 × 10 10 0.966 0.185 

Table 2. Search on inhibitory mechanism using human BChE. 

Substrate (mmol/L) Slope (s × L/mol 2) Interception (s/mol) Correlation coefficient Ki (mol/L)

5 2.76 × 10 8 6.60 × 10 9 0.277 24.0 
1 8.75 × 10 8 5.80 × 10 9 0.609 6.64 

0.2 4.62 × 10 8 5.07 × 10 9 0.400 11.0 

As seen in the experimental data, caffeine is a selective inhibitor of AChE and not BChE. The fact 

that caffeine can inhibit AChE can be assumed from some papers [29–31]. The exact mechanism of the 

inhibition and the detailed comparison of AChE and BChE, however, was not done. Though inhibition 

of BChE can be found, the inhibition constant is too high to be reached in the body. AChE activity can 

be affected more easily. It is noteworthy that caffeine is not a highly potent inhibitor of AChE. As seen 

from the quoted work about tacrine and donepezil, caffeine is approximately a 1000-times weaker 

inhibitor of AChE than tacrine and a 14,000-times weaker inhibitor than donepezil. On the other hand, 

caffeine is much less toxic than the mentioned drugs, and it is easier to give a higher dose to the body. 
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The toxic effect of caffeine is assumed when plasmatic concentration reaches 25 mg/L (i.e., 129 µmol/L), 

and intoxication with caffeine reaching a plasmatic level 85 mg/L (438 µmol/L) is known [32,33]. The 

ability of caffeine to inhibit AChE was not known at the time of the mentioned case report. However, 

we can infer that a cholinergic crisis would take place in the intoxicated human, as the reached 

plasmatic concentration was above the inhibition constant for human AChE. Intake of caffeine in the 

form of chocolate, coffee, energy drinks or tea probably does not cause significant biological effects 

based on AChE inhibition. As proved in a study, an amount of caffeine of 100 mg corresponding to 

one coffee results in a peak concentration of caffeine in plasma of approximately 2.0 mg/L  

(10.3 µmol/L) for men and 3.6 mg/L (18.5 µmol/L) for women [34]. The quoted plasma concentration 

is 17-times under the Ki in the case of men and 9.5-times under the Ki for women. We can estimate 

that blood AChE is not significantly inhibited when people take one coffee. However, the combination 

of coffee and energy drink or caffeine tablets can easily reach plasmatic caffeine concentration when 

the AChE is inhibited. 

Figure 3. The internal cavity of human AChE is visualized with the predicted binding 

orientation of caffeine, which is colored by red; the docked orientation of donepezil is 

colored by violet. Trp86 creating a stacking interaction is situated below the docked 

orientation of caffeine. Furthermore, there are other important amino acids having an 

interaction with caffeine (Ser125, Tyr133 and Tyr337). Additionally, His447 creates part 

of the active site for AChE. 

 

There was a proven lower incidence of Alzheimer disease in individuals taking coffee regularly [35,36]. 

This phenomenon is not commonly understood, despite efforts to find key macromolecules in the 

caffeine pathway [37]. Though some theories were established, none is confirmed on a molecular 

model. We infer that the inhibition of AChE can be responsible for the effect. 

Non-competitive inhibitors blocking anionic sites of AChE are known to be able to improve 

cognitive functions during Alzheimer disease [5,18,38], and caffeine would act just as the  
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non-competitive inhibitor. Besides the improving cognitive functions, there are hypotheses that the 

blocking of the peripheral anionic site of AChE could slow down deposition of amyloid plaques [4,5]. 

The fact that caffeine acts as a selective inhibitor is quite interesting. There is a continuous effort to 

introduce selective inhibitors in order to ameliorate side effects of drugs [39,40]. Since the etiology of 

Alzheimer disease is not revealed and many starting mechanisms, including oxidative stress, are 

currently considered [41–43], the effect of caffeine in clinical studies can be helpful. The findings 

given in clinical studies [35,36] can be attributed to inhibition of AChE rather than BChE. The second 

enzyme probably plays another role than AChE in Alzheimer disease development, and both enzymes 

are suspicious of being involved in the disease’s development [44]. More work on the issue is needed 

prior to giving a serious explanation. 

