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1 Introduction and summary

In this paper, we use numerical methods to investigate two-dimensional conformal field
theories defined by sigma models on Calabi-Yau targets. Specifically, we compute the low-
lying spectrum of the Laplacian on Calabi-Yau manifolds equipped with Ricci-flat metrics.
In the large-volume limit, the corresponding excitations come from string momentum
modes, and so this calculation gives the spectrum of local operators in the worldsheet CFT.
Computing this spectrum for many different choices of moduli gives an ensemble of CFT
data that we can analyze statistically. In particular, we show that the spectrum averaged
over a region in complex structure moduli space enjoys the same statistical properties as
the Gaussian orthogonal ensemble (GOE) of random matrix theory (RMT). An example of
our results for the quintic Calabi-Yau threefold is shown in figure 1.
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Figure 1. The top row shows the unfolded spectral form factor for β = 0 for quintic Calabi-Yau
threefolds. The orange curve shows an ensemble average consisting of 1,000 samples in complex
structure moduli space with each sample containing the lowest-lying 100 eigenvalues. The dip, ramp
and plateau are all present. The second and third rows display certain spectral statistics together
with fits to GOE. (Other matrix ensembles are also shown for comparison.) The second row shows
the nearest-neighbor level spacings (NNS) and the next-to-nearest (NNNS). The third row shows
the next-to-next-to-nearest (NNNNS) level spacings and the number variance.
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1.1 Random matrices and chaos

Random matrices are a hallmark of quantum chaos (see [1–4] and references therein for a
review). The seminal conjectures of Bohigas, Giannoni and Schmit [5, 6] codified this by
postulating that systems whose classical limits show sufficient ergodicity display random
matrix statistics in their quantum energy levels. Some of the most prominent features of
quantum chaos are the repulsion of nearby energy levels and the long-range rigidity of the
spectrum, both of which contrast sharply with the statistics of a Poisson random process.
(See the nearest-neighbor level spacings (NNS) and Σ2 plots in figure 1.)

The study of quantum chaos goes back more than four decades and has a rich interplay
with classical chaotic dynamics, semiclassical physics, asymptotic methods, random matrix
theory and spectral theory. Let us recall some of the key ideas.

In classical mechanics, integrability and chaos are well-defined notions. In particular,
in the absence of sufficiently many conserved quantities (via symmetries), one generically
expects the strongest form of chaos, where the classical dynamics is deterministic but the
system is so unstable that small changes in initial conditions lead to large variations in its
long-time evolution. This is often called the “butterfly effect” and can be seen, for example,
in Bunimovich’s billiards [7].

This form of chaos does not apply to quantum systems, which do not have a well-defined
notion of phase space trajectories. In quantum mechanical systems, instead of position and
velocity, one discusses states and their energy spectra. A naive definition of quantum chaos,
i.e. whether two “close” initial states ψ1(~r, t = 0) and ψ2(~r, t = 0) diverge exponentially
from one another with time, is not useful in quantum mechanics, essentially due to linearity
of the Schrödinger equation (the overlap of two states evolved with the same Hamiltonian is
constant in time).1 Instead, a key question of quantum chaos is whether a quantum system
displays qualitatively different behavior if its classical analogue is chaotic.

There are now many examples of how classical chaos affects the quantum dynamics
of a system. In particular, this has been formalized via semiclassical trace formulae, such
as the Gutzwiller trace formula for systems in a chaotic regime [8]. Roughly speaking,
the essential idea is that the density of states of the quantum system can be written as a
sum of two contributions: a slowly varying term associated with the classical energy of the
system and an oscillating term which captures quantum fluctuations. The Gutzwiller trace
formula then connects the quantum contribution to a classical object, which is computed
from periodic orbits of the classical system. Thus, this gives a link between a quantum
system and its classical analogue by expressing its energy spectrum in terms of periodic
orbits (with longer orbits needed to resolve smaller energy differences).

The existence of these trace formulae imply that classical chaotic dynamics should
affect the quantum mechanical properties of a system, at least in some qualitative way. In
‘77, Berry and Tabor conjectured that generic integrable systems have energy levels that
follow Poisson statistics [9]. In ‘84, Bohigas, Giannoni and Schmit [5, 6] extended this to
the chaotic regime, conjecturing that the energy spectrum of a classically chaotic system

1The most natural generalization of the butterfly effect to quantum systems is found by examining
out-of-time order correlators.
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should display the eigenvalue repulsion and spectral rigidity characteristic of RMT. In other
words, RMT should give a statistical description of the spectrum and eigenfunctions of
the corresponding quantum Hamiltonian. This conjecture has been verified in a variety of
systems, with only non-generic systems known to violate it [10]. Thus, RMT-like statistics
for the energy spectrum is often taken to be a defining property of quantum chaos and a
signature of the kind of classical dynamics underlying the quantum system.2

Despite this long history, we note that there are few universal or rigorous results on
chaos and ergodicity, other than for 2d billiards [13], compact manifolds with negative
curvature [14–17], and related systems. Indeed, even for the simple example of billiard
motion in a regular tetrahedron, it is not known whether the trajectories are ergodic [18,
section 1.9.3]. Furthermore, it is not known whether ergodicity is sufficient for random
matrix statistics in the resulting spectrum. For example, it is known that generic Riemann
surfaces have ergodic geodesics [17], however it is not known how to show that this implies
their spectra will display GOE statistics (see, for example, [18, section 9.13.2]).

Since chaos is generic in physical systems, the general features of random matrix theory
are ubiquitous and have found applications in nuclear physics [19–22], billiards [5, 23, 24],
and the quantum hall effect [25] to name but a few. Recently, a particular diagnostic, the
spectral form factor (SFF), has been used to investigate spectral correlations in quantum
many-body systems such as the SYK model [26–29] as well as in the context of black hole
physics and gravitational systems [30–34]. In this situation, the essential result is that
the black hole energy levels are discrete, non-degenerate and chaotic. At late times, this
implies that correlations functions cannot decrease, but instead must oscillate [35–38]. This
behavior, suitably averaged, is precisely captured by random matrix statistics and leads to
features known colloquially as the ramp and the plateau. (See the SFF plot in figure 1.)

1.2 Conformal field theories and Calabi-Yau metrics

The appearance of random matrix theory in the setting of quantum gravity suggests, via
holography, that generic conformal field theories might also display such features in their
spectrum. However, to date, few explicit field theory calculations have been carried out.
Notable exceptions are the averages of 2d free field theories discussed in [39–41] where exact
calculations give rise to a Chern-Simons-like theory of gravity. By contrast, in this work,
we analyze genuine interacting theories where RMT statistics are expected.

Our focus is (super)conformal field theories defined by sigma models into Calabi-Yau
targets; explicitly, we consider the K3 surface and the quintic threefold. These theories have
been well studied from a variety of points of view as they give rise to rich target spaces for
string theory. Most calculations in these theories involve observables protected by supersym-
metry which can often be computed even at strong coupling. (See e.g. [42–49].) There has
also been work exploring these conformal field theories making use of the modular properties
of the partition function and from the perspective of the conformal bootstrap [50–55].

