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Abstract

Temporal action localization has been one of the most

popular tasks in video understanding, due to the importance

of detecting action instances in videos. However, not much

progress has been made on extending it to work in an on-

line fashion, although many video related tasks can benefit

by going online with the growing video streaming services.

To this end, we introduce a new task called Online Temporal

Action Localization (On-TAL), in which the goal is to imme-

diately detect action instances from an untrimmed stream-

ing video. The online setting makes the new task very chal-

lenging as the actionness decision for every frame has to be

made without access to future frames and also because post-

processing methods cannot be used to modify past action

proposals. We propose a novel framework, Context-Aware

Actionness Grouping (CAG) as a solution for On-TAL and

train it with the imitation learning algorithm, which allows

us to avoid sophisticated reward engineering. Evaluation

of our work on THUMOS14 and Activitynet1.3 shows sig-

nificant improvement over non-naive baselines, demonstrat-

ing the effectiveness of our approach. As a by-product, our

method can also be used for the Online Detection of Ac-

tion Start (ODAS), in which our method also outperforms

previous state-of-the-art models.

1. Introduction

Fueled by flourishing video platforms, video understand-

ing tasks are drawing substantial attention in the com-

puter vision research community. Among many video un-

derstanding tasks, Temporal Action Localization (TAL),

the task of extracting action instances from an untrimmed

video, has been one of the most popular topics. A plethora

of works have been done in TAL [32, 30, 5, 8, 44, 22, 43,

39, 41, 19, 1], implying the importance of action instances
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Figure 1. Example of play-by-play system applied on the video

from THUMOS14.

in video understanding

However, detecting action instances from streaming

videos has received no attention, even though more video

streaming services are being provided which require real-

time and online approaches. In contrast, many online al-

gorithms are being introduced in other video understand-

ing tasks such as object detection and tracking [2, 36, 28],

video object segmentation [25], and video instance segmen-

tation [40]. We argue that temporal action localization can

also benefit by going online, as it can provide valuable in-

formation for many practical real-world applications that in-

volve online video understanding.

Popular sports websites provide a feature called live

play-by-play system that shows the progress of a sports

game in real-time. To be able to develop an AI-based play-

by-play system, the algorithm needs to detect both the start,

the end time and the class information of the occurring

action in an online manner. Previous temporal action lo-

calization methods cannot be used as they operate in an

offline fashion, requiring the whole video sequence to be

seen. Figure 1 shows an application of the online temporal
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Ground Truth 0 0 0 0 0 0 0 0 0 0

𝛼 Sequence 0.34 0.41 0.53 0.45 0.41 0.33 0.44 0.51 0.43 0.36

OAD-Grouping 0 0 1 0 0 0 0 1 0 0

Ground Truth 0 0 1 1 1 1 1 1 1 1

𝛼 Sequence 0.45 0.51 0.55 0.62 0.52 0.49 0.55 0.57 0.60 0.56

OAD-Grouping 0 0 1 1 1 0 1 1 1 1

(a)

(b)

Figure 2. Limitations of simple extension of OAD to On-TAL: (a)

action tick and (b) fragmentation. α sequence represents a series

of actionness scores from a binary OAD model. In the case of

action tick, the model emits very short action instances because

α slightly exceeds the threshold (0.5) although there is no action.

Action fragmentation refers to the opposite situation. To avoid

these problems, the model should be aware of its decision context

and be conservative in changing its decision.

action localization in the play-by-play system for the live

sports broadcasting. Another important use of the online

version of the temporal action localization can be found in

the robotics domain. For a robot to interact with humans in

real-time, it needs the information about the whole action

instance before deciding how to react.

To this end, we suggest a new challenging task, On-

line Temporal Action Localization, or On-TAL, which aims

to produce action instances from an untrimmed streaming

video on the fly. As the name suggests, the final output of

On-TAL is the same as offline TAL – action instances with

the start and the end timestamps. But in the On-TAL set-

ting, an action instance needs to be produced as soon as the

action ends, which poses several challenges differentiating

it from offline TAL as follows:

• Without accessing future frames, a model has to decide

whether the current frame contains an action or not be-

cause it needs to return an action instance immediately

when the action ends. Note that this decision making

occurs for every frame.

