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Abstract. The hardness of the integer factorization problem assures
the security of some public-key cryptosystems including RSA, and the
number field sieve method (NFS), the most efficient algorithm for factor-
ing large integers currently, is a threat for such cryptosystems. Recently,
dedicated factoring devices attract much attention since it might reduce
the computing cost of the number field sieve method. In this paper, we
report implementational and experimental results of a dedicated sieving
device “CAIRN 2” with Xilinx’s FPGA which is designed to handle up
to 768-bit integers. Used algorithm is based on the line sieving, however,
in order to optimize the efficiency, we adapted a new implementational
method (the pipelined sieving). In addition, we actually factored a 423-
bit integer in about 30 days with the developed device CAIRN 2 for the
sieving step and usual PCs for other steps. As far as the authors know,
this is the first FPGA implementation and experiment of the sieving step
in NFS.
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1 Introduction

The integer factoring problem is one of the most fundamental problem in cryp-
tology since the hardness of the problem assures the security of some public-key
cryptosystems including RSA. Currently, the number field sieve method (NFS)
[LLMP90] is the most efficient algorithm for factoring large composite integers.
In fact, in 2005, Franke et al. established a world record by factoring a 663-bit
integer (known as RSA200) by NFS implemented on large amount of PCs. Since
the complexity of NFS grows subexponentially with regard to the size of input
integer, it is widely and strongly believed that factoring 1024-bit integers (which
RSA commonly uses in practice) is infeasible over the next several years by the
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same approach, namely, software implementation on PCs. Thus, it is very natu-
ral to consider a special-purpose device dedicated to integer factorization which
might reduce the computing cost of NFS.

Among four major steps of NFS (namely, the polynomial selection step, the
sieving or the relation finding step, the linear algebra step, and the square root
step), the sieving and the linear algebra steps are dominant procedures theoret-
ically and experimentally. Thus, these steps are main targets for the dedicated
devices. In 2001, Bernstein proposed the hardware design for the linear alge-
bra step based on a sorting algorithm with standard ASIC architectures [Ber01].
Then, Lenstra et al. enhanced the device by using a routing algorithm [LSTT02].
Geiselmann and Steinwandt applied these ideas to the sieving step and proposed
two designs DSH and YASD [GS03,GS04]. Shamir and Tromer improved an opti-
cal sieving device TWINKLE [Sha99] into a novel ASIC-based hardware TWIRL
[ST03]. Since the efficiency of TWIRL was not optimized, an improvement was
proposed by Geiselmann et al. [GJK+06], and a combination of TWIRL and
YASD was discussed by Geiselmann and Steinwandt [GS07]. On the other hand,
Franke et al. proposed a sophisticated design SHARK by using a butterfly-sorting
[FKP+05]. In order to accelerate the sieving step, FPGA implementations of the
mini-factoring were discussed in [FKP+05,SPK+05,GKB+06]. In spite of these
theoretical efforts, no implementational results of the whole sieving part on ASIC
or FPGA have been known up to the present 1. One of the reason may be that
designing and manufacturing such dedicated devices require a large amount of
money and time.

In this paper, we report implementational and experimental results of a ded-
icated sieving device “CAIRN 2” (Circuit Aided Intellegent Relation Navigator)
which is designed to handle up to 768-bit integers. The developed device pro-
cesses the core sieving based on the line sieving on FPGA (Xilinx’s Virtex-4
XC4VLX200) and the primality test based on the Fermat and the Euler meth-
ods and the mini-factoring based on the ρ-method on a reconfigurable processor
(IPFlex’s DAPDNA-2). In order to optimize the efficiency, we develop a new
implementational method (the pipelined sieving) for the core sieving. As an
experiment of our device, we actually factored a 423-bit integer from the Cun-
ningham project [Cun] (which was unfactored when the experiment was done)
with the developed device for the sieving step and usual PCs for other steps. In
the experiment, about 30 days are required for the sieving step, which is as fast
as what our software on a PC based on the lattice sieving requires.

