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Abstract

Information flow is an important security property that must be in-
corporated from the ground up, including at hardware design time,
to provide a formal basis for a system’s root of trust. We incorporate
insights and techniques from designing information-flow secure
programming languages to provide a new perspective on design-
ing secure hardware. We describe a new hardware description lan-
guage, Caisson, that combines domain-specific abstractions com-
mon to hardware design with insights from type-based techniques
used in secure programming languages. The proper combination of
these elements allows for an expressive, provably-secure HDL that
operates at a familiar level of abstraction to the target audience of
the language, hardware architects.

We have implemented a compiler for Caisson that translates de-
signs into Verilog and then synthesizes the designs using existing
tools. As an example of Caisson’s usefulness we have addressed an
open problem in secure hardware by creating the first-ever prov-
ably information-flow secure processor with micro-architectural
features including pipelining and cache. We synthesize the secure
processor and empirically compare it in terms of chip area, power
consumption, and clock frequency with both a standard (insecure)
commercial processor and also a processor augmented at the gate
level to dynamically track information flow. Our processor is com-
petitive with the insecure processor and significantly better than
dynamic tracking.

Categories and Subject Descriptors B.6.3 [Design Aids]: Hard-
ware Description Languages

General Terms Security, Verification, Languages

Keywords Hardware Description Language, Non-interference,
State Machine

1. Introduction

High-assurance embedded systems such as those used in banks,
aircraft and cryptographic devices all demand strong guarantees on
information flow. Policies may target confidentiality, so that secret
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information never leaks to unclassified outputs, or they may tar-
get integrity, so that untrusted data can never affect critical system
data. The high cost of a policy violation ensures that these systems
are evaluated extensively before being deployed; for instance, cer-
tifying systems using Common Criteria [2] or FIPS [3] requires a
painstaking process at a cost of millions of dollars over multiple
years [4].

Information flow policies are expressed using a lattice of secu-
rity levels [14] such that higher elements in the lattice correspond
to information with more restricted flow (i.e., secret information
for confidentiality or untrusted information for integrity). A simple
example of a security lattice would be the typical military clas-
sification levels: Unclassified ⊑ Secret ⊑ Top Secret. An
important information flow policy based on such lattices is non-
interference [18], which requires that no information at a given
level in the lattice can flow anywhere except to higher elements
in the lattice (e.g., Secret information can flow to Top Secret,
but not vice-versa). High-assurance systems require a static guar-
antee of non-interference and depend on a hardware-based root of
trust to enforce this policy. We present a new hardware description
language named Caisson that meets this need by extending HDLs
like Verilog with language abstractions that enable precise static
verification of secure synchronous hardware designs.

1.1 Secure Hardware Design

While ciphers provide a sound theoretical primitive for building se-
cure systems, their actual implementations have been shown to be
a rich source of vulnerabilities. Numerous attacks exploit hardware
structures such as shared data caches [35], instruction caches [6],
and branch predictors [5, 7] to leak information about private keys.
Other studies have found vulnerabilities lurking in obscure and
even undocumented corners of hardware designs [41], e.g., when
the floating point registers are persistent across context switches.
Complete information flow security must begin with a principled
approach to designing hardware that accounts for the intricate in-
teraction among different hardware components, analyzes the hard-
ware design in its entirety, and does so efficiently enough to be use-
ful in practice. Note that non-digital side channels such as power
analysis [25] are not within the scope of this paper.

Existing work has explored using hardware assistance to dy-
namically track information flow and prohibit leaks [12, 13, 38, 43].
However, most such systems only track information flow at the
ISA level or above, ignoring micro-architectural features such as
caches and branch predictors that can leak information. These sys-
tems cannot protect against the attacks outlined above.

One existing system, GLIFT [46], dynamically tracks informa-
tion flow at the gate-level and does take micro-architectural fea-



tures into account; however, this technique requires the informa-
tion tracking logic to be physically instantiated in the synthesized
circuit, greatly increasing chip area and power consumption. Also,
GLIFT only detects policy violations at runtime; it cannot guaran-
tee statically that no violations will occur. GLIFT is currently the
only alternative for enforcing information flow for an entire proces-
sor below the ISA level of abstraction, and we use GLIFT as our
main comparison point in our evaluation.

1.2 Our Approach

In contrast to existing approaches, we take language-level tech-
niques for secure information flow and apply them to domain-
specific abstractions for hardware design (specifically, finite state
machines) to create a new Hardware Description Language (HDL)
named Caisson. Our goal is to enable the creation of synchronous
hardware designs that are statically-verifiable as secure. Additional
benefits of Caisson are that it allows hardware designers to operate
at familiar level of abstraction, enables architects to quickly and
easily iterate through potential designs without having to wait for
synthesis and simulation to test security properties, and the result-
ing designs do not suffer from the crippling overhead that comes
with dynamic tracking in terms of additional chip area and power
consumption

While there are existing HDLs based on finite state machines,
none target security as a first-class concern. Caisson employs
two novel features on top of finite state machines, nested states
and parameterized states (described in §2) to enable precise and
expressive enforcement of security policies. To demonstrate the
utility of these features and of Caisson in general, we design an
information-flow secure processor in Caisson. Designing secure
hardware controllers is an active research area, and specifying a
statically-verifiable secure general-purpose processor is an open
problem. Such processors have an important application in high-
assurance embedded systems such as those found in aircraft and
automobiles [27]. Current tools and methodologies for secure hard-
ware design are laborious and expensive (taking millions of dollars
and multiple years to complete even simple designs); a general-
purpose processor with microarchitectural features such as pipelin-
ing and cache is notorious in the hardware community for being
too complicated to design in a verifiably secure manner.

Caisson is based on key insights into secure hardware design,
and it provides language-level support for these design patterns.
We believe, and have found in our own experience, that Caisson
promotes thinking about secure hardware design in new, useful
ways that don’t naturally arise in existing languages.

1.3 Contributions

This paper makes the following specific contributions:

• We describe Caisson, a hardware description language targeting
statically-verifiable information-flow secure hardware design.

• We formally prove that Caisson enforces timing-sensitive non-
interference.

• We design and implement a verifiably information-flow secure
processor with complex micro-architectural features including
pipelining and cache.

• We synthesize our design and empirically compare it with an in-
secure commercial CPU design as well as a GLIFT CPU design
that dynamically tracks information flow. We find that Caisson
introduces much less overhead than GLIFT over the baseline
processor in terms of chip area (1.35× vs. 3.34×), clock fre-
quency (1.46× vs. 2.63×) and power (1.09× vs. 2.82×).