• As the action instance is produced promptly and one

cannot go back in time, modification of past proposals

is strictly prohibited, making it impossible to use pre-

vailing post-processing methods such as (Soft-) Non-

Maximum Suppression (NMS) [3].

With these constraints, we cannot simply extend previ-

ous TAL approaches for the online setting since most pre-

vious TAL methods require the whole video to be seen and

use the NMS technique to eliminate duplicate proposals.

Online Action Detection (OAD) is a popular online

video processing task whose objective is to extract per-

frame labels from the streaming video. As it provides per-

frame labeling, On-TAL can be solved by taking OAD as an

intermediate procedure; training a binary OAD model that

distinguishes action frames and grouping them. However,

this approach has limitations that are not negligible: action

fragmentation and action tick (Figure 2). These problems

occur due to the model’s unawareness of its decision con-

text, not considering its past decision sequence although it is

essential in making a correct decision for the current frame.

Therefore, we propose augmenting context information

into the actionness grouping process, forming Context-

Aware Actionness Grouping (CAG). Underline the fact that

in the CAG setting, the model’s decision at the current

frame affects what the model will decide in the future. In-

corporating this recurrency to training is the main objective

of our paper because standard supervised learning methods

cannot tackle it properly. Hence, we formulated CAG as a

Markov Decision Process (MDP), and tried to apply rein-

forcement learning [33]. With this, the transition dynamics

can be naturally integrated into the training process.

Nevertheless, what would be the best reward scheme for

our MDP still remains unclear. This is critical because mis-

designed hand-crafted reward function would lead to sub-

optimal policy. In order to resolve the issue, we adopt the

imitation learning (IL) [27], which tries to follow not only

an immediate expert action at a state but also the whole tra-

jectory produced by the expert policy. By this, we can avoid

an exhaustive search for the optimal reward function for our

MDP.

We evaluate our models on two popular video datasets,

THUMOS14 [18] and Activitynet1.3 [6]. We compare our

model with various baselines and show that our model,

CAG with imitation learning, significantly outperforms the

other models. Moreover, as our model also can be used as

online detection of action start (ODAS), we evaluated our

model on the ODAS task. Surprisingly, our model outper-

forms state-of-the-art ODAS models.

The main contribution of our paper is summarized as fol-

lows:

• We introduce a new challenging task, Online Tempo-

ral Action Localization (On-TAL). Due to its ability to

process streaming videos and promptly respond with

instance-level information of actions, it opens the door

for various real-time video understanding applications,

for which previous video-related tasks cannot be used.

• For On-TAL, we devise an original framework, CAG,

which takes into account not only the frame context

but also the model’s own decision context. To train

CAG, we formalize the CAG framework into a Markov

Decision Process (MDP) and propose a novel training

method using imitation learning.
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• Its effectiveness and robustness are validated by ex-

tensive experiments on popular video datasets: THU-

MOS14 and Activitynet1.3. Besides, our model can

also be used for ODAS, outperforming previous ODAS

algorithms.

2. Related Work

2.1. Temporal Action Localization

Temporal Action Localization (TAL) is analogous to ob-

ject detection in the image domain and there are numerous

works on this topic [32, 30, 5, 8, 44, 22, 43, 39, 4, 21, 42, 23,

19, 1] including [41] that exploited reinforcement learning

to solve the problem. More extensive reviews on existing

TAL works can be found in [37].

Our method is influenced by the Temporal Actionness

Grouping (TAG), proposed in [44]. However in our set-

ting, actionness grouping must be done without accessing

future frames, while TAG exploits a full video and utilizes

the post-processing of generated proposals such as group-

ing of primitive proposals to avoid action fragmentation and

NMS to eliminate duplicates.

2.2. Online Video Understanding

There are online video understanding tasks that share the

similar goal to the proposing On-TAL task, namely Online

Action Detection (OAD) and Online Detection of Action

Start (ODAS).

Online Action Detection (OAD), which was first pro-

posed in [9], is a task to extract per-frame class label. Var-

ious methods have been suggested to improve the perfor-

mance of OAD [38, 11], including [13] which utilized rein-

forcement learning to enable earlier action detection. As it

provides dense class score for each frame, it can be regarded

as a good intermediate representation for further processing,

but direct application to real-world problem is limited.

