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This article overviews ideas as to how to incorporate the range of prior knowledge and

instantaneous sensory information from experts, sensors and actuators for use in

computer-assisted interventions, as well as learning how to develop a representation of

the surgery or intervention among a mixed human-AI team of actors. In addition, the

design of interventional systems and associated cognitive shared control schemes for

online uncertainty awareness when making decisions in the OR or the IR suite is

discussed, and it is noted how this is critical for producing precise and

reliable interventions.
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ABSTRACT | Data-driven computational approaches have

evolved to enable extraction of information from medical

images with reliability, accuracy, and speed, which is already
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transforming their interpretation and exploitation in clinical

practice. While similar benefits are longed for in the field

of interventional imaging, this ambition is challenged by a

much higher heterogeneity. Clinical workflows within inter-

ventional suites and operating theaters are extremely com-

plex and typically rely on poorly integrated intraoperative

devices, sensors, and support infrastructures. Taking stock of

some of the most exciting developments in machine learning

and artificial intelligence for computer-assisted interventions,

we highlight the crucial need to take the context and human

factors into account in order to address these challenges. Con-

textual artificial intelligence for computer-assisted intervention

(CAI4CAI) arises as an emerging opportunity feeding into the

broader field of surgical data science. Central challenges being

addressed in CAI4CAI include how to integrate the ensemble of

prior knowledge and instantaneous sensory information from

experts, sensors, and actuators; how to create and commu-

nicate a faithful and actionable shared representation of the

surgery among a mixed human–AI actor team; and how to

design interventional systems and associated cognitive shared

control schemes for online uncertainty-aware collaborative

decision-making ultimately producing more precise and reli-

able interventions.
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I. I N T R O D U C T I O N

Contemporary progresses in machine learning and arti-

ficial intelligence have permitted the development of

tools that can assist clinicians in exploiting and quan-

tifying clinical data including images, textual reports,

and genetic information. State-of-the-art algorithms are

becoming mature enough to provide automated analy-

sis when applied to well-controlled clinical studies and

trials [1], [2], but adapting these tools for patient-specific

management remains an active research area, with the

bulk of the research community having focused on fully

automated machine learning tools. These considerations

become especially critical in the highly heterogeneous con-

text of surgery and interventional procedures that require

patient- and team-specific decision support tools being able

to draw information from nonstandardized interventional

devices integrated into diverse interventional suites. Com-

pared to computational tasks in radiology, the domain

of computer-assisted intervention further creates unique

methodological challenges, such as imposing stringent

time constraints in the interventional suite, requiring

knowledge of procedural data, and needing methods that

deal with dynamic environments.

In this article, keeping a focus on imaging data,

we review existing work and share insights on future

developments of machine learning strategies that deci-

pher, support, augment, and integrate into various sur-

gical and interventional workflows while providing the

flexibility required by clinical management. Flexibility is,

for example, mandated to be able to deal with missing

input sources, react to real-time user feedback, adapt to

the patient risk aversion and preferences, handle uncer-

tain or contradictory information, learn from potentially

small and heterogeneous data, and so on. All of them

are common in computer-assisted interventions. Imaging

sources of particular interest for surgery and interven-

tion include a wide range of well-known interventional

modalities, such as surgical microscopy, video endoscopy,

X-ray fluoroscopy, and ultrasound, more emerging biopho-

tonics imaging modalities, such as hyperspectral imaging,

endomicroscopy, and photoacoustic imaging, and also span

classical radiology modalities, such as MRI and CT, that

remain the main sources of imaging data for preoperative

intervention planning and postoperative assessment. We

argue that the stringent need to consider the context

when analyzing surgical and interventional data coupled

with the heterogeneity of information sources and domain

knowledge in computer-assisted intervention applications

calls for the development of novel domain-specific con-

textual artificial intelligence solutions, a domain that we

coin as the contextual artificial intelligence for computer-

assisted intervention (CAI4CAI). Feeding into the broader

field of surgical data science [3]–[5], CAI4CAI will focus on

the underpinning machine learning methodology exploit-

ing contextual information and human interaction to

enable the required responsiveness to deliver the clinical

impact on surgery and interventional sciences.

To support our claim, we highlight some of the transfor-

mative machine learning research results and methodolo-

gies currently being developed across the spectrum of tasks

in computer-assisted interventions. The impact of machine

learning in intervention planning is discussed in Section II,

intraoperative data fusion in Section III, intelligent intra-

operative imaging in Section IV, surgical and endoscopic

vision in Section V, and clinical workflow monitoring and

support in Section VI. In these sections, we will highlight

how flexible deep learning-based tools are becoming crit-

ical for the design of effective and efficient intervention

planning solutions. During surgery, navigation solutions

are often used to map preoperative information in the

context of the intervention. However, navigation does

not account for intraoperative changes. Learning how to

coregister images is now leading to intraoperative reg-

istration solutions that are able to cope with the highly

challenging task of aligning preoperative to intraopera-

tive images coming from different imaging modalities.

Concurrently, AI methodology is advancing to go beyond

traditional navigation-based data fusion and image overlay

to exploit information coming from complex or synergistic

data sources. This is giving rise to what we refer to as

intelligent intraoperative imaging. Data-driven modeling

strategies coming from the computer vision community are

acting as instrumental starting points to achieve semantic

information extraction from interventional data sources,

including endoscopic videos, with applications ranging

from automated polyp detection to surgical activity recog-

nition. To deliver improved clinical outcomes through AI,

all these building blocks are increasingly being integrated

at the level of the complete surgical workflow with appli-

cations spanning the full breadth of surgical data science.

In this area, starting from the data-driven mapping of

clinical workflow and skills assessment, AI is now helping

make contextual decision support tools and conditionally

autonomous intervention a reality. Finally, closing thoughts

are provided and further budding applications of CAI4CAI

are discussed in Section VII.

II. I N T E RV E N T I O N P L A N N I N G

A. Clinical Adoption of Intervention
Planning Tools

Once a decision is made for a patient to undergo an

interventional procedure, for any nontrivial operation,

patient-specific planning of the intervention is required.

The steps involved usually necessitate the acquisition

of reference preoperative imaging data, semantic

segmentation of anatomical structures in these images,
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determination of the surgical approach, and elaboration

of an intraoperative plan leading to optimal outcomes for

the patient. Such a plan might encompass establishing

a surgical path and target, designing, or selecting a

patient-specific implant or assistive adjunct tool such as

a drill or saw guide [6]. In the majority of cases, such

intervention planning is performed by a team of healthcare

professionals, each with their own expertise, known as the

multidisciplinary team (MDT). Relatively, little computer

assistance is currently available for interventional planning

in the clinic. Notable exceptions can be found in the field

of neurosurgery, oral and maxillofacial surgery, and

orthopedic surgery. What these specialties share is a

relatively static surgical scene due to the proximity of rigid

bone structures. Computed tomography (CT) provides a

rich source of 3-D imaging information in this context.