The rest of the paper is organized as follows. We begin in §2
by informally describing the Caisson language and motivating its

Figure 1. State Machine Diagram of Execution Lease Controller

features. In §3 we formalize the language description and provide a
proof sketch of its security properties. In §4 we describe the design
of a secure processor in Caisson and empirically evaluate the char-
acteristics of the synthesized design against a comparable GLIFT
hardware design. §5 discusses related work, and §6 concludes.

2. Overview of Caisson

In this section we provide an overview of the Caisson language and
motivate its design via a simple hardware example. For concrete-
ness, we specifically address the issue of integrity using a 2-level
lattice Trusted ⊑ Untrusted1 (though Caisson can be used for
arbitrary lattices). We demonstrate the Caisson language using an
Execution Lease secure hardware controller [45]. We first review
the concept of execution leases, then demonstrate how Caisson can
create a statically-verifiable instantiation of an execution lease con-
troller.

Execution Leases An execution lease is an architectural mech-
anism used to allow trusted code to grant untrusted code limited
access to machine resources. One use-case is to allow a trusted
separation kernel [24] to securely multiplex multiple untrusted pro-
cesses on a CPU. One can think of a lease as a space-time sandbox
that allows an untrusted process to take over the CPU and execute
code using only a limited range of memory and a limited amount
of time; the lease mechanism forces untrusted code to relinguish
control back to the trusted code when its time allotment expires.
Figure 1 gives a state-machine diagram of the execution lease con-
troller. The trusted master state sets a timer and transfers control to
either the untrusted set of slave states (S1 and S2) or the trusted set
of slave states (S3 and S4). Each set of slave states can transition
among themselves arbitrarily during the lease, but once the timer
expires, control is relinguished back to the trusted master state.

Caisson Language Finite-state representations of hardware con-
trol systems, such as in Figure 1, are popular in hardware design.
Existing tools such as Altera Quartus, Xilinx ISE, Statecharts [20],
and Esterel [44] are widely used to model systems explicitly as
state machines. In designing Caisson we wish to capitalize on this
trend and allow hardware designers to operate at a familiar level of
abstraction, allowing hardware designs to be easily and transpar-
ently modeled using Caisson. For this reason, we base the Caisson
language on finite-state machines. To illustrate this concept, Fig-
ure 2(a) shows a Caisson implementation of the lease controller.
This implementation is secure (i.e., does not leak Untrusted in-
formation), but it is not typable in the Caisson type system we in-
troduce in Section 3. We will use this version of the implementation
to motivate and introduce two features of Caisson: nested states and
parameterized states. First, though, we give a quick illustration of
the Caisson language using Figure 2(a).

The name of the entire program is lease, and it uses four hard-
ware registers: timer, data1, data2, and mode. Each register has

1 This ordering can be confusing, but is correct: Untrusted is high in the
lattice because the flow of untrusted information should be more restricted
than the flow of trusted information.



Figure 2. Implementation of the Lease Controller in Caisson language. (a) Implementation only with the ability to explicitly define each
individual state (b) Implementation with nested states (c) Implementation with parameterized states.

type L (low, i.e. Trusted) except for data1, which is H (high, i.e.
Untrusted). There are five states corresponding to the five states
in Figure 1; master, S3, and S4 are Trusted, while S1 and S2
are Untrusted. The master state uses mode to alternately transfer
control (using the goto command) to either S1 or S3. Each of S1—
S4 are similar: they decrement timer, check whether timer is 0,
and if so transition back to the master state. Otherwise, depend-
ing on the value of data1 (data2), they transition to themselves or
their fellow slave state. Each state corresponds to a combinational
hardware logic circuit and takes exactly one cycle to execute.

The reason that Figure 2(a) is not typable is that timer is
decremented in states S1 and S2. These states are Untrusted, yet
they manipulate Trusted information (i.e., timer). This manipu-
lation can create an implicit information leak from the high secu-
rity level (Untrusted) to the low security level (Trusted)—if the
Untrusted states modify the Trusted register timer in different
ways, then the value of timer would depend on which Untrusted
states are executed. Intuitively, however, we can see that the de-
sign actually is secure: since every state is guaranteed to decre-
ment timer in exactly the same way, in reality there is no informa-
tion leakage—nothing about the Untrusted states or transitions
between those states can be inferred from the value of timer.

Nested States This observation motivates the first Caisson lan-
guage feature, nested states. Nested states allow the designer to
factor out shared code among states to identify exactly such situa-
tions. Figure 2(b) gives a valid (i.e., typable) Caisson implementa-
tion of the same design but using nested states. This design nests
states S1 and S2 into the same group state group1, and similarly
nests S3 and S4 into group2. In each group, the code common to
the nested (or child) states has been factored out and associated
with the group state containing those child states. The semantics of
nested states effectively treats the command of a group state as if it
were inlined into the command of each child state, so the code in
Figure 2(b) has the same behavior as the code in Figure 2(a). For

example, each time the code transitions from S1 to S2 using goto,
the command for group1 that decrements and checks timer exe-
cutes before the command for S2. The fall command signals that
the group state’s command is complete and to begin executing the
appropriate child state’s command. When transitioning to a group
state (as in the master state’s command “goto group1” in Fig-
ure 2(b)), the default fall-through state is the first listed state (e.g.,
S1 for group state group1).

The benefit of nested states is that Caisson is allowed to type a
group state separately from the its child states. In Figure 2(b) state
group1 is typed L (low, or Trusted) while its child states S1 and
S2 are typed H (high, or Untrusted). As explained above, this is
safe because the semantics of Caisson guarantees that group1’s
command executes identically in each child state, and so no in-
formation is leaked even though group1’s command modifies
Trusted information.

Note that nested states are distinct from the related concept
of hierarchical states in languages like Statecharts [20]. In State-
charts, child states specialize parent states. If an event is not han-
dled by a child state, then the parent states are checked to determine
if they can handle the event (somewhat like OOP virtual methods).
Caisson’s nested states have different semantics, as explained in-
formally above and formally in §3. Nested states can also be seen
as a concept dual to the notion of linear continuations [16, 55].
Whereas linear continuations identify code that is guaranteed to be
executed afterwards by factoring the code out into a continuation,
nested states identify code that is guaranteed to be executed before-
hand by factoring it out into a group state.

Parameterized States While Figure 2(b) is a valid Caisson pro-
gram, it is not as efficient as it could be. Note that group1 and
group2 have identical logic; the only difference is that group1
operates on Untrusted data (data1) while group2 operates on
Trusted data (data2). Therefore the two groups must be kept sep-
arate. When synthesizing this design, each group would be com-



piled down to its own separate logic circuit. It would be more ef-
ficient in terms of chip area to synthesize the same logic circuit
for the two groups and reuse that circuit by securely multiplexing
the different data (data1 vs data2) onto that circuit. This observa-
tion motivates the second Caisson language feature, parameterized
states. Figure 2(c) shows the same program as Figure 2(b) except
using parameterized states.