CAIRN 2 was developed in the CAIRN project financially supported by
the National Institute of Information and Communications Technology (NICT),
Japan, which lasted for 3 years. The goal of the project was to implement the
sieving step on the dedicated device and to experiment a factorization on the
device every year. In the first year, we implemented a naive sieving on the re-
configurable processor DAPDNA-2 (CAIRN 1) [IKS05,IKKN+06]. CAIRN 2 is
a result of the project in the second year. Because of the time limitation, we

1 Kim et al. developed an FPGA-based siever for the quadratic sieve method [KM00],
however, only simulational results were reported.
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Alg. 1. Outline of the line sieving
1: for b ← 1 to Hb

2: for ā ← −Ha to Ha − S step S
3: for j ← 0 to S − 1
4: set R[j] to log2⌈F (ā + j, b)⌉
5: for prime p ← 2 to B
6: compute the first sieving point ā + r
7: while r < S
8: R[r] ← R[r] − ⌈log2 p⌉
9: r ← r + p

used the line sieving rather than the lattice sieving which is potentially more
efficient than the line sieving.

The rest of this paper is organized as follows: section 2 briefly introduces
the number field sieve method, especially the sieving step by the line sieving.
Detailed descriptions of the developed device are figured in section 3. Finally,
experimental results of factoring a 423-bit integer is shown in section 4.

2 Number Field Sieve Method

The number field sieve method (NFS) is known as the most efficient algorithm
for factoring large integers currently [LLMP90]. NFS consists of 4 steps; the
polynomial selection step, the sieving (or the relation finding) step, the linear
algebra step, and the square root step. Among these steps, the sieving and the
linear algebra steps are dominant theoretically and experimentally.

Let N be an integer to be factored by NFS. First of all, in the polynomial
selection step, two univariate polynomials fr(x), fa(x) and an integer m such
that fr(m) ≡ fa(m) ≡ 0 (mod N) are generated. Then these polynomials are
converted to bivariate and homogeneous polynomials Fr(x, y), Fa(x, y) ∈ Z[x, y].
Then, the sieving step finds a large number of relations, namely a set of integer
pairs {(a, b)} satisfying

– gcd(a, b) = 1, − Ha ≤ a ≤ Ha, 1 ≤ b ≤ Hb,
– Fr(a, b) is Br-smooth (namely, Fr(a, b) =

∏
pi≤Br

pei

i ) 2,

– Fa(a, b) is Ba-smooth (namely, Fa(a, b) =
∏

pi≤Ba

pei

i ) 2.

Procedures corresponding to Fr (Fa) are sometimes called ‘rational’ (‘algebraic’),
respectively. Parameters Ha, Hb determine the sieving region. In practice, the
core sieving step picks up possible relations (called candidates), and an additional

2 In order to collect relations as much as possible, we sometimes relax this condition
in practice: Fr(a, b) = q

Q

pi<Br

pei

i s.t. Br < q ≤ B′

r and Fr(a, b) = q
Q

pi<Ba

pei

i s.t.

Ba < q ≤ B′

a for additional threshold parameters B′

r, B′

a (the large prime variation).
Similarly, two or three q’s can be used.

3



Table 1. Specifications of the developed sieving device CAIRN 2

FPGA Xilinx Virtex-4 XC4VLX200
Logic Cell 200,448, Block RAM 336 × 18 Kbit, BGA 1513pin
DDR SDRAM (1 GByte + 2 GByte) × 2 systems

Controller CPU board: ADVANTECH’s SOM-2353
CPU: AMD Geode GX1 300 MHz (x86)

Output I/F Direct I/O (50pin), 100 BaseTx, RS232C, VGA, KBD/Mouse
Frequency 133MHz (FPGA), 32bit/33MHz (PCI BUS), 83.4 MHz (Direct I/O)

step checks whether it really is a relation via the primality test and the mini-
factoring. After finding a set of relations, the Gaussian elimination over a matrix
generated from obtained relations is computed in the linear algebra step. Then,
a non-trivial factor of N is output by computing rational and algebraic square
roots in the square root step. Further descriptions of NFS is found in [LL93].