In each of these previous analyses, the focus has been on the properties of a few
low-dimension operators (such as those in the chiral ring). By contrast, to compare with the

2Indeed, a more precise definition of quantum chaos still appears to be missing [11, 12].
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predictions of random matrix theory, one needs access to hundreds of (non-BPS) eigenstates
so that their statistics can be cleanly diagnosed. To achieve this precision, we will work
in the large-volume regime of the sigma model. In this weakly coupled limit, the theory
reduces to the quantum mechanics of a particle moving in the Calabi-Yau target. We can
then determine the spectrum by solving for the eigenvalues of the Laplace operator on this
manifold. From this perspective, the problem we are looking at is not completely new, but
is instead an advanced, higher-dimensional cousin of those previously studied in quantum
chaos and discussed above.

A fundamental challenge in carrying out this calculation is the fact that Ricci-flat
metrics on Calabi-Yau manifolds (required to ensure a vanishing beta function in the
conformal field theory) are generally not known analytically.3 As a result, we proceed
numerically. The past decade has seen a number of techniques introduced for computing
numerical Kähler-Einstein metrics, with a particular focus on Ricci-flat examples on Calabi-
Yau manifolds. These include a lattice approach [59], spectral methods [60–63], and most
recently neural networks [64–66]. In this paper, we will use the spectral method which has
become known as “Donaldson’s algorithm” [62] to compute the Ricci-flat metrics numerically.
We then compute the scalar Laplacian using the method laid out in [67, 68], solving for the
spectrum of operators for many choices of complex structure moduli, and then analyze the
resulting distribution of eigenvalues.

As expected for a complex system, the spectrum at a fixed value of couplings, in this
case complex structure moduli, is highly erratic. To detect structure, we pass to an ensemble
by sampling over a region in complex structure moduli space.4 After unfolding, the resulting
ensembles in the examples we consider show good agreement with the expectations of the
large-N GOE ensemble to within the numerical precision available in our calculations.

1.3 Comments and future directions

Since the generic behavior of physical systems is thought to be chaotic, it is perhaps not
surprising that one finds RMT statistics in sigma models. For example, taking appropriate
random metrics on the target space, one would expect the spectrum of the Laplacian to
obey RMT. What is surprising is that one sees this chaotic behavior even for the restricted
class of Ricci-flat (or Kähler-Einstein) metrics which are relevant for 2d CFTs.5 Comparing
to the conjectures of [5, 6], the presence of GOE statistics strongly suggests that classical
geodesic motion on Ricci-flat Calabi-Yau manifolds is ergodic. This agrees with the general
expectation that particle motion on manifolds without isometries is chaotic. We expect that
our results will hold for any d > 2 Ricci-flat Calabi-Yau geometries that come in families
labeled by continuous moduli, giving a huge number of 2d SCFTs whose low-lying spectra

3See [56–58] for recent progress on computing K3 metrics analytically.
4Our averaging procedure is rather rudimentary, weighting each point equally. One could also consider

averaging using the Weil-Petersson metric on the moduli space, as was done for the torus in [39–41].
5Note that repeating the numerics for a torus sampled over its complex structure modulus does not lead

to RMT statistics. Instead, one finds Poisson statistics, in agreement with the general results of [9, 69] for a
system that is classically integrable.
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should display chaos. It would be interesting to explore this connection further and see if it
hints at whether or not there is a useful physical interpretation for ensemble-averaged CFTs.

It is possible to extend our work to the full (p, q)-form spectrum, which would correspond
to including operators whose scaling dimensions are shifted upwards by (p+ q)/2. As we
discuss in section 3, in the large-volume limit, these operators are well separated from the
scalar spectrum that we examine, and so it is consistent to truncate them. If one wants to
relax the large-volume limit, it would be necessary to include these modes.

It would also be interesting to examine the distribution of Yukawa-like couplings over
moduli space.6 In principle, this data is computable from overlap integrals of the Laplacian
eigenmodes (coupled to a gauge bundle). In practice, however, the evaluation and storage
of a large enough number of these with which to do statistics is computationally intensive.
Physically, such data would be extremely useful, especially in light of the fact that fixing
moduli has proven to be so difficult, as one could then ask questions about what kind of
four-dimensional physics is possible for a given Calabi-Yau, allowing a true exploration
of the landscape. Furthermore, while analytically computing non-BPS quantities, such as
normalized Yukawa couplings or Kähler potentials, is currently out of reach, the ensemble-
averaged versions may have simpler mathematical descriptions. We hope to return to this
in the future. We also note that the idea of looking at the statistics of string vacua is an old
one, whether via distributions of flux vacua [71–77] or “random” scalar potentials [78, 79].
The novelty of our approach is the access to the non-BPS data of the string/CFT spectrum.

The Yukawa-like couplings mentioned above are a special case of OPE coefficients in
the CFT. Associativity of the operator algebra imposes constraints on the OPE coefficients
of conformal field theories. The presence of the vacuum in the spectrum of a CFT, together
with these constraints, results in universal behavior for the averaged OPE coefficients [80],
just as it implies universal behavior for the asymptotic averaged density of states, given by
Cardy’s formula [81]. This is consistent with the expectation that chaotic CFTs exhibit
dynamics that are compatible with the eigenstate thermalization hypothesis. However, the
universal behavior of the OPE coefficients, like Cardy’s formula, is a good description only
if the scaling dimensions of the operators under consideration are sufficiently large. Since
our methods enable us only to access the OPE coefficients corresponding to the low-lying
operators, we do not expect to observe universality in the OPE data.

Note that here we observe RMT behavior in the spectral statistics of the low-lying CFT
operators which survive the large-volume limit. This is in contrast to recent works [33, 34,
82, 83] where RMT behavior is expected to arise from the chaotic dynamics of black holes,
and is therefore observed in the spectrum of the heavy microstates with a dense spectrum
accounting for the black hole entropy. In cases where a holographic dual exists, it is
expected that observables such as the SFF receive contributions from saddles corresponding
to wormholes in the gravitational path integral, providing a dual gravitational description
for various RMT features [30, 84–86]. It is not clear whether the light sector of the ensemble-
averaged sigma model admits such a description. It would be interesting to explore whether
the ensemble average over the full sigma model admits a dual description.7

6One could also then compare these with the general bounds for Kaluza-Klein modes derived in [70].
7See [41] for progress made in this direction.
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It is also worth mentioning that there is a slight tension with CFT consistency conditions
if the low-lying operators are strictly described by RMT statistics. This is because according
to the RMT description, there is a finite but small probability that the lightest operator in
the theory is arbitrarily heavy which conflicts with modular invariance of the torus partition
function [50, 54]. Nevertheless, as we will show, the light operators of the sigma model
clearly exhibit statistics indicative of chaotic behavior.

We start with review of RMT and some spectral diagnostics in section 2. We then
outline the connection between sigma models, CFTs and the spectrum of the Laplacian
in the large-volume limit in section 3, and give an overview of our numerical method for
numerically computing Ricci-flat metrics and the spectrum of the Laplacian in section 4.
Finally, in section 5 we present our results for the spectra of genus-3 curves, K3 surfaces
and quintic threefolds, finding agreement with GOE statistics in all cases.