This new implementation has a single group state that now
has a parameter: a variable that represents some register on which
the state will operate. Since the exact register that the state will
operate on can vary each time the state executes, Caisson uses a
type variable A to represent the parameter’s type and specifies a
set of type constraints that the type variable must obey in order to
guarantee security (in this example, the only requirement is that A
must be no less than L). The Caisson implementation assumes the
given type constraints are valid when it type-checks group.

When transitioning to a parameterized state, the goto command
must specify a particular register to pass as the target state’s pa-
rameter. In Figure 2(b), the master state transitions to group with
two different arguments depending on mode: either data1, repli-
cating the behavior of the original group1, or data2, replicating
the behavior of the original group2. The Caisson implementation
statically verifies that any arguments given to a parameterized state
must necessarily satisfy the given type constraints, thereby stati-
cally guaranteeing the security of the design.

The benefit of parameterized states is that Caisson can synthe-
size a single logic circuit that can safely be used at multiple security
levels. In other words, the data being operated on (the Caisson reg-
isters) must have distinct types, but the logic operating on the data
(the Caisson states) can be parameterized over the types of the data,
making the synthesized circuit much more efficient.

3. Formal Description of Caisson

In this section we formally describe a core subset of Caisson and its
type system and prove that Caisson enforces timing-sensitive non-
interference. The actual implementation of Caisson incorporates a
large subset of Verilog, allowing existing Verilog designs to be eas-
ily refactored into Caisson programs. This subset of Verilog does
not add anything of interest to the formal presentation and so we
omit the full details from this section.

Figure 3 describes Caisson’s abstract syntax (which uses types
as described in Figure 5—we defer discussion of types to §3.2).
Registers in the language correspond to registers in hardware and
hold integer values. Variables range over registers rather than val-
ues (i.e., a variable maps to a register) and act as state parameters
to abstract a state’s behavior from specific registers.

A Caisson program consists of a list of registers followed by a
list of nested state definitions. The nested state definitions form a
hierarchy of states with a single root state. We define a leaf state as
a state at the bottom of the state hierarchy; these states each specify
a single command. A group state is any non-leaf state and specifies
both (1) a nested list of states and (2) a command. The goto
command triggers a state transition. Caisson describes synchronous
hardware designs, hence the language implementation enforces
that the length of time between any two state transitions (i.e.,
gotos) is exactly one cycle. Within each cycle, Caisson enforces
the following invariant: before executing the command of any state
S, Caisson executes the commands of all of S’s ancestor states (the
intended semantics of nested states).

The fall command forces execution to fall-through from the
current state to one of its child states: it ends evaluation of the
current state’s command and begins the evaluation of the child
state’s command. Falling from a state to its child does not count
as a state transition (i.e., a fall command does not end a cycle, only
a goto command can do that). By default the target child state of

r ∈ Register v ∈ Variable x ∈ Register ∪ Variable

n ∈ Z ⊕ ∈ Operator l ∈ Program Label

prog ∈ Prog ::= prog l = r⃗ℓ in d

d ∈ Def ::= let s⃗ in c | c

s ∈ State ::= state lτ (v⃗α)κ = d

e ∈ Exp ::= n | x | e⊕ e

c ∈ Cmd ::= skip | x := e | c ; c | falll

| goto l(x⃗) | if e then c else c

p ∈ Phrase ::= prog | d | s | e | c

Figure 3. Abstract syntax. Type annotations ℓ, α, τ , and κ are
described in Figure 5

a fall command is the first child state in the list of nested state
definitions; this state is called the default child state of that group
state. The target child state for a fall may change during program
execution as described in the next subsection.

To simplify the formal presentation of the language we make the
following assumptions without explicitly enforcing them (though it
is simple to do so in practice):

• All the variables and type variables have distinct names.

• A default child state can not take any parameters.

• Every goto targets a defined label and can only target a state in
the same group and at the same nested depth2.

• For each falll, the subscript label l must be the label of the
state containing that fall command (the label is a syntactic
convenience for the semantics and type system; it can be left
out of the concrete syntax). A leaf state can not contain a fall.

• Either both branches of an if command must execute a goto or
fall or neither of them do. All paths through a state end in either
a goto or a fall.

The structure of a program defines a tree of state definitions (the
state hierarchy) with prog being at the root. From this structure we
derive different versions of a function F : l 7→ (v⃗ ∪ p ∪ l) that for
each program label l gives the following mappings:

• Fpnt(l) maps to the label of state l’s parent state.

• Fdef (l) maps to the label of state l’s default child state.

• Fcmd(l) maps to state l’s command.

• Fprm(l) maps to state l’s parameters.

In addition, Froot maps to the root command of the prog pro-
gram phrase.

3.1 Semantics

Figure 4 shows the small-step operational semantics of Caisson.
This figure gives the abstract machine configuration, defines the
evaluation context, and gives the small-step transition rules.

2 This requirement is due to the semantics of nested states: the target of
a goto influences which ancestor states’ commands execute, which could
leak information without this restriction. This restriction does not greatly
impact expressiveness: we can still get from any state to any other state by
constructing a sequence of gotos, though we won’t necessarily get there in
a single cycle.



γ ∈ Env : (v 7→ r) ∪ (l 7→ l) σ ∈ Store : r 7→ n

δ ∈ Time : N C ∈ Config : ⟨p, γ, σ, δ⟩

E ::= � | E ⊕ e | n⊕ E | x := E | E ; c

| prog l = r⃗ℓ in E | let s⃗ in E

⟨E[r], γ, σ, δ⟩ ⟨E[σ(r)], γ, σ, δ⟩ (REG)

⟨E[v], γ, σ, δ⟩ ⟨E[σ(γ(v))], γ, σ, δ⟩ (VAR)

⟨E[n1 ⊕ n2], γ, σ, δ⟩ ⟨E[n1 J⊕K n2], γ, σ, δ⟩ (OP)

⟨e, γ, σ, δ⟩ ∗ ⟨n, γ, σ, δ⟩

⟨E[r := e], γ, σ, δ⟩ ⟨E[skip], γ, σ[r 7→ n], δ⟩
(ASSIGN-R)

⟨e, γ, σ, δ⟩ ∗ ⟨n, γ, σ, δ⟩

⟨E[v := e], γ, σ, δ⟩ ⟨E[skip], γ, σ[γ(v) 7→ n], δ⟩
(ASSIGN-V)