Indeed, due to the quantitative nature of CT images and

the good contrast of bone, automated segmentation of

bone has proved to be clinically reliable. Because of the

seminal work of the Retrospective Registration Evaluation

Project (RREP) [7], it is also clear that preoperative rigid

registration of different imaging modalities, such as MR

and CT, provides a robust means of fusing soft tissue

contrast information with accurate bone delineation for

neurosurgical planning. Such technical advances have

supported the adoption of stereotactic surgery as a means

of accurately targeting and guiding instrument toward

deep-seated brain structures for procedures, such as brain

biopsies for tumor grading and electrode implantation for

the treatment of movement disorder or the localization of

epileptic seizure onset zones. While computer-assisted sur-

gical planning and subsequent surgical navigation become

standard of care in neurosurgery and a few other disci-

plines, even in these fields, there is major scope to make

the workflow more efficient through the development of

further machine learning-enabled computer assistance.

B. Machine Learning in Interventional Planning

Commercial surgical planning products are still lim-

ited in the automation they support, with many of the

most advanced ones essentially relying on classical image

analysis methods, such as atlas-based segmentation [9],

to delineate soft-tissue structures of interests for a patient

showing no gross pathological brain changes. Clinicians

are often left with manual or generic interactive methods

to delineate other structures of interest and define their

surgical plan. When interventional planning only relies

on the clinician getting a volumetric representation of

the patient anatomy from preoperative data, advanced

visualization techniques, such as cinematic rendering [10],

can be considered as alternatives to explicit segmenta-

tion of structures. These may produce results that are

less sensitive to noise and data variability but do not

enable more quantitative planning. Developments of deep

machine learning segmentation algorithms dedicated to

medical imaging [11], [12] are rapidly changing to a level

of accuracy at which automated segmentation of structures

of interest can be done in a population of patients even

in the presence of gross pathological changes [13]. How-

ever, many challenges remain for these tools to become

of practical use for intervention planning purposes. Poor

generalization, when faced with slight domain changes,

is a recognized problem in the entire medical imaging

community including on the diagnostic side. Expanding

the size of the data sets on which deep learning algo-

rithms are trained would certainly mitigate generalization

issues by providing a much larger variety of training

cases. Collaborative efforts within the community are

notably focusing on providing open-access large annotated

data sets for machine learning training purposes in some

specific use cases [1]. However, collecting task-specific

large annotated databases for medical imaging purposes

faces its own challenges, given the time and expertise

required to provide detailed annotations as well as the

legal, privacy, and storage questions pertaining to sharing

large patient data sets across multiple sites. Federated

learning for multi-institutional collaboration in medical

imaging [14], [15] provides a potential technical solution

to this problem. Implementing such solutions at scale will

require concerted efforts reaching far beyond the method-

ological research community. Furthermore, changes such

as device upgrades or challenges posed by new clinical

indications will not be captured by increasing the pool

of retrospective training data. Active research to address

such inevitable but unpredictable domain gaps is rooted

in domain adaptation techniques [16]. These advances are

necessary for automated machine learning tools to make

an impact on the clinical setting. Prospective randomized

clinical trials (RCTs) are widely seen as the only source

of trustworthy clinical evidence, yet studies implementing

RCTs with systems relying on deep learning tools for med-

ical imaging currently remain noteworthy exceptions [17].

C. Importance of Flexible Contextual
Machine Learning

What distinguishes segmentation in surgical planning

from segmentation in diagnostic imaging is, nonetheless,

that the objective is not necessarily always that of reaching

the best performance in getting the structures delineated

with subvoxel accuracy. Surgical planning needs to respect

the patient-specific needs and preferences of the surgeon.

This requires putting the clinical team at the center and

promoting flexible tools that integrate into the surgical

workflow. Interactive deep learning methodologies are

emerging to combine rich prior knowledge embedded in

retrospective data from previous patients with as-sparse-

as-possible annotations provided by clinicians [8], [18].

As illustrated in Fig. 1, deep interactive segmentation

allows the clinical expert to refine the results from an

initial automated step and, most importantly, to adapt the

inferred results on the fly based on contextual information.

Furthermore, given the heterogeneity and evolving nature

of the surgical practice, additional flexibility is required to

handle potentially missing input modalities. Recent work
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Fig. 1. Interactive algorithms are required to deliver

context-aware artificial intelligence. In this example, using the

algorithm presented in [8], brain tumor segmentation is initially

performed automatically using a pretrained algorithm. As a part of

the surgical planning, the user may want to refine the segmentation

by providing scribbles to denote areas that should be excluded

(green region) or included (pink region) irrespective of the initial

segmentation. The algorithm then adapts its output to respect the

user input.

in deep machine learning is focusing on dealing with such

dynamic heteromodal context while exploiting heteroge-

neous sources of data for the training process [19], [20].

Bringing flexible machine learning tools to maturity will

certainly play an important role in supporting the clinical

adaption of AI in surgery.

As highlighted earlier, segmentation of structures from

preoperative images is often the foundation of computer-

assisted surgical planning, and this currently remains

the state of the art in many commercial solutions. Such

static segmentation, when combined with intraoperative

registration already, provides useful surgical navigation

information for relatively static surgical scenes as is the

case in neurosurgery. Nevertheless, computer assistance for

intervention planning has the potential to provide impact

much beyond the ability to automate the creation of 3-D

anatomical models and overlay of functional data. Patient-

specific simulation of given surgical plans has, for example,

been introduced in orthopedic surgery with a long history

in acetabular fracture surgery [21]. State-of-the-art ortho-

pedic surgery planning systems allow to design patient-

specific implants and patient-specific surgical guides by

enabling the simulation of the effect of different implants

and implantation strategy on key outcome-related parame-

ters, such as the range of motion of articulation or the

limb length [22]. However, these tools often ignore the

effect of soft tissue in the simulation process and still

require very labor-intensive work for the surgical team

to design patient-specific plans. Expert systems capable

of automatically optimizing the surgical plan for a given

orthopedic surgery are now being developed [23] and

promise to make surgical planning more efficient [24].