2 Spectral statistics and random matrix theory

In this section, we begin by recalling the concept of ensemble averages of physical systems,
followed by reviewing properties of the Gaussian orthogonal ensemble (GOE) of random
matrices. This is the appropriate ensemble for a real symmetric matrix corresponding to
a Hamiltonian with time-reversal symmetry. It is expected that eigenvalue statistics of
quantum chaotic systems with this symmetry are well described by the GOE. In the figures
that follow for comparison we sometimes plot various quantities for the Gaussian unitary
ensemble (GUE) and Gaussian symplectic ensemble (GSE), though we do not present
a detailed discussion of these models.8 We then discuss various statistics that capture
short- or long-range correlations in spectra, and give the corresponding distributions for
GOE in the large-N limit. These statistics will be used in section 5 to analyze the scaling
dimensions of scalar operators in certain CFTs, so it is useful to introduce them first within
the well-known context of RMT.

Consider a single instance of a quantum system with energy levels En = (E1, E2, . . .).
These might also be the eigenvalues of a single matrix from an ensemble. The density of
states is defined to be

ρ(E) =
∑
n

δ(E − En) . (2.1)

When we have an ensemble of systems with a corresponding set of Hamiltonians and
their spectra, such as an ensemble of random matrices, we can define ensemble-averaged
quantities to be simply the average over the ensemble. Unless otherwise specified, we use
angle brackets to denote such an ensemble average: for example, 〈ρ(E)〉 is the averaged
density of states.

Note that if one has only a single instance of a system, one can still define an average
by integrating over an energy window:

ρ(E) = 1
δ

∫ E+δ/2

E−δ/2
dE′ ρ(E′) , (2.2)

8The interested reader can find an even larger classification of symmetries of random matrices in terms
of Riemannian symmetric spaces in [87].
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where δ should be large enough to smooth out fluctuations but small enough to be negligible
on the scale at which the average itself varies (so that the result is somewhat independent
of δ). Since the systems we consider naturally come from ensembles, we will not use this
alternative formulation.9

The appearance of random matrices in the study of chaotic systems is well established,
though perhaps surprising at first sight. The first observation is that for random matrix
ensembles, in the large matrix limit (large N), spectral averages over a single matrix are
equivalent to averages over the full ensemble. This allows one to search for RMT-like
behavior in systems by considering ensembles of theories and then averaging. Work in
recent decades has suggested that RMT should be thought of as describing somewhat
generic properties of these systems. One should then ask whether a particular instance
of the system belongs to a subset of the ensemble that has non-generic spectral statistics.
Chaotic systems should then be thought of as systems where we lack a priori information
and thus have no reason to think of them as being non-generic. Conversely, systems which
are integrable classically should be thought of as non-generic. RMT is thus often a “null
hypothesis”. In a sense, a main result of this paper is that the low-lying spectrum of certain
CFTs in the large-volume limit is sufficiently generic to display RMT behavior.

There are several diagnostics of spectral correlations focusing on different features of
the spectrum which have proven useful in verifying RMT predictions. We focus on aspects
relevant to our analysis of the spectrum of Laplace operator. We will provide only a brief
overview of the relevant concepts. See [1, 4] for a more comprehensive discussion.

For an N ×N random matrix drawn from the GOE, the joint probability density for
the eigenvalues Ei is given by

PN (E1, . . . , EN ) = CN exp
(
−1

2

N∑
i=1

E2
i

) ∏
1≤j<k≤N

|Ej − Ek|

 , (2.3)

where CN is a normalization constant. This distribution exhibits the key features of Gaussian
falloff of the individual Ei as well as the Vandermonde repulsion of pairs of eigenvalues.
The k-point correlation functions which encode partial probability distributions where only
k eigenvalues are observed can then be expressed as

Rk(E1, . . . , Ek) ∝
∫  N∏

i=k+1
dEi

PN (E1, . . . , EN ) . (2.4)

Analytic expressions for the correlation functions may be obtained in the N →∞ limit.
Famously, the Wigner semi-circle distribution describes the density of states in this limit:

ρ(E) ≡ NR1(E) = 1
π

√
2N − E2 for N →∞ . (2.5)

9As mentioned in [88], energy averaging is appropriate when the results depend weakly on the averaging
window δ. This is usually the case if: a) there are a large number of energy levels in the average; b) δ
is classically small. Due to numerical limitations, we are able to compute only the lowest-lying 100 or
so eigenvalues in our examples. Thus, if we try to include a “large” number of levels in the average, the
averaging window is necessarily not small compared with the range of the eigenvalues. Because of this, the
dependence on δ is not weak, and hence ensemble averaging is more appropriate.
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Below, we focus on the large-N limit since we are interested in comparing the spectral
properties of a Hamiltonian in an infinite-dimensional Hilbert space, albeit with a practically
limited cut-off, to RMT predictions. As we mentioned earlier, the large-N results also
capture the leading behavior of ensemble-averaged finite-N matrices.

In general applications of RMT to chaotic Hamiltonians, the density of states (2.5)
is not a realistic model. Instead, the spectral correlations are captured by the statistics
of the distribution (2.3). Given a physical system, the eigenvalue correlations will have
a system-dependent contribution and a random universal part. Generally, it is only the
latter part that can be used for comparison between different systems or different matrix
ensembles. To isolate this universal part, we remove the dependence on the mean density
of states by “unfolding” the spectrum, giving a new sequence of eigenvalues with the same
fluctuation properties but with a mean density equal to one [4]. This is done by separating
the eigenvalues by an amount inversely proportional to the mean density. Specifically, we
introduce a variable

α(E) ≡
∫ E

−∞
dE′R1(E′) , (2.6)

which counts the number of eigenvalues with value less than E. We then transform all
correlators to functions of the α variables by introducing unfolded correlation functions
Gk(α1, α2, · · · , αk) obeying

Gk
(
α1(E1), α2(E2), · · · , αk(Ek)

)
≡ Rk(E1, E2, · · · , Ek)
R(E1)R(E2) · · ·R(Ek)

. (2.7)

In particular, the unfolded one-point function G1(α) is constant. The unfolded correlation
functions can thus be interpreted as conditional probability distributions. In what follows,
we primarily consider the unfolded spectrum and correlators in the large-N limit.

The discussion above assumes a single instance of an N ×N matrix, however one can
also unfold the spectra of an ensemble random matrices. To do this, we simply define α(E)
to be the ensemble average of the number of eigenvalues less than E:

α(E) ≡
〈∫ E

−∞
dE′ ρ(E′)

〉
, (2.8)

that is, one unfolds the spectrum using the average eigenvalue density 〈ρ(E)〉.

2.1 Short-range correlations

The short-range correlations in the spectrum may be probed by studying the distribution
of nearest-neighbor spacings (NNS) between the eigenvalues, which we denote by p1(s).
The NNS describes the probability that two randomly chosen consecutive eigenvalues in
the spectrum have a separation s. The NNS distribution may be defined using the joint
probability distribution and in general depends on all (k ≥ 2)-point correlations in the
spectrum. Exact analytic results can be expressed in terms of fast-converging infinite
products in the large-N limit for the Gaussian ensembles [1]. However, for our purposes it
suffices to use Wigner’s approximation to the spacing distribution given by

p1(s) = π

2 s exp
(
−π4 s

2
)
. (2.9)
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The fact that the maximum of this function occurs away from s = 0 reflects eigenvalue
repulsion, which is expected due to the Vandermonde determinant appearing in the prob-
ability density for the eigenvalues. This should be contrasted with the nearest-neighbor
statistics arising from an uncorrelated Poisson distribution which is described by a simple
exponential decay p(s) ∼ e−s.