⟨e, γ, σ, δ⟩ ∗ ⟨n, γ, σ, δ⟩ c′ =

{

c1 : n = 0

c2 : n ̸= 0

⟨E[if e then c1 else c2], γ, σ, δ⟩ ⟨E[c′], γ, σ, δ⟩
(IF)

⟨E[skip ; c], γ, σ, δ⟩ ⟨E[c], γ, σ, δ⟩ (SEQ)

⟨E[falll], γ, σ, δ⟩ ⟨Fcmd(γ(l)), γ, σ, δ⟩ (FALL)

γ1 = Reset(γ, l)
γ2 = γ1[Fpnt(l) 7→ l]

γ3 = γ2[Fprm(l) 7→ γ(x⃗)]

⟨E[goto l(x⃗)], γ, σ, δ⟩ ⟨Froot, γ3, σ, δ+1⟩
(GOTO)

Figure 4. Small-step semantic rules for Caisson ( ∗is the reflex-
ive transitive closure of ).

The abstract machine configuration consists of the current pro-
gram phrase p, an environment γ, a store σ, and a time value δ.
The environment γ maps variables (state parameters) to registers
and maps state labels to other state labels; the store σ maps reg-
isters to values; and δ is the current time measured in cycles. The
mapping from labels to labels in γ records for each state l its target
child state (i.e., the command to begin evaluating if l executes a fall
command—we initialize the mapping to the default child states).
The rules are fairly standard except for fall and goto, which we
now describe in detail.

The FALL rule applies when executing a falll command. The
rule looks up in γ the target child state for the current state l (recall
that we require l for a command falll to be the label of the current
state) and begins executing that target child state’s command.

The GOTO rule applies when executing a goto command. The
rule does three things: (1) creates a new environment γ as described
below; (2) increments the time δ, since a state transition marks
the beginning of a new cycle; and (3) begins evaluating the root
command at the top of the state hierarchy.

The most complex part of the GOTO rule is the set of premises
that create the new environment γ3 with which we evaluate the
root command. The key is to understand the intended semantics

of nested states: upon each state transition to a state l, we must
maintain the invariant that all of l’s ancestor states’ commands
execute before executing l’s command. Hence, the goto sets the
next command to Froot rather than the command of the target
state. When evaluating a state’s command it will eventually execute
either another goto (restarting this whose process) or a fall. The
environment must map each state’s target child state such that
a sequence of falls will follow the correct path down the state
hierarchy to eventually reach l, the original target of the goto that
began the current cycle.

The first premise uses a helper function Reset, which we define
here: Reset takes an environment γ and a state label l and returns
a new environment γ′ identical to γ except that label l and the
labels of all states that are descendents of l in the state hierarchy
are mapped to their default child states (the same as their initial
values). This ensures that each time the program transitions to a
state group, any prior evaluations of that state group do not affect
the current evaluation.

The second premise looks up l’s parent state (Fpnt(l)) and sets
the parent state’s target child state to be l. This ensures that when
evaluating the parent state’s command and executing a fall, exe-
cution will fall-through to the correct child state (i.e., l). The last
premise maps the target state l’s parameters to the arguments of the
goto command.

3.1.1 Example

Consider the code in Figure 2(b) and assume mode is initialized to
0 and timer is initialized to 3. Note that Froot is the outermost fall
command (at the bottom of the code). Execution will proceed in the
following manner,where C⟨X⟩ represents cycle X in the execution:

C0 The outermost fall command is executed, which by default falls
through to state master. Since the if guard is true, mode is set to
1 and the command goto group1 is executed. The GOTO rule
changes the environment so that the fall-through state is now
group1 instead of master and resets the next command to be
Froot.

C1 The outermost fall command is executed. Because of the
changed environment, control falls through to state group1.
timer is decremented to 2; since timer is not 0 the else branch
is taken and the fall command is executed. By default, control
falls through to state S1. Assume that data1 = 0; then the com-
mand goto S2 is executed. This changes the environment so
that the fall-through state for group1 is now S2 instead of S1
and resets the next command to be Froot.

C2 The outermost fall command is executed. As previously, con-
trol falls through to state group1 and timer is decremented to
1. Since timer is not 0 the else branch is taken and the fall com-
mand is executed. Because of the changed environment control
falls through to state S2. Assume data1 is now 1; then the com-
mand goto S2 is executed, which leaves the environment un-
changed and resets the next command to be Froot.

C3 The outermost fall command is executed. As previously, control
falls through to state group1 and timer is decremented to 0.
Since timer is now 0, the true branch is taken and the command
goto master is executed; this changes the environment so
group1’s fall-through state goes back to its default (i.e., S1) and
the root fall-through state is now master instead of group1,
and resets the next command to be Froot.

C4 The logic from cycle C0 is repeated, except that mode = 1 and
so the program will transition to group2 instead of group1.



ℓ ∈ L security labels

τ ::= ℓ | α base types, type variables

κ ::= {τ <: τ} | κ1 ∪ κ2 type constraints

ρ ::= τ | cmdτ | stτ (α⃗, κ) phrase types

Figure 5. Types

3.2 Type System

Figure 5 gives the types used by our language. The base types are
elements of the security lattice L. Type variables range over base
types and are implicitly universally quantified. We assume each
state uses a disjoint set of type variables. The type variables are
bounded by the type constraints κ which specify required subtype
relations among the type variables and base types. The type system
statically checks that all goto commands satisfy these constraints.

Expressions have type τ , commands have type cmdτ , and states
have type stτ (α⃗, κ). We omit the standard subtyping rules: ex-
pression types are covariant (e : τ means that e contains no vari-
ables or registers greater than τ ); command types are contravariant
(c : cmdτ means that c does not change the state of any variable
or register less than τ ); and state types are invariant (s : stτ (α⃗, κ)
means that, assuming the state parameters have types α⃗ that satisfy
the constraints in κ, the state’s command is type cmdτ ).

The program syntax explicitly notes the types of each register
and state; we use this information to initialize the type environment
Γ : (r 7→ ℓ) ∪ (v 7→ α) ∪ (l 7→ stτ (α⃗, κ)) ∪ κ. Γ maps all
registers to a base type, all state parameters to a type variable, and
all state labels to a state type, and also records the type constraints
in all κ. The whole program (i.e. the root state) is always mapped to
st⊥( , ). Γ also records the subtype relations between base types
(i.e., security labels) as given in the security lattice. Since Γ remains
constant, we factor it out of the individual type rules.