On the other hand, Online Detection of Action Start

(ODAS) [31], whose goal is to detect the start of an action

as soon as possible, generates sparse start point predictions,

making the task more practical. Especially, [14] designed

LocNet which utilizes reinforcement learning to pose im-

plicit sparsity constraint over the decision context. Note

that one of our baselines, the CAG agent trained with hand-

crafted reward scheme (CAG-RL in Table 1, 2, 4), can be

seen as a direct extension of [14] to On-TAL.

Overall, previously proposed online video processing

tasks mainly focus on frame-level information. On the con-

trary, On-TAL provides action instances that have richer se-

mantics, which enables its direct deployment to real-world

computer vision problems. Moreover, as an action instance

contains an action start point as its element, a model that can

deal with On-TAL automatically solves ODAS problem, in-

dicating that On-TAL can be seen as higher-level task than

ODAS.

3. Online Temporal Action Localization

Assume an untrimmed video V = {xτ}
T
τ=1 with M

action instances Ψ = {ψm}
M
m=1 = {(sm, em, cm)}Mm=1,

where xτ denotes τ th frame and sm, em, and cm represent

the start frame index, the end frame index, and the class la-

bel of the mth action instance ψm respectively. As we are

in the online setting, xτ is provided in a serial order.

Following recent temporal proposal generation meth-

ods [5, 12, 22, 10], consecutive k frames are converted to

a visual feature f and all the following steps, including on-

line generation of action proposals, run on this feature se-

quence. A model for this proposal generation should emit

appropriate action proposal as soon as it detects the action

end. That is, the model should decide whether or not to

generate an action proposal for every feature f it encoun-

ters. The granularity of the feature sequence may matter for

On-TAL; smaller k would result in finer decision making,

leading to possibly more accurate but noisy proposals while

bigger k would work in the opposite way.

The final goal of On-TAL is to recover Ψ by aggregating

each online-generated action instance ψ without any NMS-

like post-processing.

On-TAL can be solved by extending the OAD framework

if we assume that there are no overlaps among action in-

stances. In this setting, consecutive k frames are converted

to a feature f by an encoderE, resulting in feature sequence

{ft}
⌈T/k⌉
t=1 , instead of raw frame sequence {xτ}

T
τ=1. At

each timestep t, the OAD model M takes a feature ft as

its input and outputs an actionness score αt(0 < αt < 1),
where αt is close to 1 if the feature contains an action and

0 otherwise. Simply grouping {αt|αt > threshold} in the

online manner would result in action instances.

4. Proposed Method

4.1. ContextAware Actionness Grouping (CAG)

Even though the naive OAD extension can deal with

the frame context by using a stateful RNN architecture for

the OAD model M , it still cannot take the decision con-

text into account. To this end, we propose a new frame-

work to solve On-TAL, Context-Aware Actionness Group-

ing (CAG), which is described in Algorithm 1.

In CAG (Figure 3), we adopted a new component,

context-aware agent Υ, which takes two historic queues (ac-

tionness queue qa and decision queue qd with both lengths

n) and the current frame’s class probability pt as its input

and returns a discrete output d ∈ {0, 1}. To generate ac-

tion instances, the model aggregates {dt|dt = 1}, instead

of grouping {αt|αt > threshold} as it did in straightfor-

ward OAD extension.
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Figure 3. Overview of our approach (CAG) where k = 3 and the

number of classes is 3 including background class. In this case,

an action instance ψ = (4, 10, “TennisSwing”) is retrieved

at timestep t = 4. In On-TAL setting, the model should return

nothing at timestep t = 1, 2, 3, which makes the task more chal-

lenging.

4.2. CAG as a Markov Decision Process

In CAG, the decision of prior timestamps is taken into

account to make a decision in the current frame, which

makes the training of Υ complicated. Ignoring this recur-

rency, one can directly map current states (qa, qd, p) to Υ’s

output d using the standard supervised learning method,

which is also called as Behavioral Cloning (BC) [26].