3. Experimental Section 

3.1. Cholinesterases Activity Assay 

Recombinant human BChE and recombinant human AChE were purchased from Sigma-Aldrich 

(Saint Louis, Missouri, USA). Both enzymes were received as a powder. The BChE had specific 

activity ≥500 µmol/min/mg of protein and AChE ≥1500 µmol/min/mg. Caffeine, tacrine and donepezil 

were purchased as analytical standards from Sigma-Aldrich. The other reagents were in a standard 

purity, and they were received from Sigma-Aldrich, as well. 

Cholinesterases inhibition by the tested compounds was assayed using Ellman’s method based on 

5,5'-dithiobis-(2-nitrobenzoic) acid as chromogen and, butyrylthiocholine chloride (for BChE) and 

acetylthiocholine chloride (for AChE) as substrates. The principle and protocol for the assay was 

published in the quoted papers [45–47]. In the assay, standard PS disposable cuvettes were used. The 

cuvette was gradually filled with 0.4 mL of 5,5'-dithiobis-(2-nitrobenzoic) acid 0.4 mg/mL, 100 µL of 

either BChE or AChE solution (1 × 10−9 kat for 1 mmol/L substrate and standard ambient temperature 

and pressure (SATP) conditions) in phosphate buffered saline (PBS; composition 137 mmol/L NaCl, 

2.7 mmol/L KCl, 10 mmol/L Na2HPO4, 0.24 mmol/L KH2PO4, pH 7.4), 100 µL of the tested 

compound solution in PBS and 300 µL of PBS. The reaction was started by addition of 

butyrylthiocholine or acetylthiocholine chloride (100 µL). Five minutes after substrate injection to the 

cuvette, absorbance was measured at 412 nm. Enzyme activity was calculated using the extinction 

coefficient, ε = 14,150 L × mol−1 × cm−1. The coefficient was taken from the literature describing an 

experiment where the same assay conditions were used [48]. 

3.2. Molecular Modeling 

The first polypeptide chain from the crystal structure of human AChE with donepezil was taken for 

modeling (pdb code 4EY7) [28]. The water and other molecules were removed, and the molecular 

program, Sirius (version 1.2, Supercomputer Center, San Diego, CA, USA), was used for preparation 

of the complex AChE inhibitors. Further structures were modified using the AutoDockTools scripts in 

order to be docked by AutoDock Vina 1.1.2 [49] with default parameters, where the grid center was 

situated on the inhibitor, in compliance with the crystal structure, and the grid size was equal to  
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27 × 18 × 23 Å. The orientation with the lowest free energy of binding was only considered according 

to the Vina score. The results were visualized with the help of the Pymol software [50]. 

3.3. Statistical Processing of Experimental Data 

The experimental data were processed in compliance with Dixon’s method [51,52]. The data were 

plotted by two ways: as a reciprocal value of velocity against inhibitor concentration and as a substrate 

concentration divided by reaction velocity against inhibitor concentration, as described by  

Cornish–Bowden [52]. The inhibition constants, Ki, were calculated from the plots. Non-competitive 

standard inhibitors were assayed for their IC50. If necessary, the Ki value can be derived from  

the IC50 [53,54]. 

4. Conclusions 

Caffeine is a simply available drug that has been known for a long time and by many cultures. 

Despite a lot of work on the identification of caffeine’s effect in the body, some pathways remain 

undiscovered. In the present work, we proved that caffeine can act as a non-competitive inhibitor of 

AChE in the body. This finding can be expected in some of the clinically proven effects with no 

known molecular mechanism. We can emphasize that caffeine can be considered as a potential lead 

structure in drug design. 
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