In the context of deep brain insertion of instruments,

machine learning approaches capable of automatically

planning trajectories of multiple instruments, to maximize

the efficacy of the surgery while minimizing intraoperative

risks and avoiding collisions between instruments, have

demonstrated a significant reduction in planning time

for the implantation of stereoelectroencephalography elec-

trodes for epilepsy treatment [25] and for laser interstitial

thermal therapy [26]. Contextual and flexible machine

learning for surgical planning promises to push the bound-

aries of interventional planning by exploiting data-driven

approaches and real-time user feedback to efficiently plan

for complex situations. An instrument bending model was,

for example, trained in [27] to predict the deviation

between an original surgical plan assuming rigid elec-

trodes and the actual electrode paths as measured on

a postoperative CT. Provided reliable uncertainty esti-

mates on the prediction can be achieved, embedding such

deflection models in the trajectory planning is expected

to improve the safety and accuracy of stereoelectroen-

cephalography electrode implantation planning.

Effectively, planning is moving away from the extraction

of information captured in existing data and representative

of a given (preoperative) time point. Context-aware

learning methods are now being developed to also

predict therapy-related changes and better inform

interventional planning. By exploiting computationally

complex noninvasive cardiac electrophysiology

modeling coupled with transfer learning approaches,

Giffard-Roisin et al. [28] notably achieved online per-

sonalized predictions of electrophysiology cardiac resyn-

chronization therapy responses, thereby paving the way

for better patient selection and patient-specific therapy

optimization. In nonquasi-static environments, surgical

planning is currently further limited by our capabilities to

predict intraoperative anatomical changes. In abdominal

surgery, for example, segmentation of structures from

preoperative images may inform the clinician about

the relative spatial organization of lesions and vascular

structures. However, at the onset of a minimally invasive

procedure, gas insufflation is typically performed to create

the surgical workspace. This has a serious impact on the

geometry of the anatomy and challenges any attempt of

intraoperative use of a 3-D model of the anatomy gen-

erated from preinsufflation images. Current approaches

typically rely on focusing on smaller regions where rigidity

assumptions between preoperative and intraoperative

data may still hold [29], thereby limiting the scope of

surgical planning. Data-driven prediction of anatomical

changes relating to gas insufflation in laparoscopic surgery

was proposed in [30]. Still, in the context of liver surgery,

a system able to take into account nonimaging patient data

and factual knowledge gathered from quotable sources,

such as clinical guidelines, was proposed to support

individualized treatment planning [31]. While relying on
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handcrafted features and exploiting models with limited

expressiveness, this article paved the way for more holistic

interventional planning. It is expected that the context-

aware interventional planning will be informed by refined

prediction models to suggest therapeutic plans cognizant

of clinical experience as well as potential intraoperative

changes and associated risks but also flexible enough to

take into account any further input from the interventional

team interacting with a responsive planning system.

III. I N T R A-O P E R AT I V E D ATA F U S I O N

A. Navigation and Image Registration Challenges

No matter how refined and capable interventional plan-

ning becomes, its full value for procedural guidance and

intraoperative decision-making support remains contin-

gent on appropriate geometric alignment with intraoper-

atively acquired data. This alignment is achieved using

registration methods that either rely on dedicated exter-

nal hardware, such as optical or electromagnetic track-

ing systems [32], or operate directly on intraoperative

images [33].

Image-based registration in the interventional context

has received substantial academic attention [34], [35].

This is because external navigation, while improving

surgical accuracy, is associated with increased procedural

time and complex and manual intraoperative calibration

procedures that may lead to a high level of surgeon

frustration [36]. It is widely believed that image-based

registration will better integrate with procedural workflow,

mitigating many negative aspects of external tracking

approaches while providing similar accuracy. Furthermore,

since no additional hardware is required, there is great

potential for widespread adoption and deployment of

these purely software-driven methods. This suggests

that navigated surgery may also become available in

remote and rural hospitals that could not afford dedicated

equipment otherwise.

Despite the clear opportunity, image-based registration

is not yet widely used in interventional clinical practice.

This is because, depending on the clinical context, sev-

eral challenges of image-based registration have not yet

been solved reliably. During surgery, the anatomy under-

goes highly complex deformations, including the loss of

mass or topological changes during resections. Accurately

recovering bio-mechanically plausible transformations that

represent an anatomical change from preoperative to intra-

operative state that is measured with different imaging

modalities is the subject of the ongoing research. Here,

we will focus on two of the associated challenges:

1) modeling image similarity between the images of the

same anatomy but acquired with different modalities and

2) estimating initial transformation parameters that are

good enough for registration algorithms to succeed.

On a high level, image registration seeks to find a trans-

formation that, when applied to the moving image, aligns

it with the target image such that the locations in both

images are in correspondence. Quantifying correspondence

is achieved using image similarity metrics that, usually,

operate on the image intensity values. A straightforward

comparison of intensity values, e.g., using a simple sum

of squared differences, is generally unrewarding since the

underlying assumption on image formation is prohibitively

strong, even when moving and target images are acquired

with the same imaging modality. For interventional image

fusion, the problem is more challenging since images of

different modalities must be aligned. In this case, the

additive Gaussian noise assumption underpinning the sum

of squared differences is certainly violated. Even worse,

due to the different physical processes that govern image

formation, there is no guarantee that the same anatomical

structures are visible in both images, thereby challenging

the adequacy of co-occurrence-based similarity metrics,

including correlation and mutual information. Nonethe-

less, despite these limitations, model-based image similar-

ity criteria currently remain the state-of-the-art performers

in many interventional image-registration tasks, includ-

ing ultrasound to MRI registration for neurosurgical

guidance [37], [38].

B. Contextual Learning for Image Registration

Using deep learning to go past some of the limita-

tions of classical image registration is an active area of

research. However, due to the fundamental challenge of

gathering ground-truth data for image registration, many

of the most successful learning-based registration methods

for diagnostic images exploit unsupervised learning and

optimize a classical image similarity metric-based loss

[39], [40]. This approach remains unsuitable for most

interventional purposes where more flexible solutions are

required. A prominent example highlighting the need to

take the interventional context into account is a transrectal

ultrasound (TRUS)-guided prostate biopsy. Conventionally,

the biopsy target is segmented on preoperative 3-D MR

images, and this must then be registered to intraoperative

3-D TRUS volumes. Since MR and TRUS images exhibit

a substantially different image appearance, contrast, and

artifact level, this suggests that no good mathematical

model exists to describe image similarity between these

two modalities. Data-driven approaches that do not explic-

itly model intensity correlations to test for image cor-

respondence but optimize a surrogate measure thereof

now achieve state-of-the-art performance. One candidate

surrogate measure can be defined by enforcing segmen-

tations of the same structures to exhibit maximal overlap

after registration [41]. Remarkably, learning to optimize

for such losses does not require access to ground truth

for the spatial transformation and leverages application-

specific annotations that are considered as weak annota-

tions. Further contextual information can be captured by

learning data-driven spatial transformation models or reg-

ularization terms [42]. Related physics-based deformation

models have been trained to predict shape changes in

segmented organs from sparse annotations, which could
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be used for augmented reality purposes [43], [44]. Taking

account of the interventional context one step further,

Hu et al. [45] noticed that in many cases, including

MR-TRUS-guided biopsy, the main purpose of interven-

tional data fusion is to propagate a patient-specific target

defined on a preoperative image to its interventional coun-

terpart and proposed to replace the registration step by a

conditional segmentation one.