More generally, we may also be interested in higher-order level spacings, i.e. nextk−1

nearest-neighbor spacings. AWigner-like ansatz determines these distributions pk(s) to be [1]

pk(s) = sak exp
(
−bks2

)
, (2.10)

where the omitted constant of proportionality is fixed by demanding pk(s) integrates to
one, and the k-dependent parameters are given by

ak = k2 + 3k − 2
2 , bk = Γ2

((2 + k)(1 + k)
4

)/
Γ2
((3 + k)k

4

)
. (2.11)

2.2 Long-range correlations

There are various diagnostics which probe the long-range correlations in the spectrum.
Here we focus on quantities derived from the two-point correlation function G2(r) with
r = α1 − α2 ≥ 0. At large N , away from the edges of the spectrum, one has [1]

G2(r) = 1− sin2(πr)
π2r2 − d

dr

(sin(πr)
πr

)∫ ∞
r

dy sin(πy)
πy

. (2.12)

The constant 1 above can be viewed as the contribution of the disconnected product of
one-point functions. The connected correlator decays as a power law (∼ r−2) illustrating
the long-range correlations. In practice, since we deal with finite-size systems we will need
to be aware of finite-N modifications to the expression above. There are a number of
statistical quantities derived from the two-point function, two of which we now review.

2.2.1 Number variance
Let η(L,α) be the number of levels in the interval [α, α+ L]. The number variance Σ2(L)
is then

Σ2(L) = η(L,α)2 − η(L,α)2
, (2.13)

where here the bars indicate an average over the starting point α. By definition on
the unfolded scale η(L,α) = L. Thus, in an interval of length L we expect on average
L ±

√
Σ2(L) levels. It is straightforward to derive a relationship between Σ2 and the

(connected) two-point function:

Σ2(L) = L+ 2
∫ L

0
dr (L− r)(G2(r)− 1) . (2.14)

In particular, using expression (2.12) for the correlator we see that for large L and N we
have in the GOE

Σ2(L) ≈ 2
π2 log(L) +O(1) . (2.15)

This logarithmic growth is an indication of spectral rigidity and should be contrasted with a
Poisson process where the connected correlator vanishes, and Σ2 grows linearly with L. The
expression for Σ2(L) including subleading corrections in L can be found in, for example, [3,
eq. 5.13]. We use the full expression when checking our numerical results in section 5.
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2.2.2 Spectral form factor

The spectral form factor (SFF), S(t, β), is another useful diagnostic for probing correlations
present in the spectrum [89]. Given a Hamiltonian H for some system, one can analytically
continue the thermal partition function Z(β) to a function of real time t and inverse
temperature β:

Z(t, β) = Tr e−(β+2πit)H . (2.16)

The time average of this function vanishes, with Z(t, β) itself oscillating wildly at late times
(compared with the spacing of energy levels). The size of the fluctuations are captured by
the SFF:

S(t, β) ≡ |Z(t, β)|2

Z(0, 2β) =

∣∣∣Tr e−(β+2πit)H
∣∣∣2

Tr e−2βH . (2.17)

Following [33], we will take the ensemble average of the SFF, 〈S(t, β)〉, to be the annealed
quantity, corresponding to averaging the numerator and denominator separately.

As usual, one can expand the partition function as a sum over energy eigenstates
leading to

|Z(t, β)|2 =
∫

dE1dE2 ρ(E1)ρ(E2)e−β(E1+E2)+2πit(E1−E2) , (2.18)

where the density of eigenstates of the Hamiltonian H is given by (2.1). Looking at this
expression, we see that the SFF contains information about correlations between pairs of
eigenvalues that may be close together or well separated, thus giving information about
both short- and long-range correlations. In a chaotic system, the energy differences are
mutually irrational leading to a highly oscillatory function for large values of t. Averaging
over these fluctuations, the late-time behavior of |Z(t, β)|2 is dominated by terms where
En ≈ Em. Thus:

S(t, β) avg over t→∞−−−−−−−−−→ Z(0, 2β)
Z(0, 2β) = 1 , (2.19)

where the choice of denominator in (2.17) ensures this averages to 1.
Given an ensemble of theories with corresponding Hamiltonians and spectra of energies,

we can pass to an ensemble average by expressing the expectation value of the product of
densities in terms of the connected correlator. On the unfolded energy scale this leads to〈

ρ(αn)ρ(αm)
〉

= δ(αn − αm) +
(
G2(αn − αm)− 1

)
. (2.20)

Thus the ensemble-averaged partition function can be expressed in terms of the (analytically
continued) Fourier transform of the connected two-point correlator:

〈
|Z(t, β)|2

〉
= 1

2β + <
[ 1
β

∫ ∞
0

dr
(
G2(r)− 1

)
e−βr+2πirt

]
. (2.21)

The resulting averaged spectral form factor for chaotic systems has several distinct features
of interest known as the “dip”, “ramp” and “plateau”. These features are clearly visible
in figure 2, which shows the averaged SFF for the case of a GOE. Each of these features
probes different aspects of the spectrum:
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Unfolded GOE Spectral Form Factor for β = 0

Figure 2. Unfolded finite-N vs infinite-N GOE spectral form factors for β = 0. The orange curve
shows an ensemble average consisting of the eigenvalues of 100,000, 100× 100 random symmetric
matrices. After the dip, there is a period of approximately linear growth moderated by oscillations
of decreasing amplitude, followed by a plateau. The β → 0 limit of equation (2.23) exactly matches
the orange curve, so we have not plotted it separately. The blue curve shows the spectral form factor
for N →∞ and β → 0 as given by (2.23). Only the ramp and plateau are present. The effect of
non-zero β is to damp the oscillations on the ramp region.

• The dip arises from the Fourier transform of the disconnected two-point function. At
finite N it gives rise to oscillations due to a finite sum over complex exponentials with
integer-separated eigenvalues (on the unfolded scale). More explicitly, the dip as well
as the oscillations at finite N are approximated by

Z2
dip(t) =

∣∣∣∑N
n=1 e−(β+2πit)n

∣∣∣2∑N
n=1 e−2βn

=
sinh(β)csch(βN)

(
cos(2πNt)− cosh(βN)

)
cos(2πt)− cosh(β) . (2.22)

Note that the oscillations are suppressed with increasing β. Furthermore, the expres-
sion above results in recurrences at integer values of t arising from exact in-phase
oscillations. However, small deviations away from exact integer eigenvalues results in
large cancellations at non-zero t which remove this effect in a finite sample size.

• The ramp is characterized by a period of nearly linear growth in the spectral form
factor. This linear behavior is a hallmark of large-N random matrix statistics. In
particular, using the exact large-N correlator (2.12), one can evaluate the resulting
averaged partition functions. For instance, at β = 0 one has

|Z(t)|2 = Z2
dip(t) +

2|t| − |t| log(2|t|+ 1) |t| ≤ 1 ,
2− 2|t| coth−1(2|t|) |t| > 1 .