Let us look at the sieving step in detail. We want to find relations as efficiently
as possible. To do so, we use the following trick: when x is B-smooth, we have
log2 x−

∑
pi|x

ei log2 pi = 0, where pi is prime and ei = ordpi
x (the number how

many times can x be divided by pi). Since integer arithmetics are more efficient
and ei = 1 holds for large pi, we use an approximation3 ⌈log2 x⌉−

∑
pi|x

⌈log2 pi⌉.
For a fixed value b, suppose we are going to find rational or algebraic relations
from a subinterval with length S, namely S pairs of (ā, b), . . . , (ā + S − 1, b).
Then we prepare S registers R[0], . . . , R[S − 1]. These registers are initialized
by log2⌈F (ā+ j, b)⌉, respectively. For a prime p < B, if we have p|F (ā+ j, b), we
subtract ⌈log2 p⌉ from the corresponding register R[j]. After checking all primes
less than B, we pick up (a, b) such that corresponding register almost equals 0.

Since polynomials F (x, y) have a property that, if p|F (a, b) holds, then we
have p|F (a+p, b). Thus, for a prime p, if we find an integer r such that p|F (r, b),
then we have p|F (r + p, b), p|F (r + 2p, b), . . . . Once such r for each prime p is
found, subtractions can be done very efficiently. The set of factor bases FBr (FBa)
consist of primes less than Br (Ba) and corresponding r-values. The r-value is
updated after ⌈log2 p⌉ is subtracted by r ← r + p. When we go to the next
subinterval, the first r-value for each p in the next interval is easily obtained
from the old r-value (namely, r ← r mod S).

The above described sieving procedure is called the line sieving. A sample
algorithm is shown in Algorithm 1. Note that in recent software implementations
of NFS, the lattice sieving [Pol91] is used because of the efficiency. Since the main
purpose of our implementation is to establish actually executable sieving device,
we adopted the simpler one (the line sieving) rather than the complex one (the
lattice sieving).

3 If this value becomes negative, we treat the value as 0.
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Fig. 1. Organization of the sieving device CAIRN 2
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3 Implementational Details

3.1 Target Parameter

First of all, we have to consider data sizes of input/output. In our case, major
input parameters for the sieving device are polynomials fr(x), fa(x), sets of the
factor bases FBr, FBa, sieving region parameters Ha, Hb. Since sizes of these
parameters can be determined from a target integer to be factored, it is enough
to determine it.

Currently, 1024-bit integers are commonly used in practical RSA-based cryp-
tosystems, so it is valuable to try factoring 1024-bit integers by the device. Ac-
cording to sample NFS parameters for factoring a 1024-bit integer (known as
RSA1024) [LTS+03], it is estimated that about 36 GByte memory is required
for the factor bases. A device with such huge memory is not visionary for the
moment, however, controlling such huge memory space will be too complex to
implement.

The next attractive integer will be 768-bit. Again, according to sample NFS
parameters for factoring a 768-bit integer (known as RSA768) [LTS+03], it is
estimated that 432 MByte memory is required for factor bases. Thus, we decided
to design a sieving device which can handle up to 768-bit integers.

3.2 Platform

In previous papers, ASIC-based sieving devices are proposed to optimize the ef-
ficiency (namely, the AT product) [GS03,ST03,GS04,FKP+05,GJK+06,GS07].
However, no implementational results have been reported so far. One of the rea-
son may that ASIC-based devices require a large amount of money and time.
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Fig. 2. Outlook of the sieving device CAIRN 2

Thus we determined to use FPGA so that actually executable sieving device
can be developed. Since the device requires huge amount of memory, we se-
lected Xilinx’s Virtex-4 XC4VLX200 [Xilinx] as a platform. Also, we used a
reconfigurable processor DAPDNA-2 by IPFlex [IPFlex]. DAPDNA-2 has two
processors DAP and DNA: DAP is a controller (a usual RISC processor), while
DNA is a reconfigurable hardware with 376 fixed process elements which can
be connected programably. The configuration can be changed in 1 clock with-
out resetting the device. Comparing FPGA and DAPDNA-2, programming of
DAPDNA-2 is much easier but the speed is slower. Thus, we use DAPDNA-2
for complex procedures (the primality test and the mini-factoring) and FPGA
for simple procedures (the core sieving and the trial division).