However, BC-trained agent cannot “plan” to lead itself to

good states since BC completely neglects the transition dy-

namics. Furthermore, due to the compounding error, the

agent cannot decide which action would be appropriate if

the agent encounters out-of-distribution states [29]. These

drawbacks prevent the BC-trained agent from achieving

good performance, which can be seen in our experiments.

In order to model the recurrency, we formulate the prob-

lem into a Markov Decision Process (MDP). At timestep

t, a state st is represented as {qta; q
t
d; pt}, where qta =

[αt−n, ..., αt] and qtd = [dt−n−1, ..., dt−1]
1. The decision

dt
2 lies on a discrete decision space {0, 1}, where dt = 1

1Initialization technique for qa and qd at the first timestep can be found

in the supplementary material.
2dt should be called as an action if we use normal MDP terms. But to

avoid confusion with actionness α, we denote it as a decision.

Algorithm 1: Context-Aware Actionness Grouping

(CAG) at Inference Stage

Component:

Feature Encoder E which takes k consecutive

frames and outputs a frame feature,

OAD model M1 for actionness output,

OAD model M2 for class probability output,

Context-Aware Agent Υ,

Classifier C,

Input: Video Stream {xτ}
T
τ=1

Output: Action instance set Ψ
Ψ← φ
dprev ← 0
qd.initialize()
qa.initialize()
for t← 1 to ⌈T/k⌉ do

ft ← E(xk(t−1):kt)
αt ←M1(ft)
pt ←M2(ft)
qa.dequeue() // Remove the front-most element.

qa.enqueue(αt)
d← Υ(qa, qd, pt)
if dprev = 0 and d = 1 then

s← k(t− 1) + 1
else if dprev = 1 and d = 0 then

e← k(t− 1) + 1
c← C(xs:e)
ψ ← (s, e, c)
Ψ← Ψ ∪ ψ

qd.dequeue()
qd.enqueue(d)
dprev ← d

end

denotes that xk(t−1):kt are action frames and background

otherwise. Unlike [34], the transition dynamic of the MDP

is stochastic because the agent would face unknown αt+1

and pt+1 at timestep t + 1. In other words, the model has

only partial control for the states that it will encounter in the

future.

4.3. Training method for CAG

4.3.1 CAG with Reinforcement Learning

Reinforcement Learning (RL) makes a model to be capable

of planning in the MDP setting because its objective is to

maximize the cumulative reward of the trajectory, not the

immediate one. In other words, RL enables the model to be

conscious of the transition dynamics of the MDP and to be

foresighted, solving the BC’s main limitation.

Nonetheless, what would be a fair reward scheme for our

MDP still remains problematic. Note that better frame-wise
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Ground Truth

-0.1 +0.1 +0.1 +0.1 +0.1 +0.1 +0.1 +0.1 -0.1 +0.1 = 0.6

+0.1 +0.1 +0.1 -0.1 +0.1 +0.1 -0.1 +0.1 +0.1 +0.1 = 0.6

Time stamp T=1 2 3 4 5 6 7 8 9 10

Reward

Case #1

Reward

Case #2

Figure 4. In the case of frame-wise OAD, the reward scheme

would be straightforward; +0.1 for the right decision and −0.1
for the wrong decision. However, this reward scheme assigns the

same cumulative rewards in case #1 and case #2. Apparently, in

the perspective of CAG, case #1 is better than case #2. But the RL-

trained model does not prefer case #1 to case #2 because the cumu-

lative rewards of the both cases are the same. The best frame-wise

OAD model would be the best CAG model, but a good frame-wise

OAD model is NOT necessarily a good CAG model.

OAD performance does not guarantee better action proposal

performance as shown in Figure 4.

One way to resolve this issue is to apply sophisticated re-

ward functions. For example, complimenting successively

correct decisions would prevent the action fragmentation.

However, this reward function will assign excessive rewards

to long action segments and do nothing about the action

ticks. Therefore, when we apply RL to train CAG, an

exhaustive search for the adequate reward function is in-

evitable.

4.3.2 CAG with Imitation Learning

In Imitation Learning (IL), the goal of a task is defined

by given expert trajectories. That is, no reward sig-

nal is available and the model should figure out what

is a good policy by only using the given expert transi-

tions (state, action, next state). Since a model’s train-

ing procedure should incorporate MDP’s transition dy-

namics, many IL methods restore the reward function

R(state, action) from given expert transitions.