(2.23)

The expression at finite β is easily obtained by convolving the expression above with
2β

β2+4π2t2 to apply the exponential damping. A comparison of this result to a finite-N
GOE is illustrated in figure 2. More generally, one can see that the power-law behavior
of the connected correlator G2(r) − 1 ∼ r−2 is responsible for the ramp region of
the SFF.
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• The plateau marks the transition to the averaged asymptotics of (2.19). In our
conventions this occurs at time t = 1. As explained above this behavior is characteristic
of any theory with a discrete chaotic spectrum. In the context of RMT, this is
reproduced by the fact that the connected two-point function vanishes at small
separation, so the large-t behavior is dominated by the disconnected contribution to
the correlation function. Note that for the GOE, one expects a smooth transition
between the ramp and plateau, as observed in figure 2, while for GUE and GSE one
instead expects a sharp transition and a peak respectively.

3 Sigma models: CFTs and quantum mechanics

As mentioned in the introduction, we will be investigating the spectrum of the Laplacian on
certain Kähler manifolds with Einstein metrics, which are thus Calabi-Yau in the Ricci-flat
case. As we outline in this section, this data has a nice physical interpretation in terms
of the spectrum of certain field theories. The theories we consider are sigma models with
a non-linear target [90]. We mostly choose the target to be Calabi-Yau so that the two-
dimensional sigma model can be extended to a (2, 2) superconformal field theory (SCFT).
In practice, however, we will be exclusively focused on the scalar sector in the point-particle
limit where the theory simplifies and any Riemannian target is acceptable.

A 2d (2, 2) theory can be defined for any compact Kähler manifold M [91]. The defining
action for this theory may be written in terms of scalar fields Xa, viewed as local coordinates
on the manifold M , as well as fermion fields ψa and λb which behave as vector fields on the
target space. Schematically one has

S =
∫

Σ
d2σ

[
gab∂X

a∂Xb + gab(ψaDψb + λaDλb) +Rabcdψ
aψbλcλd

]
, (3.1)

where σµ = (τ, σ) are coordinates on the two-dimensional spacetime Σ, gab(X) is a Kähler
metric on the target M , and Rabcd(X) is the Riemann tensor associated to gab.

Semiclassically, the fields Xa are dimensionless and the sigma-model action (3.1) defines
a conformal field theory for any Kähler target. Quantum mechanically, it is well known that
there are corrections to this statement and generically conformal invariance is lost [92–95].
For instance, as an expansion around the large-volume limit of M , the first non-trivial
contribution to the beta function for the metric gab is [90]

βgab = α′Rab + . . . (3.2)

and so conformal invariance is retained at one-loop order only for Ricci-flat targets [96–98].
In the case of (2, 2) supersymmetry where the target is Kähler, the vanishing of the one-loop
beta function is necessary and sufficient for exact superconformal invariance, since the
target is then Calabi-Yau.10

10With (2, 2) supersymmetry, a Calabi-Yau metric defines an exact SCFT, however the physical metric
receives corrections and is generically only Kähler to higher-loop order. With (4, 4) supersymmetry, as for
a K3 target, the physical metric receives no corrections so that the Calabi-Yau metric is the exact target
space metric to all loop orders.
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The (2, 2) SCFTs thus obtained are in general strongly interacting and not rational or
exactly solvable. They have central charge cL = cR = 3

2dim(M). Of particular importance
to our analysis is that they are known to admit two families of exactly marginal deformations:

• Kähler moduli — these are the size moduli of the Calabi-Yau. There are h1,1(M) such
deformations. In particular, one of these corresponds to the overall volume, Vol(M),
which scales the overall size of the manifold M .

• Complex structure moduli — these are the shape moduli of the Calabi-Yau. There
are h2,1(M) such deformations. For the Calabi-Yau manifolds we encounter below,
defined by complex equations in projective space, the complex structure moduli may
be viewed as a choice of coefficients in the defining equations modulo redefinition of
the coordinates.

We will investigate the spectrum of the CFT in the limit of large Vol(M) when averaged
over regions in the complex structure moduli space. Our interest is in the space of states
quantized on a circle, or equivalently the space of local operators. For large volume, the
CFT spectrum decomposes into states whose energy remains finite as Vol(M)→∞, known
as momentum modes, and solitonic states whose energy diverges in this limit. The latter are
known as winding modes since they arise from geodesics in the target space.11 Taking the
limit of large volume thus means that we will confine our attention to the momentum modes.
Viewing the two-dimensional spacetime as a string worldsheet, this corresponds to the
point-particle limit where the string length is small. In this point-particle limit, the spectrum
can be understood in a simple fashion as a supersymmetric quantum mechanics [42].12 The
Virasoro primaries are labeled by differential forms which are eigenstates of the target-space
Laplace operator defined by the metric g. Using the Kähler geometry of the target M we
can further decompose these forms by their Hodge type (p, q) with 0 ≤ p, q ≤ 1

2dim(M).13

In terms of the fields appearing in the sigma-model action (3.1), we can understand
these operators as follows. As with differential forms, we can split the fermion fields into
those with holomorphic and those with antiholomorphic indices. Then, given any (p, q)-form
defined on the target space we can build a operator:

O = φi1...ipj1...jq
(X)λi1 . . . λipψj1 . . . ψj1 . (3.3)

This operator is a Virasoro primary if φ is an eigenform of the Laplace operator, ∆ ≡ {d, d†},
where d is the exterior derivative operator and d† is its adjoint with respect to g. The
scaling dimension D and spin J of O are then given by

D = ∆ + p+ q

2 , J = p− q
2 . (3.4)

11Modular invariance relates these two classes of states and hence will be lost when we focus on the
momentum modes. More discussion of these states in the large-volume limit can be found in [99].

12See also [100, 101] for further discussion of the map between supersymmetric quantum mechanics and
differential forms on the target space.

13The above describes operators in the NS-NS sector of the (2, 2) sigma model. There are also operators
in the Ramond sectors. These operators begin at a finite gap above the ground state (identity operator) and
hence we neglect them in the parametrically large-volume limit where we focus on operators close to ∆ = 0.

– 14 –



J
H
E
P
0
2
(
2
0
2
2
)
0
2
1

Thus the problem of calculating the spectrum of primaries in the large-volume limit is
reduced to studying the Laplace operator on the sigma-model target space.

In what follows we will make a further simplification by truncating to those operators
constructed only out of the scalar operators Xa. This means that we are studying the Laplace
operator acting on functions (as opposed to forms). We can deduce when this approximation
is self consistent by applying Weyl’s law for the asymptotics of eigenvalues [102]. Specifically
this states that for large n, the n-th eigenvalue of the Laplacian, λn, is approximately

λn
n→∞−−−→ 4π

(Γ(1 + d/2)n
Vol(M)

)2/d
, (3.5)

where d is the dimension of the target space M . We want the primary operator associated
to the n-th eigenvalue to have scaling dimension much smaller than those primaries that
come from the forms we neglect. In particular, this means that all the operators we consider
are scalars with scaling dimensions much less than one. We can still take n, the number of
operators, large provided that we simultaneously take the volume of M large:

n� Vol(M)
(4π)d/2Γ(1 + d/2)

. (3.6)

In the following we always assume that the volume is chosen to satisfy this constraint.
Since we mostly examine the statistics of the unfolded spectrum, the numerical value of the
scaling dimension is not relevant and we often set it to one for convenience. In practice one
can always restore the absolute dimensions by scaling the eigenvalues appropriately.