The developed sieving device consists of 2 FPGA boards and 1 DAPDNA-
EB5 board (which consists of DAPDNA and I/O interfaces) as in Figure 1.
FPGA boards are connected via 100 BaseT ethernet, while the DAPDNA-EB5
board is connected to an FPGA board via the direct I/O. The device is connected
to a control PC via 100 BaseT ethernet. Functionally, the sieving device consists
of SIEVER and CHECKER. SIEVER processes the core sieving (on one FPGA
board) while CHECKER processes the relation checking (the trial division on
another FPGA board, the primality test and the mini-factoring on DAPDNA-
EB5 board). In our design, a sieving device can handle a several SIEVERs and
CHECKERs, however, we only implemented 1 SIEVER and 1 CHECKER in a
device.
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Fig. 3. Pipelined sieving
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Table 2. Partitioned factor bases FBi with S = 219

Partition Condition on p # of primes Partition Condition on p # of primes
FB0 2 ≤ p < 219 43,390 FB6 224 ≤ p < 225 985,818
FB1 219 ≤ p < 220 38,635 FB7 225 ≤ p < 226 1,894,120
FB2 220 ≤ p < 221 73,586 FB8 226 ≤ p < 227 3,645,744
FB3 221 ≤ p < 222 140,336 FB9 227 ≤ p < 228 7,027,290
FB4 222 ≤ p < 223 268,216 FB10 228 ≤ p < 229 13,561,907
FB5 223 ≤ p < 224 513,708 FB11 229 ≤ p < 230 26,207,278

3.3 SIEVER (Core Sieving Part)

In this and next subsections, we describe SIEVER and CHECKER in detail.
SIEVER is implemented on FPGA, which collects candidates {(a, b)} from a
given region by the line sieving (Algorithm 1). Since a main purpose of our first
implementation is to establish actually executable sieving device, we adopted
the naive line sieving (Algorithm 1).

Pipelined Sieving for Small Primes Inputed a subinterval with length S =
219, SIEVER sieves the subinterval, and after the sieving, it sends candidates
to SDRAM. In other words, SIEVER can sieve with only 1 prime. Since small
primes (less than S) require much time for the sieving, we use the following
pipelined implementation in order to optimize the efficiency.

We prepare 32 sieving nodes connected to each other in a pipelined manner
as in Figure 3. Each sieving node is responsible for the mini-interval with length
S/32 and has S/32 registers where log values are stored. These sieving nodes
share 1 set of factor bases as in the following. When a prime p is sieved over the
first sieving node Node0, p is handed to the next sieving node Node1 and a next
prime p′ is read from SDRAM simultaneously. In this implementation, a prime
occupies a mini-interval with length S/32 only (rather than a subinterval with
length S).