Even in scenarios where data-driven similarity metrics

may be learned, finding the transformation that optimally

aligns a pair of images can remain nontrivial. This is

because image similarity is well defined, i.e., informa-

tive, only in a narrowly circumscribed vicinity around the

true transformation, emphasizing the need for appropriate

initialization, such that the initial mismatch falls within

the capture range of the image similarity metric and opti-

mization algorithm [46]. While adequate initialization is

challenging in all registration scenarios, it is considered to

be most detrimental in slice-to-volume applications. Such

applications are common in image-guided interventions,

with the most prominent examples being the bijective

alignment of 2-D B-mode ultrasound to 3-D MR or CT

volumes or the projective registration of preoperative

3-D MR or CT volumes, or CAD models to intraoperative

2-D X-ray or endoscopy images.

In cases where the 3-D imaging protocol context is

well defined, i.e., one is guaranteed to observe the same

extent of anatomy, direct approaches to initialization are

possible. These methods only accept the 2-D image as

input and directly estimate its initial pose relative to a 3-D

canonical atlas coordinate system that is implicitly defined

by the choice of 3-D image database [47], [48] or tool

model [49]. These approaches are attractive, mainly due

to two reasons. First, run times are short since only 2-D

images must be processed. Second, they lend themselves

well for scenarios where 2-D slices are acquired succes-

sively to reconstruct a full 3-D volume. However, due to the

complexity of the problem and canonical atlas assumption,

their performance is often limited in practice.

When a canonical space cannot be defined, alternative

approaches typically mimic the external tracking work-

flow where relative poses are inferred analytically. While

external tracking devices require attachment or implan-

tation of artificial fiducial markers to get position infor-

mation readouts, AI-based approaches seek to establish

correspondence directly from the images or from sparse

but corresponding image locations. In [50], by learn-

ing from a data set of tracked ultrasound, the authors

demonstrated that without inference-time reliance on the

tracker, deep learning approaches can estimate the 3-D

motion occurring in between consecutive 2-D ultrasound

images with an accuracy far exceeding that of conventional

speckle decorrelation techniques and matching that of the

external tracker. This allows for a sensorless 3-D freehand

ultrasound and creates new opportunities in computer-

assisted interventions. Another complementary powerful

concept for trackerless image alignment is the detection

and identification of anatomical landmarks. These are

particularly appealing since they carry semantic mean-

ing and, consequently, define point correspondence across

modalities and domains. Reliably detecting anatomical

landmarks is complicated because of changing appearance

based on viewpoints but has recently become possible due

to powerful convolutional neural network-based image

analysis for anatomical landmarks, as shown in the pelvis

[46], [51] and knees [52]. The same concept of point

correspondence naturally extends to tools and implants

where, rather than relying on anatomical landmarks,

keypoints on the CAD model are used [53]–[55]. The

aforementioned approaches aim at discovering the well-

defined points; however, finding the same arbitrary point

in multiple images is equally appropriate to establish cor-

respondence. In this formulation of the problem, an AI-

based algorithm is trained to produce a pose invariant

latent representation of point appearance. Then, query

points can be randomly sampled in one image that is then

rediscovered in the target image [56], thereby establishing

correspondence. This approach is appealing since it does

not impose any prior on the imaged object; however, learn-

ing a pose invariant latent representation so far has only

been demonstrated for comparably small pose differences.

IV. I N T E L L I G E N T I N T R A-O P E R AT I V E

I M A G I N G

A. From Data Fusion to Intelligent Imaging

Intelligent intraoperative imaging refers to augmenting

the value of intraoperative images for clinical decision-

making by providing additional information that is tailored

to the context of the intervention. In increasingly gran-

ular order, the context here describes the interventional

requirements specific to a certain procedure, step in the

surgical workflow, decision, or even surgeon’s preferences.

So far, efforts in this direction are dominated by data

fusion methods that seek to enrich intraoperative images

with procedural planning information that exists from

preoperative data. While this approach, even when relying

on classical CAI tools, has been deployed successfully

for several types of procedures [33], it is fundamentally

limited in its capabilities of fully leveraging all acquired

data. This is because the value of intraoperative images

is reduced to a proxy to support, e.g., image-based reg-

istration or as a means for overlay, while all intelligent

information that really augments the decision-making is

propagated solely from preoperative images. In addition to

underexploiting intraoperative images, this strategy only

allows for displaying information derived from preoper-

ative data that become outdated as surgery progresses.

This calls for the development of intelligent intraoperative

imaging that fully leverages the information contained

in interventionally acquired data in real-time. Augment-

ing decision-making in this way offers clear opportunities

by: 1) automating quantitative measurements required

for precision medicine and 2) extracting information that
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Fig. 2. Realistic simulation of X-ray image formation from preoperative CT is one possibility to create large quantities of well-annotated

images. Pipeline represents the simulation approach described in [57].

is otherwise not easily accessible, which may allow the

development of new surgical techniques. Still, contextual

and intelligent interventional image analysis is not yet

the mainstream technology because, compared to diag-

nostic image analysis, the environment for developing

AI solutions is even more hostile. From our experience

working with clinical collaborators across different sites

and specialties, we believe that this is primarily due

to three reasons. First, while hundreds of images are

acquired for procedural guidance, only very few, if any, are

archived [58]–[60], thereby suggesting a severe lack of

meaningful data for researchers to work with. Second,

learning targets beyond segmentation are not well estab-

lished or defined. Third, images of the anatomy are

acquired from multiple viewpoints, the exact poses of

them are not reproduced nor known. Finally, the overall

variability in the data is further amplified by surgical

modification of anatomy and the presence of tools. Overall,

the accessible data are heavily unstructured and exhibits

enormous variation, which challenges meaningful data

augmentation strategies. As a consequence, in order to

train AI algorithms on interventional images, solutions to

the data set curation and annotation problem must be

found first. Overcoming these hurdles seems challenging

and is reflected in the observation that only very little

work has considered learning in this context. It is worth

mentioning that the lack of annotated and/or paired data

equally affects other methods presented in this article.