Most of the rules are standard (see, e.g., Volpano et al [51])
except for rules T-FALL and T-GOTO which we now explain in de-
tail. Rule T-FALL states that if the type of the default child state’s
command is cmdτ then so must be the type of the current state’s
command. This requirement is due to the differing semantics of
fall and goto commands: a fall command immediately begins exe-
cuting the child state’s command, whereas a goto begins executing
the root command Froot. Without this rule, if a conditional with a
high guard has a goto in one branch and a fall in the other then
a low observer might be able to observe the outcome of the con-
ditional based on whether execution proceeds from Froot or not.
The rule only needs to check the type of the default child state’s
command (Fcmd(Fdef (l))) even though at runtime a state can fall-
through to any child state. Since we require transitions must be to
neighbor states in the state hierarchy, other child states can only
be reached via the default child state. Thus, typing consistency be-
tween the parent state and all its child states is enforced indirectly
by a combination of the T-FALL and T-GOTO rules.

The most complicated type rule is T-GOTO. The goto command
has a target state l and a list of arguments x⃗. The type rule must
accomplish two things:

• It must verify that the arguments x⃗ given to the goto satisfy
the type constraints κ of the target state l. This requirement is
checked by the first premise on the second line of the type rule.
State l’s type constraints κ are modified to map the type of each
state parameter to the type of its corresponding argument (via
κ[α⃗ 7→ Γ(x⃗)]); then the resulting type constraints are verified
to be valid assertions (i.e., that the constraints can be derived
using the sub-typing rules and the information in Γ).

n : ⊥ (T-CONST)

Γ(x) = τ

x : τ
(T-REG/VAR)

e1 : τ e2 : τ

e1 ⊕ e2 : τ
(T-OP)

Γ(x) = τ e : τ

x := e : cmdτ
(T-ASSIGN)

e : τ c1 : cmdτ c2 : cmdτ

if e then c1 else c2 : cmdτ
(T-IF)

c1 : cmdτ c2 : cmdτ

c1 ; c2 : cmdτ
(T-SEQ)

skip : cmd⊤ (T-SKIP)

Γ(l) = stτ (α⃗, κ) Fcmd(Fdef (l)) : cmdτ

falll : cmdτ
(T-FALL)

Γ(l) = stτ (α⃗, κ)
⊢ κ[α⃗ 7→ Γ(x⃗)] τ ′ = τ [α⃗ 7→ Γ(x⃗)]

goto l(x⃗) : cmdτ ′

(T-GOTO)

Γ(l) = stτ (α⃗, κ) d : cmdτ

state lτ (v⃗α)κ = d : stτ (α⃗, κ)
(T-STATE)

si : stτi(α⃗i, κi) c : cmdτ

let s⃗ in c : cmdτ
(T-DEF)

d : cmdτ

prog l = r⃗ℓ in d : cmdτ
(T-PROG)

Figure 6. Caisson type rules

• It must also confirm the type of the goto command in the
conclusion of the rule. This is confirmed by the last premise on
the second line of the rule. The target state has type stτ (α⃗, κ),
meaning that its command has type cmdτ . However, we cannot
simply make the type of the goto command be type cmdτ—τ
may be a type variable, and we assume that the sets of type
variables used in any two states are disjoint. Therefore, the
rule must translate type τ , valid for the target state, into an
appropriate type τ ′, valid for the source state. The rule uses
the same substitution operator as used earlier to perform this
translation.

We sketch a proof that the Caisson type system enforces timing-
sensitive noninterference in Appendix A.

3.2.1 Example

Here we use the type rules to show that specific parts of the example
program in the previous section are well-typed. We don’t show the
entire type derivation, but we do show how both the T-GOTO and
T-FALL rules are used.

Consider the code in Figure 2(c), and specifically the command
goto group(data1). The rule T-GOTO first confirms that the type
of the argument (i.e., data1, which is type H) satisfies the type
constraints of the target group, i.e., that L <: H—this is true. The
rule then finds a suitable type for the goto command based on the
type of the target state (group, which is type L); hence the type of
the goto command is cmdL.



Now consider the command goto group(data2). By the
same logic this command is also typed cmdL, except that when
checking that the argument (i.e., data2, which is type L) satisfies
the type constraints, the rules confirms that L <: L, which is also
true. Since mode is type L, the type of the if statement is cmdL
which matches the declared type of state master.

From the above we can confirm that all transitions to group sat-
isfy the type constraints. When typing group itself, we assume that
the type constraints are met, i.e., that L <: A. Hence, when typing
the false branch of the if command in group the fall command,
using rule T-FALL, is initially typed as cmdA. However, by con-
travariance and since L <: A, it can also be typed as cmdL. Since
the true branch is typed cmdL (by the T-GOTO rule), the if com-
mand is well-typed as cmdL, which matches the declared type of
state group.

When checking state S1, the declared type (i.e., stA(L <: A))
forces the if command to be type cmdA; the T-GOTO rules confirms
that is true for both branches of the if command. The same holds
true for state S2.

Therefore each state of the program, and the entire program
itself, is well-typed.

4. Information-Flow Secure Processor

In this section we concretely demonstrate the utility of Caisson by
designing and evaluating an information-flow secure processor that
safely muliplexes execution of trusted and untrusted code. Securely
executing mixed-trust programs has historically been difficult to get
right. For instance, all known cache attacks stem from the basic
problem that cache controllers must use both trusted and untrusted
information to decide which lines to evict from a cache [35, 54].
Information has been also shown to leak through branch predictor
history table [5] or through the instruction cache lines [6]. More
generally, any perturbation in the execution of a trusted program
based on untrusted data is a vulnerability, and we must prevent all
possible sources of such information leaks.

We begin the section with a description of a complete four-
stage processor pipeline that securely implements a RISC ISA.
We then extend the processor to include a cache hierarchy that is
verifiably secure against all known attacks [35, 54]. These designs
demonstrate that Caisson’s language abstractions allow the CPU
to be cleanly specified in a natural fashion and enable a statically-
verifiable, efficient design. For this processor design we employ the
same two-level lattice Trusted ⊑ Untrusted as used in §2.

4.1 Secure CPU Design

The public interface of a CPU is its Instruction Set Architecture
(ISA). Table 1 describes the ISA of our processor; this is a standard
ISA (derived from the commercial Altera Nios processor) . The ISA
is implemented using a combination of hardware data- and control-
flow controlled by the execution pipeline. Figure 7 shows the four-
stage pipeline of our processor, with stages Fetch, Decode, Execute,
and Commit. Additional microarchitectural features such as caches,
prefetchers, and branch predictors can be attached to the pipeline to
improve processor performance. Our processor implements a cache
to illustrate how these microarchitectural features can be designed
for security; the other features can be implemented using similar
strategies.