7



Table 3. Partitioned sub factor bases SB
(j)
i with S = 219

Sub partition Condition

SB
(0)
0 {(p, r′) ∈ FB0|0 ≤ r < 219, r′ = r}

SB
(0)
1 {(p, r′) ∈ FB1|0 ≤ r < 219, r′ = r}

SB
(1)
1 {(p, r′) ∈ FB1|2

19 ≤ r < 2 · 219, r′ = r mod 219}

SB
(0)
2 {(p, r′) ∈ FB2|0 ≤ r < 219, r′ = r}

SB
(1)
2 {(p, r′) ∈ FB2|2

19 ≤ r < 2 · 219, r′ = r mod 219}

SB
(2)
2 {(p, r′) ∈ FB2|2 · 219 ≤ r < 3 · 219, r′ = r mod 219}

SB
(3)
2 {(p, r′) ∈ FB2|3 · 219 ≤ r < 4 · 219, r′ = r mod 219}

SB
(0)
3 {(p, r′) ∈ FB3|0 ≤ r < 219, r′ = r}

SB
(1)
3 {(p, r′) ∈ FB3|2

19 ≤ r < 2 · 219, r′ = r mod 219}

SB
(2)
3 {(p, r′) ∈ FB3|2 · 219 ≤ r < 3 · 219, r′ = r mod 219}

SB
(3)
3 {(p, r′) ∈ FB3|3 · 219 ≤ r < 4 · 219, r′ = r mod 219}

SB
(4)
3 {(p, r′) ∈ FB3|4 · 219 ≤ r < 5 · 219, r′ = r mod 219}

SB
(5)
3 {(p, r′) ∈ FB3|5 · 219 ≤ r < 6 · 219, r′ = r mod 219}

SB
(6)
3 {(p, r′) ∈ FB3|6 · 219 ≤ r < 7 · 219, r′ = r mod 219}

SB
(7)
3 {(p, r′) ∈ FB3|7 · 219 ≤ r < 8 · 219, r′ = r mod 219}

Partitioned Factor Bases for Large Primes In our implementation, the
length of the subinterval S is 219. Since most primes are larger than S, these
primes are used for the sieving with low probability (remember that the prob-
ability that a prime p is used for the sieving in a subinterval with length S is
just S/p). More worse, about 1 − S/π(Br) = 90.90% factor bases in FBr and
1 − S/π(Ba) = 98.96% factor bases in FBa are not used in a interval. In order
to avoid useless memory read and improve the efficiency for large primes (larger
than S), we partition factor bases by according to p-values and r-values as in
the followings: let S be the length of a subinterval. First, we partition a set of
factor bases FB = {(p, r)|p < B} into

FB0 = {(p, r)|2 ≤ p < S},

FBi = {(p, r)|2i−1 · S ≤ p < 2i · S} (i = 1, . . . , 11)

according to p-values. Table 2 shows each partitioned factor bases FBi and the
number of included primes with S = 219. Then, we partition each FBi into 2i

sub factor bases SB
(j)
i (j = 1, . . . , 2i) by

SB
(j)
i = {(p, r′)|(p, r) ∈ FBi, r

′ = r mod S, j · S ≤ r < (j + 1) · S}

according to r-values. Table 3 shows some partitioned sub factor bases SB
(j)
i (i =

0, 1, 2, 3) and the number of included primes with S = 219. By the above parti-
tions, factor bases used in the first sieving for the first subinterval are included in

SB
(0)
i , and other primes (not included in SB

(j)
i ) are not used in the first sieving.

Thus, useless reading is avoided in the first sieving.
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Alg. 2. Outline of the sieving with update
1: for i ← 0 to 11

2: process the followings for each factor base (p, r′) included in SB
(j)
i (j = t mod 2i)

3: while r′ < S
4: R[r′] ← R[r′] − ⌈log2 p⌉
5: r′ ← r′ + p

6: append a factor base (p, r′ mod S) to SB
(j′)
i (j′ = j + ⌈r/S⌉ mod 2i)

Updating Factor Bases The next task is to process the sieving with keeping
a similar property, namely, in the t-th sieving, we want to collect factor bases

used in the next interval in SB
(t+1)
i . To do so, we implemented the core sieving

as in Algorithm 2. Here, we are supposed to sieve the subinterval (−Ha + t ·
S, b), . . . , (−Ha + (t + 1) · S − 1, b) (t = 0, . . . , 2Ha/S − 1) with length S and
corresponding registers are R[0], . . . , R[S − 1].

Buffer Estimation Because of the update process, the number of factor bases

in SB
(j)
i changes all time while in the sieving. Thus, the maximum number of

factor bases in a partitioned sub factor bases SB
(j)
i should be considered.

In our device, sizes of each SB
(j)
i are set as in Table 4. With these param-

eters and the sieving implementation (Algorithm 2), we estimated the overflow

probability from averaged numbers of factor bases in SB
(j)
i and their standard

deviations σ observed from 232 simulations on a PC. Results are summarized in
Table 5, where we assumed that the number of factor bases in SB

(j)
i obey the

normal distribution. Consequently, in our device, the overflow may not occur in
practice because the probability is at most 2−848.

Parallelized Buffers and Bucket Sorting Since SDRAM memory access is

done in 64-bytewise, appending a factor base to a new SB
(j)
i can be processed

efficiently by using buffers. In the worst case, 2048 buffers are required (when

SB
(j)
11 s are used) for the update, however, it is beyond the available memory.

Instead, by using the bucket sorting technique, we prepare only 32 buffers and
store updated factor bases in them.