B. Simulation-Based Training

Initial steps in addressing the data problem have been

taken, serving as a stepping stone for the transformative

technology that is intelligent imaging. While the large-

scale acquisition of highly structured data is tractable for

some interventional applications, particularly ultrasound

[61], [62], most other approaches rely on synthetic data

generation from physical models of the scene. This par-

adigm is attractive because all quantities of interest are

precisely known by design; however, if the simulation is

performed naïvely, AI models trained on synthetic data will

not generalize to clinically acquired images because of the

large domain mismatch paired with poor generalizability

of today’s models [57]. Three complementary ways have

recently been shown to mitigate this problem. First, if the

clinically acquired data are available in addition to the

well-annotated synthetic data, style transfer algorithms

can be trained that alter the appearance of real data to

close the domain gap, as shown for the ophthalmic surgical

microscopy [63], [64]. Using such enhanced simulated

data for training of more complex tasks has been applied

successfully to endoscopy [65] and X-ray imaging [66].

Second, if too little clinical data are available, learning

a style transfer algorithm is impossible. In these cases,

a powerful alternative is increasing the realism of syn-

thetically generated images in a model-based approach.

Doing so requires accurate models of all physical principles

that govern image formation; however, approximations are

usually required to reduce simulation time to acceptable

levels. Realistic simulation works well for X-ray-based

modalities, as illustrated in Fig. 2 and demonstrated in

[57] and [67]. It has also been proposed in endoscopic

imaging [68]. However, the level of required realism likely

depends on the application and learning target since it

has been shown that even less realistic simulations could

be adequate, e.g., in some ultrasound applications [69].

The aforementioned approaches aim at reproducing the

real data appearance that is very complicated in practice.

If closely matching real data appearance is found to be
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impossible, domain randomization can be used to improve

the robustness of the trained model to partially unseen

data. Rather than perfectly matching real data character-

istics, the goal of domain randomization is to generate

multiple versions of the same sample with all but the

important characteristics randomized. When training AI

algorithms on such data sets, the models are assumed to

become robust to these types of domain changes. Domain

randomization can be seen as image formation-based data

augmentation and has recently been applied to X-ray

imaging [70] as well as colonoscopy [68], where achieving

realistic image appearance is very complicated due to fine

texture and specular reflectance of the tissue. It is worth

mentioning that all the above-mentioned techniques for

synthetic data usage are similar in that AI algorithms

never process real data during training. This characteristic

is associated with a notable drop in performance when

applied to real data due to residual domain mismatch. Con-

sequently, assessing algorithmic performance only on a

synthetic test set will severely overestimate the AI models

accuracy during deployment and quantitative experiments

on clinical data are required. Ultimately, training the AI

directly on real data is preferable, highlighting the need

for further research on unsupervised and self-supervised

learning to leverage large quantities of unlabeled data.

C. Intelligent Imaging in Interventional
Biophotonics

Although conventional interventional imaging, such as

X-ray fluoroscopy, surgical microscopy, endoscopy, and

ultrasound, will benefit from being augmented by con-

textual AI, another interesting area in which the intelli-

gent imaging paradigm is expected to make an important

impact is that of the interventional biophotonics imag-

ing. The initial focus in biophotonics has been on devel-

oping optimal, task-specific, contrast agents that would

be merely be directly visualized, e.g., in tumor-specific

fluorescence imaging. The biophotonics community has,

however, faced stringent challenges in identifying versa-

tile contrast agents suitable for use in patients and real-

ized that tissue differentiation would remain challenging

with such an approach. Advanced high-dimensional opti-

cal imaging techniques are currently seen as promising

solutions for intraoperative tissue characterization, with

the advantages of being noncontact, nonionizing, and

noninvasive or minimally invasive. However, because of

the high-dimensional nature of the generated data, direct

visualization by the clinical team becomes impractical. This

calls for automated learning-based information extraction

before display. As in the previous examples of intelligent

imaging, many of the most advanced AI-supported inter-

ventional biophotonics imaging devices currently exploit

model-based learning or unsupervised learning. Point-

based measurement devices able to measure the Raman

scattering have recently been translated into commercial

products [71] with support from supervised classifica-

tion [72] or unsupervised dimensionality reduction [73].

Addressing the lack of wide-field information in point-

based systems, the community has looked into modalities

such as hyperspectral imaging [74] with an increasing

use of machine learning to solve some of the intrinsic

challenges of high-dimensional data. Indeed, while bearing

rich information, the raw 2-D -space + wavelength +

time data that hyperspectral imaging produce are difficult

to interpret for clinicians as it generate a temporal flow

of 3-D information that cannot be simply displayed in

an intuitive fashion. Innovative use of invertible neural

networks in combination with model-driven simulation

has been used to train neural network-based regressors

that are capable of real-time operation and can provide

uncertainty estimates for oxygen saturation measurement

from hyperspectral data [75]. Unsupervised deep mani-

fold embedding for hyperspectral imaging was proposed

in [76], and deep learning was used for reconstruction

from sparse hyperspectral data [77]. Intelligent imaging

concept with simulation- or model-based trainings are

also being progressed with other emerging biophotonics

imaging modalities, such as for superresolution in endomi-

croscopy [78], [79], and artifact suppression in photoa-

coustic imaging [80].

D. Toward Prospectively Planned Intelligent
Imaging

With the availability of training data, via either ded-

icated data collection or synthetic generation, AI algo-

rithms can be developed to analyze intraoperative images

in near real time and supply contextual information to

improve decision-making. Omitting applications to endo-

scopic video sources that are discussed in depth in

Section V and focusing first on the interventional X-ray

imaging, benefits of real-time machine learning range from

segmentation of tools [53], [81], [82], anatomical land-

mark detection [51], [52], anatomy localization [83], and

denoising [84], [85], to surgical phase recognition [81].

Corresponding developments can be found for ultrasound

imaging [86]–[88].