SQIL [27] suggests a completely different approach. The

basic intuition is very simple; as our ultimate goal is to im-

itate the expert, an expert transition should be considered

as a good transition, meaning that the reward of the expert

transition should be set to 1 while a reward of an agent’s

transition set to 0. These transitions are stored in the replay

buffer and used when the soft-Q learning [15] runs. SQIL

tends to be more stable than other method that utilizes ad-

versarial training [16]. Moreover, since SQIL directly ap-

proximates the Q function without using a distinct network

to estimate the reward function R(state, action), SQIL is

more parameter-efficient than other methods that involve re-

ward function approximation.

As the imitation learning fully exploits the MDP struc-

ture without requiring a pre-defined reward scheme, it can

alleviate previously mentioned problems of BC and RL.

Therefore, our final training scheme for CAG adopts the

imitation learning, specifically SQIL.

Nevertheless, we empirically found that a direct appli-

cation of SQIL to CAG yields unsatisfactory results. We

attribute it to the mismatch between our task and the max-

imum entropy assumption [45] of the soft-Q setting, since

CAG will cause action ticks or fragmentation with a single

wrong decision.

Thus, we adopt hard-Q variant of SQIL, which is simi-

lar to the popular DQN method [24]. The only difference

from the original DQN is that we used given expert transi-

tions with constant reward +0.1 and agent transitions with

constant reward −0.1 to approximate the Q-function. To be

specific, Q network Qθ(s, d) is updated as follows:

θ ← θ − η∇θ(δ
2(Dexpert,+0.1) + δ2(Dagent,−0.1)),

where δ2(D, r) ≜

1

|D|

∑

(st,dt,st+1)∈D

(Qθ(st, dt)−(r + γmax
dt+1

Qθ(st+1, dt+1))
2.

(1)

In the above equation, D is a minibatch which is com-

prised of transitions that have come from its subscript, while

γ and η denote the discount factor and the learning rate

respectively. We will call this method as a Q-Imitation

Learning (QIL) for the rest of this paper, just subtracting

the “soft” prefix from SQIL.

The whole training procedure is two-staged, meaning

that the OAD model M1,M2 and the Context-Aware Agent

Υ are trained separately. For the first stage of training, the

binary OAD modelM1 and the multi-class OAD modelM2,

which are both composed of a simple one layer LSTM [17]

network and two additional FC layers, are trained with the

cross entropy loss. After that, α (actionness) and pt (class

probability) sequences for all training videos are calculated

using the trained OAD models. From the calculated se-

quences, the expert database for the imitation learning is

constructed as Figure 5.

In the second stage of training, QIL (Equation (1)) is

conducted in the MDP environment (Figure 6) to train the

Context-Aware agent Υ, which consists of two FC layers

with LeakyReLU activation function. For proposal classi-

fication, independent TSM [20] classifier C is used and a

class probability from the classifier is regarded as a confi-

dent score when we compute mAP.

5. Experiments

5.1. Datasets and Features

We validate our method on two standard datasets: THU-

MOS14 [18] and Activitynet1.3 [6]. THUMOS14 contains

413 untrimmed videos with 20 action classes and it is split
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Figure 5. Expert database construction. Here, we assume that the

number of classes is 3, as can be seen by a p sequence having 3

rows. From the given ground truth d, α, and p sequences, we can

extract four expert transitions, consisting of state, decision (d), re-

ward (r), and next state. Aggregating these tuples, we can con-

struct an expert database.
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𝑞" 0.3 0.5 0.7 0.5 0.2

𝑝#

0.7 0.4 0.2 0.5 0.8

0.2 0.2 0.1 0.1 0.1

0.1 0.4 0.7 0.4 0.1

Context-Aware 

Agent 𝜰

Observation @ t=4

Observation @ t=5

Environment

[Step 2]
The agent yields

a decision, 𝒅 = 1

t 1 2 3 4 5

[Step 3] Enqueue 𝒅 = 1

t 1 2 3 4 5

[Step 1]

[Step 4]