In summary, in the large-volume limit we can consistently truncate to studying the
primary operators of the bosonic sigma model of a scalar field X valued in the target M .
The spectrum of Virasoro primaries is then given by the eigenfunctions of the Laplace
operator, and the CFT partition function is

Z(τ, τ) = 1
|η(τ)|2

∑
n

exp(−βλn) . (3.7)

Up to the factors of η(τ) capturing the conformal descendants, this is the same as the
quantum mechanical problem of studying a (bosonic) point particle moving on M . Our
goal is now to compute this spectrum and to compare its properties when averaged over
complex structure moduli to that of RMT.

4 The Laplacian

As we have outlined, we are interested in computing the spectrum of the scalar Laplacian
on compact Kähler manifolds with Ricci-flat metrics. In this section we give a general
overview of the Laplacian and a discussion of our numerical methods for finding both the
metric and the spectrum.
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4.1 The Laplacian

Given a metric g on a closed d-dimensional manifold M , the scalar Laplacian is a real
differential operator given by

∆ = d†d , (4.1)

where d† = − ? d ? is the adjoint of d with respect to the inner product 〈 , 〉 defined by the
metric g, and ? is the Hodge star operator. Since ? depends on the metric, the spectrum
of ∆ depends on the choice of metric. The spectrum of the Laplacian is then the set of
eigenvalues of ∆ acting on the space of functions, where an eigenfunction φ has eigenvalue
λ defined by

∆φ = λφ . (4.2)

The Laplacian is a self-adjoint operator with respect to the inner product and so its
eigenvalues are real. The eigenvalues are also non-negative as can be seen from

λ = 〈φ,∆φ〉
〈φ, φ〉

= 〈dφ, dφ〉
〈φ, φ〉

= ‖dφ‖
2

‖φ‖2
≥ 0 . (4.3)

Eigenfunctions with different eigenvalues are orthogonal with respect to the inner product,
so that they can be normalized to 〈φm, φn〉 = δmn. Moreover, the eigenfunctions form a
complete basis for the space of square-integrable functions, so that the product of any two
eigenfunctions can be written as a sum over the basis (reminiscent of the operator product
expansion for chiral fields).

Eigenfunctions with eigenvalue zero are known as zero-modes or harmonic functions.
On a compact connected manifold there is only one harmonic function (up to an overall
scale) given by the constant function, and so there will be a single zero-mode. Furthermore,
compactness also implies that the spectrum is discrete and that the eigenspaces — spanned
by eigenfunctions with the same eigenvalue — are finite dimensional. If the metric admits
a non-abelian isometry group (continuous or discrete), the eigenspaces can have dimensions
greater than one and the corresponding eigenvalues appear with some multiplicity. In the
examples we will consider, the metrics we will be somewhat generic and so their isometry
groups will be trivial. Thanks to this, the eigenvalues will all be distinct with multiplicity
equal to one. Due to the metric dependence of the Laplacian, the eigenvalues of ∆ scale as
λ ∼ gab. In terms of the volume Vol(M) ≡

∫
M vol =

∫
M ?1, the eigenvalues scale as

λ ∼ Vol(M)−2/d . (4.4)

In all examples, we scale the metric so that Vol(M) = 1.
Given a choice of basis {αA}∞ for the (infinite-dimensional) space of complex functions

onM , the eigenvalues and eigenfunctions of the Laplacian can be computed from the matrix
elements of ∆. Expanding a given eigenfunction as φ = φAαA, where φA is a vector of
complex numbers, the eigenvalue equation (4.2) is equivalent to

∆ABφ
B = λOABφ

B , (4.5)

where ∆AB ≡ 〈αA,∆αB〉 are the matrix elements of the Laplacian and OAB ≡ 〈αA, αB〉
encodes the non-orthonormality of the chosen basis. The eigenvalues and eigenvectors for

– 16 –



J
H
E
P
0
2
(
2
0
2
2
)
0
2
1

this “generalized eigenvalue problem” then give the spectrum of the Laplacian and the
expansion of the eigenfunctions in the basis {αA}∞.

Though there are many results on the spectrum of Laplace-type operators on Rie-
mannian manifolds [103, 104], there are few sharp results concerning the eigenvalues and
eigenfunctions of the Laplacian for an arbitrary metric. Since zero-modes are harmonic,
they have a cohomological interpretation and their multiplicities are given by |π0(X)|, the
number of connected components of M . The massive-modes — eigenfunctions with λ > 0 —
have no such interpretation and so are much less well understood (though see [105–107] for
recent results on using consistency conditions to prove non-trivial “bootstrap” bounds on
both eigenvalues and triple overlap integrals). Even if the metric on M is known analytically,
it is usually not possible to determine either the eigenvalues or eigenfunctions explicitly,
forcing one to resort to numerical methods. Furthermore, there are cases where the metric
itself is not known explicitly and so must also be determined numerically — this is the case
for the metrics that we are interested in.

As we mentioned around (3.5), one of the few results for the spectrum of the Laplacian
on a generic Riemannian manifold is Weyl’s law, which gives an asymptotic expression for
the number of eigenvalues N(λ) less than λ:

N(λ) = Vol(M)
(4π)d/2Γ(1 + d/2)

λd/2 . (4.6)

Since N(λ) =
∫
dλ ρ(λ), the asymptotic eigenvalue density ρ(λ) is thus

ρ(λ) = Vol(M)
(4π)d/2Γ(d/2)

λd/2−1 . (4.7)

At this point we further restrict to manifolds which admit a Kähler structure. This
means M is even-dimensional and the metric is hermitian. Furthermore, M admits a
complex structure that is compatible with the metric, and the exterior derivative then
decomposes in terms of the Dolbeault operators as d = ∂ + ∂. Finally, M admits a non-
degenerate real two-form ω known as the Kähler form. Both the Kähler form and the
metric are then determined by a choice of locally defined real function K known as a Kähler
potential. The examples we will consider will actually be Kähler-Einstein (KE), so that the
Ricci tensor is proportional to the metric.14 Explicit non-trivial examples of such metrics
are few and far between, especially for Ricci-flat metrics. Instead, we will use a numerical
method to calculate an approximate metric and then compute the matrix elements of the
Laplacian to determine the spectrum.

4.2 Numerical metrics and the spectrum of ∆

We now review our numerical approach for computing both metrics and the spectrum of the
Laplacian. Many detailed discussions of both the underlying mathematics and its practical
implementation have appeared in the literature [59–66, 68, 109, 110], so we shall give only
a brief outline.

14See [108] and references therein for a discussion of Einstein manifolds.
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Beginning with the metric, the rough idea is to approximate the Kähler potential of the
metric using a finite-dimensional basis of degree-kg polynomials on M , where the precise
combination of polynomials is parametrized by a hermitian matrix hαβ of constants. As
hαβ is varied, the Kähler potential describes different metrics within the same Kähler class.
The goal is then to pick the parameters to find a good approximation to the desired metric,
where goodness is measured by how close to Ricci-flat the resulting metric is.15 One way
to fix these parameters is via an iterative procedure proposed by Donaldson whose fixed
point is a “balanced” metric [62]. As kg is increased, the size of the basis of polynomials
is increased and the balanced metric is a better approximation. In the limit kg →∞, the
balanced metric is unique and converges to the exact Kähler-Einstein or Ricci-flat metric.