While the above-mentioned list of applications

merely hints at the potential that AI-based analysis of

interventional images has to offer, there is an interesting

observation: the majority of intelligent imaging algorithms,

including all the aforementioned methods, try to

provide richer information by the automated analysis

of traditionally acquired images, with little or no

knowledge of the image acquisition workflow. This raises

an interesting question: if it is known what information

is desired or desirable at any given point during the

surgery, is it possible to prospectively acquire an image

that is most informative in that particular context? Initial

steps in this direction have recently been reported,

exploiting ultrasound image formation to suppress

scatter [89] or beamforming a B-mode image [90], [91]

together with producing its segmentation [69].

Zaech et al. [92] use an AI-based algorithm to recommend
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task-optimal and patient-specific C-arm X-ray trajectories

during cone-beam CT of spinal fusion surgery, and similar

ideas arise for ultrasound transducer positioning [93].

The domain of real-time interventional image analysis is

fairly untapped as of yet but offers great opportunities for

workflow analysis, surgical progress monitoring, including

anticipation and adverse event detection, and supplying

rich information for human-in-the-loop decision-making.

In addition, task-aware and autonomous imaging modal-

ities may benefit interventional imaging already one step

before the image is analyzed and may, thus, give rise to

disruptive technology and novel surgical approaches.

V. S U R G I C A L A N D E N D O S C O P I C V I S I O N

A. Recognizing Endoscopic Activity

Standard endoscopic imaging is certainly the modality

most closely relating to natural images. It should, there-

fore, not be surprising that machine learning tools for

interventional images have developed most rapidly in this

field. As a proxy for the eyes of the surgeon inside the

patient, the endoscopic camera is the privileged source

of digital information to understand the activities per-

formed during endoscopic procedures. Endoscopic videos

usually capture most of the activities performed within

the patient. Recognizing and understanding these activities

are essential to develop novel assistance systems that

are reactive to the context, e.g., that can provide timely

instructions to operating room (OR) staff, enforce safety

checkpoints, or log automatically relevant information

within the surgical report. Surgical activity recognition

from endoscopic videos is, however, a highly challenging

task due to the variability existing across patients, surgical

treatments, and surgical teams.

In the recent years, a large body of work has focused

on recognizing the surgical steps of a procedure directly

from the videos [94]–[99]. This has notably been the

case in cholecystectomy, a common procedure consisting

in removing the gallbladder, which is frequently used in

research due to its high frequency of occurrence and well-

standardized protocol [100]. There, the steps include, for

instance, “the Calot triangle dissection, cystic duct and

artery clipping and cutting, gallbladder dissection, and

gallbladder packaging.” Recognition of these steps allows

for the automated understanding of the progress of the

surgery. To perform recognition, models of the underlying

workflow of the procedure are learned from data sets of

exemplary videos, annotated manually with the different

steps. In [97], the model consists, for example, of a visual

feature extractor relying on a deep neural network that

feeds a temporal recognition model, such as a hierarchi-

cal hidden Markov model or an LSTM model. Several

types of procedures have been successfully studied for

step recognition besides cholecystectomy. Examples are

cataract surgery [95], [96] and laparoscopic sleeve gas-

trectomy [98]. As the current recognition methods show

very promising results and real-time capabilities, they can

potentially be directly embedded in the endoscopic tower

to deliver contextual support. Other interesting prediction

tasks have been tackled with success using deep learning

methods. In [101] and [102], the remaining duration of

the procedure is predicted in real time using deep recurrent

models trained directly from video data. In [97], [103],

and [104], the presence of the instruments in the surgical

scene is automatically detected. Additional applications

include bleeding and smoke detection [105], [106], as well

as surgery type identification at the beginning of the

procedure [107].

Beyond the recognition of the surgical steps indicating

the progress of the surgery and the recognition of events,

such as bleeding, many potential applications, such as

safety monitoring and human–robot cooperation, require

a finer level of understanding of the surgical activities.

Future research, therefore, needs to demonstrate accurate

recognition of the detailed interactions between the tools

and the anatomy. To have an impact beyond a single

OR, recognition methods will also need to scale up to

different types of surgeries, ORs, and hospitals without

requiring the manual annotations of large data sets for

each situation. Recent methods exploiting nonannotated

videos through self-supervision or weak-supervision [104],

[108]–[111] or exploiting synthetically generated surg-

eries [64] may prove very useful to train the next gener-

ation of surgical recognition systems.

B. Understanding Image Semantics

Understanding the surgical scene from the endoscopic

images is fundamental for context-aware intelligent

computer-aided assistance. During augmented reality visu-

alization, precise pixel-based segmentation of the tools

is necessary for handling occlusions and providing the

user with the correct perception. Implementing safety

warnings, such as no-go zones, requires the detection

of critical anatomy. When another imaging modality is

used, its registration to the endoscopic video may require

the localization of anatomical landmarks [113]. Similarly,

implementing degrees of autonomy during robotic surgery

requires the localization and recognition of the neighbor-

ing tools and anatomy.

Recently, a large body of work has targeted the detection

and segmentation of surgical instruments [114]. Deep

learning methods have been proposed for both bounding

box or articulated tool detection [115]–[117] and for

pixel-based tool segmentation [118], [119]. Their supe-

riority has been confirmed on laparoscopic and surgical

microscopy data sets in two international challenges

organized in 2015 and 2017 at the MICCAI conferences

[120], [121]. Still, the data sets used for evaluation

are limited in size and variability. They are far from

representing the diversity of surgical scenes, which

can indeed be very challenging due to the presence of

occlusions, smoke, bleeding, specularity, motion blur,

and deformation. Furthermore, the aforementioned

approaches are fully supervised and, therefore, impose
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Fig. 3. Endoscopic video (top), monocular depth estimate (middle), and rendering of a photorealistic reconstruction (bottom). Results

were achieved using the self-supervised method described in [112].

an important burden on the collection of representative

training data sets. New approaches are needed that can

generalize easily to various types of procedures and

be trained using weaker information for training, such

as image-level tool presence [104], point annotation

[122], or scribbles [123].

Far less work has addressed the much needed anatomy

detection and segmentation, certainly due to the lack of

available public data sets. The community is, however,

putting large efforts in this direction, as illustrated by

the recent generation of the CaDIS data set [124], which

contains pixel-level annotations for 36 semantic classes in

cataract surgery videos. Progress has also been achieved

in specific areas, such as liver segmentation [125], lesion

detection and characterization during gastroscopy [126],

or polyp detection during colonoscopy [17], [127]. Here,

again, deep learning is the state of the art, as demonstrated

for polyp detection in a challenge organized at MICCAI

2015 [128]. Due to the real-time capabilities of deep

learning approaches, the intraoperative benefits of such

systems already start to be evaluated in RCTs [17].