𝑞! 0 1 1 1

𝑞" 0.3 0.5 0.7 0.5 0.2

𝑝#

0.7 0.4 0.2 0.5 0.8

0.2 0.2 0.1 0.1 0.1

0.1 0.4 0.7 0.4 0.1

Figure 6. Snapshot of the MDP at t = 4. α and p sequences are

pre-calculated in the first stage of training and rewards are set to

−0.1 for all the agent transitions if we are in CAG-QIL setting.

into 200 training videos and 213 test videos. There are

more than 15 action instances per video in the dataset. Ac-

tivitynet1.3 consists of 19,994 untrimmed videos and the

videos are divided into training, validation, and test sets by

the ratio of 2:1:1. Unlike THUMOS14, videos in Activi-

tynet1.3 only have 1.5 action instances per video, indicating

that the dataset is not most suitable for our task because our

main objective is to detect multiple action instances in the

streaming setting.

For a frame feature f , 6 consecutive frames (k = 6) are

put into the two-stream TSN [35] trained on Kinetics [7]

and its outputs are used. On Activitynet1.3, we rescaled

the feature sequence of each video to length 100 by lin-

ear interpolation, following the convention in TAL litera-

tures [39, 22, 19, 1].

However when it comes to evaluating ODAS perfor-

mance in THUMOS14, we used Activitynet pretrained

features to ensure a fair comparison with other ODAS

works. [31, 14]

5.2. Evaluation Metric

For TAL metric, we used mean Average Precision (mAP)

to enable fair comparison between our model and the

other offline TAL models. We report mAPs with multiple

tIOUs in a set {0.3, 0.4, 0.5, 0.6, 0.7} for THUMOS14 and

{0.5, 0.75, 0.95} for Activitynet1.3.

To evaluate ODAS performance, we measure the point-

level average precision (p-AP) and calculate p-mAP by av-

eraging p-AP over all the action classes, following previous

works [31, 14]. For each action class, detected start points

are sorted in descending order according to their confidence

scores and then AP is measured accordingly. Each action

start point is counted as a true positive only when its action

class is correct and its temporal distance from a ground truth

point is smaller than the offset. As done in previous works,

duplicate predictions are not allowed for the same ground

truth point.

For the reason that our model uses OAD output as its in-

termediate representation and does not provide frame-wise

labeling, comparison among the other OAD models is inap-

propriate. Note that the context-aware agent’s objective is

to post-process the OAD output and produces valid action

instances.

5.3. Baselines

We compare our method to multiple baselines to demon-

strate the effectiveness of our approach.

OAD-Grouping model generates an action instance by

grouping the result of the binary OAD model. It is the same

model described in the Section 3 with a constant threshold.

OAD-Grouping w/ Hindsight Threshold model assigns dif-

ferent threshold value for each class which results in

the highest class AP. We denote the model as “hindsight

threshold model” because we exploit the test set and con-

duct grid search in ([0.3:0.05:0.7]) with hindsight, to find

the best-performing threshold per each class. In this set-

ting, mAP is calculated by averaging the highest AP of

each class. This can be considered as upper bound of so-

phisticated threshold tuning because it uses the different
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Method 0.3 0.4 0.5 0.6 0.7

OAD-Grouping 33.3 28.0 22.0 16.8 10.4

w/ Hindsight Threshold 35.9 30.3 24.5 18.6 12.1

w/ Temporal Smoothing 38.3 32.4 24.9 18.2 10.7

CAG-BC 6.4 4.8 3.3 2.2 1.5

CAG-RL 32.8 27.0 22.2 16.8 10.8

CAG-QIL w/o pt 43.0 34.9 27.2 19.6 12.4

CAG-QIL 44.7 37.6 29.8 21.9 14.5

Table 1. On-TAL results on test set of THUMOS14. Note that

CAG-QIL outperforms all the baselines with large margin. More-

over, the ablation study of augmenting p to the state representation

proves that including class probability as a part of the state can

improve CAG-QIL’s performance.

Method 0.5 0.75 0.9

OAD-Grouping 28.1 15.7 3.3

CAG-BC 9.5 7.4 3.4

CAG-RL 21.4 11.3 2.2

CAG-QIL 30.5 18.5 4.1

Table 2. Comparison among QIL, RL, and BC result in validation

set of ActivityNet1.3 in terms of mAP@tIoU. Only CAG-QIL sur-

passed the baseline model’s performance.

best-performing threshold for each class when calculating

mAP.