All of the examples we consider are hypersurfaces defined by the vanishing locus of some
holomorphic function in an ambient projective space. To be concrete, let us focus on the
example where M is a quintic threefold. The defining equation is a quintic equation in P4

f(z) =
∑

m,n,p,q,r

cmnpqrzmznzpzqzr , (4.8)

where [z0 : z1 : z2 : z3 : z4] are homogeneous coordinates on the projective space and cmnpqr
are complex constants that parametrize the complex structure moduli of the quintic. Taking
kg to be a positive integer, we let {sα} be a basis for H0(M,OM (k)), where α = 1, . . . , Nk

and Nk = dimH0(M,OM (k)). This basis can be chosen to be the degree-kg holomorphic
monomials on P4 modulo f = 0. We then make an ansatz for the Kähler potential as

K = 1
πkg

ln
(
sαh

αβsβ
)
, (4.9)

where hαβ is a constant hermitian matrix. This gives an “algebraic metric”, a simple general-
ization of the usual Fubini-Study Kähler potential. Note that linear combinations of the func-
tions sαsβ at degree kg give the eigenfunctions for the first kg+1 eigenspaces of the Laplacian
on P4, so that (4.9) can be interpreted as a spectral expansion with coefficients hαβ [62, 63].

The iterative procedure which fixes hαβ starts with Donaldson’s “T -operator”:16

T : hαβ 7→ T (h)αβ = Nk

Vol(M)

∫
M

vol
sαsβ

sγhγδsδ
. (4.10)

As n → ∞, the sequence h(n+1) = T (h(n))−1 converges to give the balanced metric
gij = ∂i∂jK at degree kg.17 The resulting metric is automatically Kähler (since it comes
from a Kähler potential) and gives an approximation to the Kähler-Einstein metric on M ,
which in this example is Ricci-flat and so Calabi-Yau. Note that the Kähler class of the

15Though our discussion focuses on Ricci-flat metrics, the same applies to Einstein metrics.
16Here vol (which defines Vol(X)) is some volume form on X. In the Calabi-Yau case, since the holomorphic

d/2-form Ω can be determined exactly using a residue theorem, the volume form can be chosen to be the
exact Calabi-Yau measure defined by Ω∧Ω. Otherwise one can choose the volume to be that defined by the
numerical metric computed from hαβ at the previous iteration.

17We are using i, j to label complex coordinates on M while a, b are real coordinates. Homogeneous
coordinates on projective space are labeled with m,n, . . . .
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resulting metric is given by c1(L), where L = OM (1) in our example. If h1,1(M) > 1, then
one could choose a different Kähler class (or more precisely a different ray in the Kähler
cone) by choosing L appropriately.

The integrals over M have to be evaluated using a Monte Carlo method by sampling
points on M and then summing over them. In the examples that follow, the points were
generated using the intersecting lines method laid out in [60, 61]. The points were then
resampled as in “sequential Monte Carlo” to ensure that regions of M are not undersampled.
We will denote the number of points used for these numerical integrals by Np in what
follows. Furthermore, since (4.10) converges rather quickly in practice, we use 20 iterations
to get sufficiently close to the balanced metric.

Given an approximate metric gij computed as above, one can calculate the spectrum of
the Laplacian by evaluating the matrix elements of ∆ in some convenient basis. Again, we
keep our discussion brief — more details can be found in [67, 68, 111, 112]. As mentioned
earlier, in practice we have to restrict to some finite-dimensional basis which approximates
the space of functions in a controlled way. We denote this basis by {αA}. As with the Kähler
potential, it is natural to use the eigenfunctions of the Laplacian on the ambient space:

{αA} =

{
s

(kφ)
α s

(kφ)
β

}
(
|z0|2 + . . .+ |z4|2

)kφ , (4.11)

where kφ is a non-negative integer and {s(kφ)
α } is a basis for H0(M,OM (kφ)). Here the

denominator ensures that the functions do not transform under rescaling of the homogeneous
coordinates and so are well defined on P4. Increasing kφ increases the size of the approximate
basis so that the resulting matrix elements ∆AB of the Laplacian define a larger matrix.
The effect of this is two-fold: one can better approximate the exact eigenfunctions and
eigenvalues of ∆, and one can also compute more of them (since a larger matrix has more
eigenvalues). In practice, one wants to compute the spectrum with as large a basis as is
computationally feasible and then drop the upper end of the spectrum, since it is those
eigenvalues that will be most affected by the finite size of the approximate basis.

Given a numerical metric and a choice of a basis {αA}, one can then numerically
evaluate the matrices that appear in (4.5). With these in hand, it is simple to solve for the
eigenvalues and eigenvectors, which determine the spectrum of ∆ and its eigenfunctions
respectively.18

5 Results for spectral statistics

In this section we summarize our results for the average statistical properties of an ensemble
of sigma model CFTs. We carry out this analysis for a genus-three curve, a K3 complex
surface, and a quintic Calabi-Yau threefold. (Although the genus-3 curve does not yield an
exact (2,2) CFT due to its curvature, it is a useful warm-up to our general analysis and
also exhibits RMT statistics in its spectrum.)

18The code for the both the metric and the Laplacian was written in Mathematica [113]. More details of
the implementation can be found in [68].
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In each case we work in the region of large volume as detailed in section 3. We compute
the spectrum of the Laplacian for 1,000 random choices of complex structure, corresponding
to marginal couplings in the CFT, and then average over the resulting ensemble. We give the
eigenvalue density in each case (without unfolding), which via (3.4) gives the spectrum of
scaling dimensions of scalar operators in the corresponding sigma model. For comparison, we
also include the asymptotic cumulative density predicted by Weyl’s law from (4.6). Finally,
we unfold the spectrum as described in section 2 and compare our results to the expected
spectral statistics of random matrix theory, finding good agreement with GOE in all cases.