C. Reconstructing Anatomic Geometry

Endoscopy mimics the surgeon’s eyes within the body,

but due to the monocular construction of endoscopes,

it lacks one important visual cue: depth. This short-

coming has implications: it has recently been shown

that the availability of 3-D anatomic geometry benefits

several clinical tasks, including the detection of criti-

cal anatomy, such as polyps [129], and the registration

of preoperative 3-D data to endoscopy video to enable

navigation [130]. In addition, analyzing 3-D represen-

tations of anatomy would allow for the introduction of

quantitative measurements, enabling the standardization

of clinical reporting across sites. Recovering anatomic

3-D geometry, e.g., to augment endoscopic video with

depth cues or to provide dense 3-D reconstruction, has

gained considerable traction and is now an emerging

discipline with developments often orthogonal to those for

complementary tasks, e.g., segmentation. This is because

deep learning-based algorithms are able to exploit image-

level features to provide dense depth estimates even

from monocular video, complementing traditional optical

endoscopy with depth sensing as “pseudomodality.” How-

ever, training depth estimation algorithms on endoscopic

sequences is complicated in practice because no paired

depth measurements exist naturally. While paired data

can be generated in silico via simulation from CT [65],

[68], [131], the resulting trained models will need to

overcome the domain mismatch to real clinical data

with methods similar to that presented in Section IV.

Recently, self-supervised training paradigms that rely on

traditional multiview stereo approaches have received

increasing attention as they can be trained directly and

solely from the endoscopic video. Multiview stereo algo-

rithms, including structure from motion [112], [130] and

simultaneous localization and mapping [132], can be

adapted to work with endoscopic video, but they cannot

provide dense 3-D reconstructions due to the lack of

photometric constancy in endoscopic video and texture

scarceness that complicate feature matching across frames.

These algorithms do, however, provide a few recon-

structed 3-D points and, more importantly, relative camera

poses that can be used to supervise monocular depth

estimation [112], [132]. A representative photorealistic

reconstruction achieved using a structure from motion

supervised depth estimation method is shown in Fig. 3.

These methods achieve state-of-the-art performance with

good generalization ability; however, the resulting recon-

structions are only up to scale. Among the biggest premises

of video-based reconstruction is the possibility of monitor-

ing anatomical change during surgery. This would require

methods to robustly handle various sorts of uncontrol-

lable variation, including bleeding, smoke, or tool pres-
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ence. Solutions to these problems are currently unknown.

Even in more controlled scenarios, widespread adoption of

learning-based reconstruction from the endoscopic video

is hindered by the lack of publicly available data sets,

making it unclear how well today’s algorithms perform

on clinical data. This challenge is further aggravated by

the lack of direct evaluation targets. When applied to real

clinical data, current reconstruction or dense estimation

algorithms can only be evaluated via surrogate tasks, such

as video-CT registration [112], [133] or polyp classifica-

tion [129].

VI. C L I N I C A L W O R K F L O W M O N I T O R I N G

A N D S U P P O R T

A. Notion of Surgical Control Tower

While imaging alone provides valuable information,

modern procedures rely increasingly on a variety of

complex devices and intricate workflows. This limits the

knowledge extraction that AI systems can do based on

imaging alone and makes it difficult for humans to properly

analyze in real time the wealth of available data. Fur-

thermore, even though the quality of care has generally

improved with the introduction of new surgical techniques

and devices, adverse events still occur, a large part of

that are preventable [135], [136]. Humans are prone to

fatigue, teams to miscommunications, devices can fail,

and for all roles, surgical tasks require an ever-increasing

level of specialization. The increased use of digital equip-

ment in the OR, however, opens up new opportunities

for support and monitoring, at the level of the whole

room, by providing artificial intelligence systems with real-

time data that capture a faithful representation of the

processes taking place during the surgery. Indeed, most

of the activities happening in the room can be captured

digitally either through interactions with equipment, such

as information systems, room control interfaces, imaging

devices and instruments, or through the use of sensors,

such as ceiling-mounted cameras, which are now becom-

ing widespread and increasingly used for documentation,

teaching, and augmented reality assistance. Consequently,

it is highly likely that in the near future, assistance systems

will be fully integrated in a digital OR that will monitor

surgical processes through AI, akin to a surgical control

tower [137], [138], that can analyze the whole digital

information in real time to provide context-aware support

and information within and outside the OR. Applications

for such a control tower are, for instance, the transmis-

sion of live information about the OR status, the adaptation

of user-interfaces to the surrounding context, the display

of instructions within the OR, the creation of an auto-

mated report, the recording of the activities for archiving

and legal purposes, the enforcement of safety checklists,

the detection of anomalies with respect to past workflows,

and improved scheduling for staff and patients. To perform

these tasks, the control tower will have access to and

crunch masses of multimodal digital data coming from

hundreds of past surgeries.

B. Endeavor Rooted in Surgical Data Science

An essential component of the control tower is the data-

driven modeling and understanding of the clinical activi-

ties, an undertaking that taps into the emerging research

field of surgical data science [3], [4]. Machine learning

has been key to generate models of procedural interven-

tions from data [139], [140], and ontologies have also

been developed to standardize the resulting models [141].

Implementations of such AI-based applications start to

emerge in various institutions, besides the ones focus-

ing on analyzing endoscopic videos already mentioned in

Section V. As video data remain one of the main sources

of information, they highly rely on deep learning. Videos

captured by the cameras mounted in the room provide

indeed a rich source of information about the activities

without disrupting the workflow. For instance, a patient

and staff radiation exposure monitoring system for hybrid

procedures illustrated in Fig. 4 was proposed in [134].

It relies on several RGB-D cameras to estimate the 3-D

pose of the persons and room layout, which can then be

used to simulate and visualize in situ X-ray propagation

around the patient table. Haque et al. [142] develop a

system to monitor hand hygiene in hospital corridors in

order to analyze and reduce the hospital-acquired infec-

tion. The approach uses a large set of depth cameras

installed to observe the hand-soap dispensers. For the

intensive care unit, Ma et al. [143] and Yeung et al. [144]

present methods based on color or depth video data for

the detection of patient mobilization activities. Key build-

ing blocks to the success of these applications are the

estimation of clinician and staff poses [145]–[147], as well

as the recognition of their activities [148]–[151]. As for

traditional visual data, deep learning-based approaches

are currently the best-performing methods for these tasks

though it should be noted that they do not necessarily

perform as well on clinical data yet. This is due to the

specificity of clinical videos, where staffs wear gowns and

masks, colors are often similar, and cameras observe the

room from restricted positions, but also from the fact

that there is no clinical COCO or Imagenet data set yet.