OAD-Grouping w/ Temporal Smoothing additionally applies

temporal smoothing filter to the output of the binary OAD

model. Specifically, we adopted an average filter with the

size of k. We tried various size of k ∈ {3, 5, 7, 9, 11, 13}
and found that k = 5 is the best performing filter size. In

this way, action tick and fragmentation can be alleviated in

some extent.

CAG-BC learns a direct mapping from the state (qa; qd; p)
to the decision d using the standard supervised learning

method (also known as Behavior Cloning). Note that CAG-

BC uses the same input and output form with CAG-QIL but

they have different algorithms for learning a mapping.

CAG-RL denotes an agent trained with hand-crafted re-

ward scheme (frame-wise OAD reward), which is depicted

in the Figure 4. Like CAG-QIL, the DQN algorithm [24] is

deployed to conduct reinforcement learning.

5.4. Result on OnTAL

Table 1 clearly shows the effectiveness of proposed

method, CAG-QIL, in THUMOS14 dataset. It would be

worth noting that OAD grouping models with additional

tricks are not directly applicable to real-world On-TAL

problem, as the model with hindsight threshold uses test set

to select the best per-class threshold value and the model

Method 0.3 0.4 0.5 0.6 0.7

Offline

Two-

Stage

S-CNN [32] 36.3 28.7 19.0 10.3 5.3

CDC [30] 40.1 29.4 23.3 13.1 7.9

SST [5] 41.2 31.5 20.0 10.9 4.7

SSN [44] 51.9 41.0 29.8 - -

BSN [22] 53.5 45.0 36.9 28.4 20.0

TAL-Net [8] 53.2 48.5 42.8 33.8 20.8

G-TAD [39] 54.5 47.6 40.2 30.8 23.4

G-TAD+P-GCN [39] 66.4 60.4 51.6 37.6 22.9

One-

Stage

End-to-End learning [41] 36.0 26.4 17.1 - -

SMS [42] 36.5 27.8 17.8 - -

SSAD [21] 43.0 35.0 24.6 - -

SS-TAD [4] 45.7 - 29.2 - 9.6

GTAN [23] 57.8 47.2 38.8 - -

Online CAG-QIL 44.7 37.6 29.8 21.9 14.5

Table 3. Comparison of mAP@tIoU with various offline TAL

methods in THUMOS14 testing set.

Method
0.3 0.4 0.5 0.6 0.7

Avg SD Avg SD Avg SD Avg SD Avg SD

CAG-RL 0.4 1.5 -0.1 1.3 -0.1 0.8 0.0 0.8 0.0 0.8

CAG-BC -25.2 5.4 -21.6 3.8 -17.2 2.7 -13.1 1.9 -8.6 1.0

CAG-QIL 12.6 1.1 9.7 0.6 7.5 0.7 5.2 1.2 3.5 1.5

Table 4. Comparison among QIL, RL, and BC result in THU-

MOS’14 testing set in terms of mAP@tIoU. A positive value

means the relative improvement by an algorithm to the OAD base-

line, while a negative value denotes degradation. Average and

standard deviation are calculated with four experimental results

to show the robustness of our method.

Ground 

Truth

NAG

CAG-QIL

Ground

Truth

OAD

Grouping

CAG - QIL

Figure 7. Screenshot of our demo program to demonstrate CAG-

QIL’s qualitative result. As we can see in the blue region, our

model tends to emit merged proposals, resulting in significant in-

crement of the mAP score (Table 1). However, since context-

aware agent Υ takes pre-calculated α sequence as its input, it

would lead to wrong action proposal if α sequence is miscalcu-

lated. This failure cases can be found in the red region.

with temporal smoothing cannot run online. Beating the

OAD grouping models with the non-naive tricks with large

margin indicates that the CAG-QIL has exceptional ability

to deal with On-TAL. Furthermore, the result demonstrated

in the table 2 tells us that CAG-QIL also performs well in

the other dataset; Activitynet1.3.
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Offsets (second) 1 2 3 4 5 6 7 8 9 10