Computing Log Values When the core sieving is processed, in addition to
a prime p and the corresponding value r, a log value ⌈log2 p⌉ is also required.
Since p, r are 32-bit and log2 p is 8-bit, each factor base requires 72-bit memory.
In our sieving device, each factor base is stored in DDR SDRAM outside the
core sieving FPGA and supposed to be read successively. Thus it is desirable
that the length of each factor base is multiple of 32. Keeping the log values is
one solution, however, since memory amount is critical in our device, we give up
keeping the log value in SDRAM. Instead, we compute ⌈log2 p⌉ every time it is

9



Table 4. Size of partitioned sub factor bases SB
(j)
i

Algebraic FB Rational FB

# of SB
(j)
i Max. # of FB # of SB

(j)
i Max. # of FB

SB
(j)
0 1 65,536 SB

(j)
0 1 65,536

SB
(j)
1 2 32,768 SB

(j)
1 2 32,768

SB
(j)
2 4 32,768 SB

(j)
2 4 32,768

SB
(j)
3 8 32,768 SB

(j)
3 8 32,768

SB
(j)
4 16 32,768 SB

(j)
4 16 32,768

SB
(j)
5 32 32,768 SB

(j)
5 32 32,768

SB
(j)
6 64 32,768 SB

(j)
6 64 32,768

SB
(j)
7 128 32,768 SB

(j)
7 128 32,768

SB
(j)
8 256 24,576 SB

(j)
8 256 24,576

SB
(j)
9 512 24,576 Total 14,680,064

SB
(j)
10 1,024 24,576 117 MByte

SB
(j)
11 2,048 24,576

Total 102,760,448 Buffer 32 32,768
822 MByte Total 1,114,112 (9MByte)

Table 5. Overflow probabilities for SB
(j)
i

Average σ Pr. Average σ Pr.

SB
(j)
0 43390.00 0.00 0 SB

(j)
6 21403.50 144.64 2−4461

SB
(j)
1 26856.52 86.19 2−3400 SB

(j)
7 20559.50 142.57 2−5296

SB
(j)
2 25574.99 127.77 2−2293 SB

(j)
8 19785.37 140.26 2−847

SB
(j)
3 24382.34 141.33 2−2546 SB

(j)
9 19066.86 137.89 2−1158

SB
(j)
4 23298.29 145.58 2−3059 SB

(j)
10 18397.14 135.54 2−1505

SB
(j)
5 22309.65 145.95 2−3711 SB

(j)
11 17774.22 133.27 2−1885

required. Strongly note that it is enough to know the highest bit position of p
for computing ⌈log2 p⌉, so overheads of the computation can be neglected.

3.4 CHECKER (Relation Check Part)

In this part, after obtained candidates in the core sieving, we check each can-
didate whether it really is a relation or not. CHECKER processes the trial
division on the FPGA board, and the primality test and the mini-factoring on
the DAPDNA board.

Trial Division First, we directly check the divisivility by small primes (namely,
up to 230 for rational and 227 for algebraic sievings) via the trial division. A
candidate (a, b) is divisible by p when a + b · s mod p = 0 for a factor base

10



Table 6. Parameters for factoring a 423-bit integer

Br 3, 000, 000 B′

r 6,000,000

Ba 22, 000, 000 B′

a 30, 000, 000

Ha 2, 300, 000, 000 Hb 30,000

p and an integer s such that f(s) = 0 mod p. This test requires at most 64-
bit multiplications and 32-bit divisions. We implement the trial division on an
FPGA board different from SIEVER.

Primality Test After the trial division, we check the primality of the cofactor
by the Fermat test and the Euler method with base 2 only (this is enough since
we do not require the perfect primality test). When the cofactor is resulted in
composite, it is sent to the mini-factoring. Otherwise, it is treated as a relation
if the cofactor is not larger than the threshold B′. This test is implemented on
the DAPDNA-EB5 board, which is connected to the trial division FPGA via the
direct I/O.

Mini-Factoring Finally, we factor the cofactor by some factorization methods.
Since the cofactor is relatively small (up to 128-bit) and small factors are already
removed in the trial division, light methods are used in this mini-factoring. In
our sieving device, we implemented the Pollard’s ρ-method on DAPDNA-2.

4 Factoring a 423-bit Integer

In this section, we show the experimental results of the integer factorization of
a 423-bit integer with the developed sieving device CAIRN 2.