Srivastav et al. [152] evaluate the state-of-the-art human

pose estimation approaches, and Issenhuth et al. [153]

evaluate the state-of-the-art face detection approaches

on clinical data. Both studies show a large margin for

improvement. Since the development of large annotated

data sets of clinical videos may be difficult due to the

expertise required and the restrictions on data, other

approaches need to be developed, for instance, using the

nonannotated data for transfer learning [153].

This will also help deploy the surgical control tower

in new clinical environments, as the variability in room

layout, camera configuration, and workflow can be high.

Retraining the assistance systems using only nonanno-

tated data from the novel environment or a tiny subset

of annotated data will be crucial for the adoption of

these technologies. As even the collection of nonanno-
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Fig. 4. Capturing the 3-D context of the OR is necessary for providing AI-based decision support and monitoring risk. In this example,

the staff radiation exposure during an X-ray-based procedure is computed in situ via simulation and displayed with augmented reality in a

training scenario [134].

tated video data can be challenging due to data and

privacy regulations, it may also be required to implement

federated learning approaches or develop methods that

are able to cope with privacy-preserving data, such as

depth-only videos [142] or even low-resolution depth

videos [154]. In [154], it is shown that 2-D human pose

estimation can be achieved with reasonably high accuracy

on depth images downsampled by ten to the resolution

of 64 × 48. By using other information, such as system

events [155] or speech analysis [156], the analysis of

clinical activities will be further improved.

VII. D I S C U S S I O N A N D C O N C L U S I O N

While AI is starting to impact CAI, as described in this

article, there is a number of challenges that are specific

to surgery and intervention to overcome to deliver clinical

impact. The leveraging context within learning paradigms

will be crucial to address those in a clinically meaningful

way. The emerging field of CAI4CAI offers researchers a

large set of open problems to tackle. These notably stem

from the heterogeneity of surgical procedures and their

particular requirements for intraoperative imaging [157],

the difficulties in data acquisition, the complexity in

modeling and inferring decision-making processes, and the

intricacy of the execution of surgical tasks. Over the years,

the CAI community has defined increasingly powerful

surgical process models [158] to gain an actionable

understanding of surgical procedures while describing

interventions as a sequence of tasks and activities at

different granularity levels. At the finest level, mapping

what should be the Language of Surgery [159], researchers

currently break down surgical gestures into semantically

relevant motion units called surgemes that are further com-

posed of sequences of motion primitives named dexemes

[160]–[162]. However, this taxonomy mostly focused

on the surgical action and, in particular, on surgical

tool manipulation and could, thus, rather be considered

as mapping the Language of Surgical Dexterity. This is

already a laudable achievement and led to scientists

and engineers being able to, e.g., quantify the success

of a training program for executing different surgical

actions [163], [164]. As suggested by the study conducted

by Birkmeyer et al. [165] for bariatric surgery, surgical

skills can be highly correlated with the surgical outcome

for certain procedures. AI systems have been shown

capable of evaluating technical skills using data from

either training scenarios [166] or real procedures [167].

However, by severely underutilizing the rich information

contained in other data sources, the Language of Surgical

Dexterity is still not capturing the most complex aspects of

surgical decision-making. To address the need to capture,

understand, and support all the cognitive interactions and

processes taking place in the OR, the surgical data science

community will need to drive the deployment of real-time

multimodal data acquisition systems that will be used

routinely. At the same time, it will foster the development

of new standards and regulations aiming at increasing

the interoperability of data, devices, and models. This will

directly benefit CAI4CAI by simplifying the implementation

and training of learning algorithms involving databases

from multiple institutions while maintaining privacy, e.g.,

through federated learning. CAI4CAI in combination

with surgical data science and surgical process modeling

could, thus, aim at defining and understanding the

ultimate Language of Surgery based on a large number

of heterogeneous data sources used continuously by

surgeons and interventional teams to guarantee the best

outcomes for a given procedure. As the field blossoms,

CAI4CAI researchers will address some of the most

rewarding questions in computer-assisted intervention.

Could CAI4CAI allow us to learn how decisions are

made, or missed, throughout surgical procedures? Could

CAI4CAI support such decision-makings? Instead of going
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through the traditional path of segmentation, registration,

navigation, and visualization, could contextual machine

learning allow us to optimize these steps for each

given objective and allow for real-time computation and

feedback based on a large amount of heterogeneous data,

including preoperative and intraoperative imaging, patient

characteristics, and surgeon preferences?

With more capable and flexible learning paradigms,

synergistic collaboration is expected to happen between

humans and AI-powered actors. The field is already

seeing exciting attempts to bring the user and the

user experience at the center of our research ques-

tions. For example, novel spatially aware visualization

beyond traditional user interfaces is explored in [134]

and [168]. The challenge of improving human situ-

ational awareness in operating with solutions beyond

visualization is addressed in [169] with the use of

context-specific soundtracks. Introduction of novel mul-

timodal interaction paradigms and technologies within

ORs will require extensive use of machine learning

to optimize the user interfaces and to provide max-

imally relevant information and support while pre-

venting inattentional blindness [170]. By developing

systems that are able to learn from previous surgeries

performed by experts how to provide context-aware sup-

port and instructions directly in the OR, in the manner

of a virtual coach, as in [171], AI could have a strong

impact on improving patient care. This is another aspect

of CAI4CAI that needs particular focus from the scientific

community and requires MDTs, including clinicians, user

experience experts, and machine learning scientists,

to work together and come up with intelligent end-to-end

CAI solutions.

Finally, in this article, we did not have a particular

focus on robotics. However, both surgical robotics and

robotic imaging will play increasingly crucial roles in the

years to come. Machine learning is demonstrating convinc-

ing results in real-time tool tracking [118], [172]–[174].

This, for example, enables automatic positioning of intra-

operative OCT imaging planes within surgical microscopy

for ophthalmic surgery [119], [175]. Integration of robot-

ics within surgical suites would require them to act intel-

ligently and synergistically with the human team and

to be fully context-aware at all moments. The wish to

have real-time multimodal imaging requires full intel-

ligence and automation. It also requires direct com-

munication and collaboration between surgical robots,

imaging robots, surgeons, and surgical teams. CAI4CAI will

have the challenge of enabling such ultimate intelligence,

which requires many years of research and development

in many disciplines while remembering a past experi-

ence with the first generation of context-aware comput-

ing [176]. Not only does CAI4CAI offer numerous exciting

research directions but it also promises to revolution-

ize surgery and, therefore, the future of healthcare at

a global scale.
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