The easiest method to ensure that Untrusted data can never
affect Trusted computation is to physically isolate them, i.e., have
two separate instances of the CPU, one for Trusted computation
and one for Untrusted computation. While simple and easy to
verify, economic reality means that this is not a practical solution.
Even in high assurance systems the hardware components are often
shared, e.g., the Boeing 787 trusted aircraft control network shares
the physical bus with the untrusted passenger network [15].

Table 1. The ISA of our RISC processor

Figure 7. A typical CPU pipeline and its interaction with memo-
ries, registers and other components. Our CPU design implements
all parts in bold.

The only alternative solution is to time multiplex the Trusted
and Untrusted computation on the same physical hardware. The
key to secure hardware design is to guarantee that any state changes
due to Untrusted computation never affect any Trusted compu-
tation even when the computations share the same pipeline stages,
cache, and other processor features. Caisson’s language abstrac-
tions and type system collaborate to provide the hardware designer
with the tools needed to easily encode and verify a secure design.
In the remainder of the section we describe in detail the Caisson
implementation of our processor.

4.2 Secure Execution Pipeline

The execution pipeline is the backbone of the processor and the
foundation of a secure design. Our goal is to take a trusted context
(i.e., registers and memory) and a separate untrusted context and
use the same physical processor logic circuits to safely operate
on both. The resulting processor is a 32-bit RISC processor with
128KB each of Instruction and Data memory (64KB for the trusted
context and 64KB for the untrusted context), two program counters,
and 16 general purpose registers (split evenly between the trusted
and untrusted contexts). There is a single four-stage pipeline shared
between the trusted and untrusted contexts (as well as a 2K shared
data cache, described in the next subsection). Figure 8 shows a
state-machine diagram of the pipeline design.

This design interweaves the Trusted and Untrusted compu-
tation at a coarse granularity. There is a Reset state that resets the
hardware state to its initial conditions and a Master state that con-
trols the pipeline logic. The Master state sets a timer and allows
the pipeline to be used in alternate time intervals by the Trusted
and Untrusted computation. In this design, every stage of the
pipeline contains data from the same execution context (Trusted
or Untrusted). Figure 9 shows the hardware diagram of the cor-



Figure 8. State Machine Diagram of the Coarse-Grained Time-
multiplexed Pipeline. The memory hierarchy shown in the dash box
does not represent any concrete state in the state machine, but it is
included in our CPU and accessed by the pipeline.

Figure 9. Synthesized hardware implementation of the Coarse-
Grained Time-multiplexed Pipeline CPU logic when the entire
pipeline is multiplexed between high and low code.

responding synthesized circuit. Figure 10 gives a skeleton of the
Caisson code that implements the pipeline design (where ’High-
Context’ and ’LowContext’ stand for the untrusted and trusted con-
texts, respectively). Note that the design uses nested states to al-
low verification of the design and parameterized states to share the
physical logic. In fact, this design is similar to the Execution Lease
controller design in §2.

4.2.1 Fine-Grained Sharing of Execution Pipeline

One possible drawback of the previous pipeline design is that the
sharing between Trusted and Untrusted computation is coarse-
grained; the time intervals during which they each have control
of the pipeline must be sufficiently large to counteract the cost
of stalling the pipeline each time the context is switched between
them. An alternative design can share the pipeline at a much finer
granularity, so that each pipeline stage continuously alternates be-
tween Trusted and Untrusted computation at each cycle. This
design may be an attractive option when the computation at each
security level requires a low latency response.

Figure 12 shows the intuition behind this design, along with
a state-machine diagram illustrating the design. Figure 11 gives
a skeleton of the Caisson code that implements the design. Each
pipeline stage is initialized at a particular security level, so that
Fetch is Trusted, Decode is Untrusted, Execute is Trusted, and
Commit is Untrusted. In each cycle (i.e., at each state transition

Figure 10. Implementation of the coarse-grained multiplexing
pipeline. The timer can be initialized to any number hence we omit
the concrete value here.

Figure 11. Implementation of the fine-grained multiplexing
pipeline using Caisson

goto), the security context at one stage is passed on to the next
stage in turn.

4.3 Secure Cache Design

A secure execution pipeline prevents information leaks via hard-
ware data- and control-flow, but information can still be leaked
via microarchitectural features such as cache memory. For exam-
ple, there are well-known security attacks that exploit a shared
memory to covertly communicate between two supposedly iso-
lated processes by selectively causing page faults and/or cache
misses [5, 35]. We implement a secure cache for our processor de-
sign to illustrate how to secure microarchitectural features; other
features, such as branch predictors, can be securely implemented
using similar strategies.

As with the execution pipeline, there are two basic approaches
to securing the cache: physical isolation (statically partitioning the
cache between Trusted and Untrusted data) or time multi-
plexing (sharing the cache, but flushing it each time the processor
switches between the Trusted and Untrusted contexts). In this
case, unlike the pipeline, the extreme cost of flushing the cache at
each context switch means that partitioning the cache is the pre-



Figure 12. Fine-Grained Pipeline Multiplexing. (a) Intuition be-
hind the design (b) State Machine Diagram

ferred solution. Other existing work has come to the same conclu-
sion [54]. Our contribution is not the design of a secure cache it-
self, but the fact that a secure cache can be easily implemented
and statically verified using Caisson, as well as securely integrated
into a larger secure system (i.e., our processor). Static verification
is important—previous work on secure cache design [54] has been
shown to possess subtle flaws that violate security [26].

In Caisson, the implementation of a partitioned cache is simple:
the design passes the particular cache partition each context should
use as part of the context information for the parameterized states.
In Figure 10, the cache partitions would be part of ’HighContext’
and ’LowContext’. Equally as important as the cache memory
itself is the cache controller—the logic that processes cache hits
and misses. Unlike the cache memory, the cache controller can be
shared among the different security levels in the same manner as
the execution pipeline.

4.4 Evaluation

We have proven that Caisson gaurantees the security of our proces-
sor design, but an interesting question is how the resulting design
performs in comparison to existing processor designs, both tradi-
tional insecure processors and other processors designed for se-
curity. The relevant performance metrics are: synthesis time (how
long it takes to transform a high-level design into an actual circuit);
chip area (how large the resulting circuit is); delay (inversely pro-
portional to clock frequency); and power (the power consumption
of the circuit).

4.4.1 Synthesis Methodology

To quantify the hardware design overhead introduced by our ap-
proach we compare our processor design (Caisson) with a non-
secured, simplified version of the commercial Nios Processor
(Base) and the same Nios processor augmented to dynamically
track information flow using GLIFT (GLIFT) [46]. GLIFT imple-
ments full system information flow tracking at the logic gate level:
it associates each bit in the system with a taint bit indicating its
security level, and augments each gate in the hardware design with
additional gates that compute taint propagation.