Shou et al. [31] 3.1 4.3 4.7 5.4 5.8 6.1 6.5 7.2 7.6 8.2

ClsNet-only [14] 13.9 21.6 25.8 28.9 31.1 32.5 33.5 34.3 34.8 35.2

StartNet-CE [14] 17.4 25.4 29.8 33.0 34.6 36.3 37.2 37.7 38.6 38.8

StartNet-PG [14] 19.5 27.2 30.8 33.9 36.5 37.5 38.3 38.8 39.5 39.8

CAG-QIL (Ours) 20.3 31.2 37.2 41.4 44.2 46.0 47.3 48.1 48.9 49.8

Table 5. Performance on online detection of action start (ODAS) on THUMOS14. Note that CAG-QIL is NOT specifically trained for

ODAS and yet outperform the current state-of-the-art method (StartNet) in the ODAS task.

As the first work on On-TAL, there are no available

methods to compare within the same condition. Therefore,

we compare our results with recent offline TAL methods in

Table 3, as the outputs of both tasks are the same. While

there is still performance gap between our method and state-

of-the-art offline temporal action localization methods, our

method’s performance is comparable to recent one-stage of-

fline approaches despite the strong constraints described in

the earlier section. Note that only [41] and ours do not have

NMS-like post processing in Table 3.

To validate our model’s robustness, we conducted 3 more

experiments for each model in THUMOS14. For each trial,

we used different weights for the OAD models M1,M2.

Remember that if we use different weight for the OAD mod-

els, the pre-calculated α and p sequences of videos vary,

drawing different data for the CAG training. Since every

trial has different baseline (OAD-Grouping model) perfor-

mance, we report differences between the algorithms’ and

the baseline’s mAP score, showing the algorithm’s improve-

ment over the baseline’s (Table 4). The result proves that

CAG-QIL steadily outperforms not only the baseline but

also CAG with reinforcement learning, while CAG-BC only

shows constant deterioration.

Figure 7 qualitatively illustrates the effect of CAG-QIL.

Note that OAD-Grouping and CAG-QIL have the same α
sequence as their input since they share the identical OAD

model M1. CAG-QIL successfully resolves the action frag-

mentation issue by exploiting its decision context if the α
sequence is reasonably calculated.

Throughout the experimental results, it is interesting to

see that the CAG-RL hardly improves TAL performance.

This is because the frame-wise OAD reward cannot penal-

ize action fragmentation as we anticipated in the Figure 4.

It can be proven by the fact that the CAG-RL does not re-

duce the proposal number (5641) than the OAD-Grouping

baseline (4841) in THUMOS14 test set.

Owing to the light-weighted OAD models and context-

aware agent, our algorithm is computationally cheap, which

implies that there is no problem in running it online. In-

stead, we found that the main bottleneck is in the optical

flow computation (used for OAD) that takes 126ms for 6

stacked frames. In our experiment, our full pipeline runs in

29.4 fps.

5.5. Result on ODAS

As our model can promptly yield an action start point

as a by-product of the action instance generation, we can

evaluate the start point generation performance with a met-

ric for online detection of action start (ODAS) task [31, 14]

whose goal is to detect the occurrence and class of action

start as soon as the action happens. But since our classi-

fication procedure is deferred to the action end and uses a

full action instance, direct comparison would result in un-

fair advantage to our model. To avoid this and ensure fair

comparison, we used multi-class OAD model M2’s output

pt, where t denotes detected action start timestep, for the

class probability of the action start point instead of using

independent classifier C’s output.

Table 5 shows the comparison results between the cur-

rent state-of-the-art model in ODAS and our model. Sur-

prisingly, our model outperforms StartNet [14] at every time

offsets even though our model was not specifically trained

to solve the ODAS task. This demonstrates that our model

is good enough to detect accurate start point.

6. Conclusion

In this paper, we first formalized a new challenging task,

Online Temporal Action Localization (On-TAL) and pro-

posed Context-Aware Actionness Grouping via Q Imitation

Learning (CAG-QIL) framework as a solution. Our model

showed comparable mAP score to recent one-stage offline

TAL works, and outperformed the state-of-the-art ODAS

performance. Future work will include improving the per-

formance and also devising an end-to-end framework for

the task.
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