A target composite was selected from the Cunningham project [Cun] which
is an Internet project to factor unfactored composites in the form an ± 1 for
small a and large n. We used a 423-bit integer N which is included in 7352 + 1
(989-bit) and had remained unfactored when we started the experiment:

N = 1100292287 2496853405 9383191827 3088033131 3742514339 1686904758

5356090653 2662764313 9824106278 4801654937 1557142696 9864417564

88958657.

Before factoring N by NFS, we applied ECM in advance for a while and failed.
Thus we were convinced that N is a product of two primes with high probability.
Parameters used in the factorization are summarized in Table 6.

Polynomial Selection Step We used the Kleinjung and Franke’s software for
this step. After 34 hours computation on a PC (Pentium 4 Prescott, 3.8 GHz,
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Table 7. Details of the linear algebra step

# of Relations # of Factor bases Time

Filtering In 2,698,117 2,792,081 8 Min.
Out 1,313,971 1,312,969

Gaussian Elimination In 1,313,971 1,312,962 15 Min.
Out 600,718 599,704

Removing Heavy Weight Indices In 184.148 MByte 1 Min.
Out 132.876 MByte

Lanczos Computation In 600, 718 × 599, 480 matrix 103 Min.
Out 256 solutions

Recovering Heavy Weight Indices Out 32 solutions 5 Min.

Memory 2 GBytes, we use the same PC in the following), two polynomials

fr(x) = 5175123296671x − 1362966569805857108976278,

fa(x) = 2339280x5 − 224252480052x4 − 36214284961370646x3

+408360934897040026852x2 + 101636022741097137772677441x

−263678243765181773090543855595,

were obtained.

Sieving Step The sieving step was processed on 1 set of the developed sieving
device. The core sieving took about 30 days (42 days in calendar) and found
2,828,755 relations. After removing 30,025 bad relations (which do not satisfy the
desired format) and 100,613 duplicated relations, we obtained 2,698,117 relations
for the next step. This procedure took about 19 minutes on the PC.

Linear Algebra Step The linear algebra step and the square root step was
processed on the PC. From 2,698,117 relations and 2,792,081 factor bases, we
obtained 32 solutions in 132 minutes. Detailed data are summarized in Table 7.

Square Root Step The first solution of 32 solutions brought an actual factor-
ization. A rational square root R and an algebraic square root A are obtained
from the first solution in 6 seconds and 18 minutes, respectively:

R = 8264254310 5780678107 7260355319 7256576146 2501536747 5383577435

6262381979 2641159252 9332800358 3963267372 5266446083 4479795292

9881182,

A = 5243143677 4850042977 2583462471 4452695094 3986687817 3054465838

5952456214 0017654469 6893872943 7400764236 0303936118 0793853980

039244.
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Here, the Nguyen’s algorithm [Ngu98] is used. From these roots, we actually
found a non-trivial factor of N by computing gcd(A − R,N) which took less
than 1 second. Consequently, we obtained a complete factorization N = P × Q
where

P (205-bit) = 4549363729 2816464852 0670147365 7133979231 5419859784

2180768758 41,

Q (218-bit) = 2418563018 3133843753 7787898096 0626923598 1954330361

9864074410 382977.

Comparison with Software Implementation As a comparison, we imple-
mented the sieving step by the lattice sieving on a PC, which requires about
a month for sieving the same region. Thus, the speed of the developed sieving
device is comparable to the lattice sieving software implementation.

5 Concluding Remarks

In this paper, implementational results of the sieving step of NFS on Xilinx’s
FPGA are reported. Especially, we factored a 423-bit integer with the device
“CAIRN 2” for the sieving and some PCs for other steps. The core sieving
speed of the developed device is comparable to the lattice sieving software im-
plementation. As far as the authors know, this is the first FPGA implementation
and experiment of the sieving step (while implementational results of the mini-
factoring and the linear algebra step have been reported [GKB+06,BMGG04]).

Because of the time limitation, we haven’t experimented larger factorization
with the device. Further experiments (especially factoring 663-bit or 768-bit inte-
gers) should be achieved. To do so, implementing the lattice sieving rather than
the line sieving is indispensable. Moreover, manufactuarability and executability
of previously proposed methods ([ST03], for example) should be evaluated via
actual implementations.
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