All CPUs have identical functionality and configuration. How-
ever both Caisson and GLIFT can only utilize half of the cache
and memory capacity effectively although they have identical con-
figuration as the Base processor. The reason is that in our Caisson
design the memory and cache have to be partitioned into two parts
with different security levels, while GLIFT needs to associate a
one-bit tag for each bit in the memory and cache. Increasing the
cache and memory utilization efficiency for Caisson is part of our
future work.

We implemented the Base processor (from the Nios design)
in Verilog with no additional security features. To get the Cais-
son implementation we remodeled the Base implementation using

Table 2. Synthesized results of the different CPU designs: the
simplified Nios Processor (Base), the GLIFT-based CPU, and the
Caisson-based CPU.

security widgets provided by the Caisson language and statically
partitioned all registers, caches, and memories into Trusted and
Untrusted. To get the GLIFT implementation, we first synthe-
sized the Base design into a gate level netlist and then augmented
the netlist with shadow logic to track information flow. We passed
the Base and Caisson designs through Altera’s QuartusII v8.0 tool
to synthesize the designs onto a Stratix II FPGA for functional test-
ing and verification. We then obtain the area, timing and power
results using the Synopsis Design Compiler and the SAED 90nm
technology library [1] assuming a switching activity factor of 50%
for the circuit.

4.4.2 Results

Almost as important as the quantitative performance results are the
qualitative results of how easy each design was to implement—
this is an important test for the usability of a language. We find
anecdotally that Caisson is easily usable by a programmer trained
in Verilog. The original Base design required 709 lines of Verilog—
the corresponding Caisson design required only 724 lines and took
little additional time to implement. By contrast, GLIFT required
us to make a hard choice: we could either (1) manually design the
gate-level netlist at a structural level (i.e., manually place the logic
gates to create the design), which in our experience is infeasible for
such a complex design; or (2) generate a gate-level netlist from the
behavioral Verilog design using an existing tool, then automatically
generate the GLIFT shadow logic using the resulting netlist. We
used the latter option, and while it simplifies the process for the
programmer the resulting design is intractably difficult to debug
and optimize.

Table 2 gives the performance figures for each design. We give
the concrete numbers for all three designs as well as normalized
numbers for Caisson and GLIFT (using Base as a baseline). The
area numbers do not include the memory hierarchy since all three
designs use an identical memory configuration. The power num-
bers include both dynamic and leakage power. The GLIFT design
comes with a large overhead in all four performance categories due
to the shadow logic that GLIFT introduces to the processor. This
shadow logic takes a long time to synthesize, requires a large chip
area, consumes a great deal of power, and drastically slows the pro-
cessor cycle frequency.

Caisson, in contrast, has a much lower overhead, though it is
certainly not free. This overhead mainly comes from two sources:
the duplicated state (i.e., registers) and the additional encoders and
decoders used to multiplex the partitioned state onto the same logic
circuits. We note that the overhead generated by the Caisson de-
sign does not grow with CPU complexity (e.g., number of func-
tional units)—a more powerful and complex CPU would not re-
quire any additional overhead, while the GLIFT design’s overhead
would proportionately with the CPU complexity. For perhaps the
most important performance metric, power, Caisson’s overhead is
almost negligible. The synthesis time for the Caisson design in-
cludes type-checking, which is sufficient to verify the design’s se-
curity. The GLIFT synthesis time does not include verification—
GLIFT only detect security violations at runtime.



These results show that designing a secure processor using Cais-
son not only provides a strong static guarantee about information
flow security, but also (1) allows a more straightforward and natural
way of designing a secure processor, and (2) introduces much less
area, timing and power overhead than dynamic tracking techniques
such as GLIFT.

5. Related Work

Secure information flow has been widely studied; a survey by
Sabelfeld and Myers [39] gives a comprehensive summary of this
work. Here we concentrate on (1) hardware-assisted secure infor-
mation flow, and (2) analyzing hardware designs for secure infor-
mation flow, for both secrecy and integrity. Although the concept
of integrity has sometimes been generalized to include other prop-
erties such as program correctness [17, 30], we deal only with in-
formation integrity in this paper.

A number of papers deal with timing-sensitive secure informa-
tion flow for programming languages [8–10, 21, 37, 42, 52, 56].
These papers enforce timing-sensitivity by restricting computation,
e.g., by not allowing any branches or loops on high information.
These restrictions wouldn’t allow for any useful hardware designs
and so these works can’t be used in Caisson; instead, we take ad-
vantage of the characteristics of sychronous hardware to enforce
timing sensitivity (as explained in Appendix A).

5.1 Hardware-Assisted Secure Information Flow

Secure information flow has been enforced at a variety of lev-
els of abstraction in computer systems. At the programming lan-
guage level information flow can be enforced statically (e.g., via
a type system [33, 53]) or dynamically [29, 36]. At lower levels
of abstraction dynamic enforcement is the norm. Projects such as
LoStar [59], HiStar [58] and Flume [28] apply distributed informa-
tion flow control (DIFC) [57] through general-purpose operating
system abstractions. Tag-based tracking at the virtual machine, ar-
chitecture, or ISA levels is a popular dynamic solution that tracks
information flows through all registers and memory [12, 13, 34, 38,
43, 49, 50].

However, even hardware-assisted secure-information flow track-
ing does not go below the ISA abstraction level to account for mi-
croarchitectural features such as pipelining and cache. There are
existing dedicated secure cache [54] and memory controller [32]
designs, however these designs only enforce information flow poli-
cies for specific components in the computer architecture; this ex-
isting work does not address the entire processor design, nor does
it provide a general methodology for designing secure hardware.

5.2 Information Flow Analysis for Hardware Design

The traditional method for checking the security of a hardware
design is to simulate and extensively test the design, a laborious and
expensive process. While static analysis [19, 22, 23, 40] and model
checking [11] are often used for functional verification, they are not
often used to check security. Tolstrup et al [47, 48] describe a type-
system based information flow analysis to verify hardware security
policies for VHDL designs. Their work is limited to analyzing
simple cryptographic hardware designs, and as pointed out by Li
et al [31], directly applying conventional information flow analysis
to existing hardware description languages often leads to imprecise
results.

Unlike the existing work, Caisson extends HDLs like VHDL
and Verilog with language abstractions that specifically target pre-
cise static verification of hardware designs.

6. Conclusion

Hardware mechanisms for information flow control often form the
root of trust in high assurance systems and are used to enforce poli-
cies such as non-interference. While programming language tech-
niques have been used extensively for creating secure software,
languages to create information-flow secure hardware have not re-
ceived much attention. We combine insights from traditional type-
based secure languages with domain-specfic design patterns used
for hardware design and present a new hardware description lan-
guage, Caisson, for constructing statically-verifiable secure hard-
ware designs. By formalizing certain security design patterns and
providing direct language support for enforcing their correct use,
Caisson promotes thinking about secure hardware design in new,
useful ways that don’t naturally arise in existing languages. Using
Caisson, we are able to express information flow control mecha-
nisms in a natural manner and quickly verify a variety of novel
secure hardware designs. In particular, we show how the insights
gained from developing Caisson allow us to design the first ever
implementation of a pipelined processor that verifiably enforces
noninterference.

A. Proof of Noninterference

We sketch a proof that Caisson enforces timing-sensitive nonin-
terference between security levels. The invariant that we wish to
enforce is that an observer at security level ℓ cannot distinguish
between two runs of the same program that differ only in the in-
formation at security levels ℓ′ ̸⊑ ℓ. Because Caisson models syn-
chronous hardware designs there are two important implications
that we leverage: (1) observers can see the stores only at the end
of each cycle, i.e., they cannot see changes to the store that happen
during a cycle until that cycle ends; and (2) the length of time be-
tween two sequential goto commands is always exactly one cycle,
regardless of the number of semantic steps taken. These two facts
are justified by the synchronous nature of the hardware: the flip-
flops only read in new values on a clock edge, and the clock fre-
quency is set so that each state (corresponding to a combinational
circuit) is guaranteed to have completed within one cycle.

We define “distinguishability” using the L-equivalence relation
defined below. We then give a set of lemmas and our main nonin-
terference theorem.

A.1 L-equivalence

First we define the set of security types L that an observer at secu-
rity level ℓ can observe. This includes base types that are subtypes
of ℓ as well as type variables of state parameters that the current
environment γ maps to registers whose base types are subtypes of
ℓ. Formally, for a given security level ℓ and environment γ let L =
the minimum fixpoint of {ℓ′ | ℓ′ ⊑ ℓ} ∪ {α | ∃v ∈ dom(γ).v :
α ∧ γ(v) ∈ L}. Then let H = {τ | τ /∈ L}, i.e., the security
types that an observer at level ℓ can’t distinguish. Types L and H
are always with respect to some environment γ.

We lift the type constructors and typing relation to operate on
L and H in the obvious way. We now use L and H to define
the L-equivalence relation ∼L on stores, environments, commands,
and configurations such that L-equivalent items are indistinguish-
able from each other for an L-observer.

• Environment: Two environments are equivalent (γ1 ∼L γ2)
if they cannot be used to create effects distinguishable by an
L-observer. This means that (1) any writable L-typed state
parameter (i.e., not from an H-typed state) must be mapped
to the same register in both environments; and (2) if γ1 maps a
label l to an L-typed state then so must γ2 and vice-versa:



For all parameters v of any state l : stL(α⃗, κ), v : L w.r.t.
either γ1 or γ2 ⇒ γ1(v) = γ2(v), and

∀l . γ1(l) :stL(α⃗, κ) ∨ γ2(l) :stL(α⃗, κ) ⇒ γ1(l) = γ2(l)

• Store: Two stores are equivalent if they agree on all values that
can be seen by an L-observer. Let the ⇃L operator project out all
registers with type H from a store (since registers always have
a base type we don’t need γ to determine H); then σ1 ∼L σ2 if
(σ1 ⇃L) = (σ2 ⇃L)

• Command: Two commands are equivalent w.r.t. an environ-
ment γ (c1 ∼γ

L c2) if (1) they are the same command and both
typed cmdL w.r.t. γ, hence will modify state in the same way;
or (2) both commands are typed cmdH w.r.t γ, hence cannot
modify state that is L-observable:

c1 = c2 ∧ c1 :cmdL ∧ c2 :cmdL, or

(c1 :cmdH ∧ c2 :cmdH)

• Configuration: Two configurations are equivalent (C1 ∼L C2)
if their stores, environments, and commands are equivalent and
they have the same time: ∃γ s.t. γ1 ∼L γ ∧ γ2 ∼L γ ∧ c1 ∼γ

L

c2 ∧ σ1 ∼L σ2 ∧ δ1 = δ2

A.2 Lemmas

This section introduces a set of lemmas that we use for the non-
interference proof. Simple security states that an expression e : L
contains only low sub-expressions, while confinement states that
c :cmdH cannot create any effects involving L-typed variables. The
types L and H are with respect to a well-formed environment γ.

Lemma 1 (Simple Security). e :L ⇒ no sub-expression of e has
type H .

Proof. By induction on the structure of e.

Lemma 2 (Confinement). c :cmdH ⇒ evaluating c using environ-
ment γ and some store σ does not modify the value of any variable
or register with type L.

Proof. By induction on the structure of c.

Lemma 3 (Subject Reduction). ⟨c, γ, σ, δ⟩  ⟨c′, γ′, σ′, δ⟩ and
c :cmdH w.r.t. γ ⇒ c′ :cmdH w.r.t. γ′

Proof. By induction on the structure of c.

A.3 Noninterference

We now come to the noninterference theorem itself, which holds
for all well-typed Caisson programs. Recall that because the lan-
guage models synchronous hardware, we assume that changes to
the store are only visible upon a state transition and that time only
increments at state transitions (regardless of the number of seman-
tic steps taken). With that in mind, we give the noninterference the-
orem below. It states that given two configurations CA and CB ,
both of which are L-equivalent and start at the root command, when
the resulting evaluations each reach a state transition (i.e., a goto)
the resulting new configurations must also be L-equivalent.

Theorem 1 (Noninterference).
Let

• CA = ⟨Froot, γA, σA, δA⟩
• C

′

A = ⟨Froot, γ
′

A, σ
′

A, δA+1⟩
• CB = ⟨Froot, γB , σB , δB⟩
• C

′

B = ⟨Froot, γ
′

B , σ
′

B , δB+1⟩

Then

CA  
∗
C

′

A ∧ CB  
∗
C

′

B ∧ CA ∼L CB ⇒ C
′

A ∼L C
′

B

Proof. By induction on the steps of the computation and Lemmas
1, 2, and 3.

The proof itself is straightfoward and omitted for space. Note
that the noninterference theorem is timing-sensitive: it guarantees
that given two L-equivalent configurations, a Caisson program
must make identical L-observable changes at the same times under
both configurations (where time is measured as number of cycles).
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