Before we continue, we should make a comment on how the complex structures are
chosen. In all cases, the examples we consider are defined by the zero locus of a holomorphic
equation in some complex projective space. The choice of complex structure corresponds to
the choice of coefficients in these equations, for example the cmnpqr in (4.8). In this paper,
we always sample these coefficients from the unit disk in the complex plane randomly with
respect to a flat measure. Obviously, there are other measures that one could choose. For
example, when averaging over the moduli space of 2d CFTs with a toroidal target space,
such as in [39–41], it is natural to take the measure to be the one induced by the metric on
the moduli space of the torus. This agrees with both the Zamolodchikov metric in the field
theory and the Weil-Petersson metric in the geometry. Extending these ideas to higher-
dimensional Calabi-Yau targets, it would seem natural to use again the Weil-Petersson
metric on the moduli space of complex structures to define the measure. In principle, these
metrics can be obtained via a combination of mirror symmetry and localization [114–116],
by an analysis of their special geometry [117–119], or numerically [120]. Unfortunately,
for high-dimensional moduli spaces, such as that of the quintic, these calculations quickly
become unfeasible, and so we will simply work with a flat measure. From previous experience
with these metrics [112, 121–123], they are usually rather flat away from singular points in
moduli space. Since such points are a measure zero set, random sampling is likely to avoid
them and instead simply sample the relatively flat regions. Due to this, we do not believe
including the moduli space metric will qualitatively change our results.19

5.1 Genus-3 curves

We start by considering a simple example which is not Calabi-Yau, namely a genus-3
Riemann surface or complex curve. These surfaces admit Kähler metrics of constant
negative curvature, and so they are Kähler-Einstein. Looking back at the beta function
in (3.2), a sigma model with a genus-3 target equipped with such a KE metric will not be
asymptotically free in the UV, but can be made weakly coupled in the IR.20

A genus-3 curve can be defined as the vanishing locus of a quartic equation in P2

f =
∑

m,n,p,q

cmnpqzmznzpzq , (5.1)

where the cmnpq are chosen randomly from the unit disk in the complex plane with a flat
measure. There are

(3+4−1
4
)

= 15 independent components in the cmnpq and 9 of these can
19However, the metric would be essential if one wanted to average over the entire moduli space.
20Of course, like all 2d sigma models, this theory is conformal at tree level and the violation of scale

invariance occurs only through quantum corrections.
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Figure 3. On the left, we show the eigenvalue density for the Laplacian on genus-3 curves drawn
from an ensemble of 1,000 samples in complex structure moduli space with each sample containing
the lowest-lying 160 eigenvalues. The peak at λ is due to the zero-mode which is present in every
instance of the ensemble. On the right, we show the integrated eigenvalue density up to λ = 1500
together with the asymptotic number of eigenvalues predicted by Weyl’s law (4.6) in orange.

be absorbed using GL(3,C) transformations of the homogeneous coordinates. This leaves
6 degrees of freedom which are simply the complex structure moduli that parametrize a six-
dimensional family of curves.21 The spectrum of the Laplacian on such hyperbolic surfaces
cannot be computed explicitly, and so one must use numerics. We use Donaldson’s algorithm
to find an approximate KE metric on the curve and then compute the spectrum numerically.22

We computed the spectrum for 1,000 samples, giving us an ensemble of eigenvalues
whose statistics we can examine. For each sample, the approximate Kähler-Einstein metric
was computed at kg = 6 with 20 iterations of the T -operator. In each case, the spectrum of
the Laplacian was then computed at kφ = 3, allowing calculation of the first 324 eigenvalues
— of these, we keep the lowest-lying 160 to avoid numerical errors at the edge of the computed
spectrum. For both calculations Np = 106 points were used for numerical integrations.

The resulting eigenvalue density for the ensemble is shown in figure 3. The density is
relatively flat, which is somewhat expected since Weyl’s law in two dimensions predicts that
the asymptotic density is constant. Note that the sudden decrease in the density at around
λ = 1600 is an artifact of keeping only the first 160 eigenvalues for each sample.

After unfolding the spectrum as described around (2.6), the spectral statistics can be
compared to a random matrix ensemble. This is illustrated in figure 4, where we find a good
fit to the GOE. In more detail: the unfolded SFF displays the dip, ramp and plateau we
expect from GOE, and the nextk−1 nearest-neighbor spacings for k = 1, 2, 3 and the number
variance match that of a GOE. Note that it is known that Riemann surfaces with constant
negative curvature metrics admit ergodic geodesic flows [14–16], and so GOE statistics in
the spectrum is expected. However, to the best of our knowledge, there is still no proof of
this (see, for example, [18, section 9.13.2]). Our results support this conjecture.

21Constant curvature metrics on a genus-γ curve are specified by 6γ − 6 parameters, so the genus-3 curves
described by (5.1) give a six-dimensional subspace of the full 12-dimensional moduli space.

22Alternative approaches for computing the spectrum were proposed in [124, 125]. In particular, our
numerical method reproduces the spectra of the Klein and Fermat quartics in P2 given in [125, appendix D].
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Figure 4. The top row shows the unfolded spectral form factor for β = 0 for genus-3 curves. The
orange curve shows an ensemble average consisting of 1,000 samples in complex structure moduli
space with each sample containing the lowest-lying 160 eigenvalues. The dip, ramp and plateau
are all present. The second and third rows display certain spectral statistics together with fits
to GOE. (Other matrix ensembles are also shown for comparison.) The second row shows the
nearest-neighbor level spacings (NNS) and the next-to-nearest (NNNS). The third row shows the
next-to-next-to-nearest (NNNNS) level spacings and the number variance.
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Figure 5. On the left, we show the eigenvalue density for the Laplacian on K3 surfaces drawn from
an ensemble of 1,000 samples in complex structure moduli space with each sample containing the
lowest-lying 200 eigenvalues. On the right, we show the integrated eigenvalue density up to λ = 250
together with the asymptotic number of eigenvalues predicted by Weyl’s law (4.6) in orange.

5.2 K3 complex surfaces

A K3 surface can be defined as the vanishing locus of a quartic equation in P3

f =
∑

m,n,p,q

cmnpqzmznzpzq , (5.2)

where the cmnpq are chosen randomly from the unit disk in the complex plane with a flat
measure. There are

(4+4−1
4
)

= 35 independent components in the cmnpq and 16 of these
can be absorbed using GL(4,C) transformations of the homogeneous coordinates. This
leaves 19 degrees of freedom which can be identified with the complex structure moduli
that parametrize the family of smooth quartic K3 surfaces.23

Again we computed 1,000 samples. For each sample, the approximate Ricci-flat metric
was computed at kg = 6 with 20 iterations of the T -operator. The spectrum of the Laplacian
was computed at kφ = 3, allowing calculation of the first 400 eigenvalues — of these, we
keep the lowest-lying 200. For both calculations Np = 106 points were used for numerical
integrations.

We show the resulting eigenvalue density for the ensemble in figure 5. The density is
much less regular compared to the genus-3 curve. This might be explained by the fact that
there are 19 complex structure moduli for the K3, as opposed to 6 for the genus-3 case — 1,000
points captures much less of the 19-dimensional space than the 6-dimensional one. One might
imagine that greatly increasing the size of the ensemble would even out some of the peaks and
troughs that are present in the density. Again, we note that the sudden drop in the density
at around λ = 275 is an artifact of keeping only the first 200 eigenvalues for each sample.

Again, we unfold the spectrum, as described around (2.6), and compare the spectral
statistics to a random matrix ensemble. The plots of the SFF, nearest-neighbor spacings
and number variance are shown in figure 6. As with the genus-3 case, we find a good fit to
the GOE for both short- and long-range statistics.

23The space of complex analytic K3 surfaces is 20-dimensional, with algebraic quartic K3 surfaces filling
out a 19-dimensional subspace [126].
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Figure 6. The top row shows the unfolded spectral form factor for β = 0 for K3 surfaces. The
orange curve shows an ensemble average consisting of 1,000 samples in complex structure moduli
space with each sample containing the lowest-lying 200 eigenvalues. The dip, ramp and plateau
are all present. The second and third rows display certain spectral statistics together with fits
to GOE. (Other matrix ensembles are also shown for comparison.) The second row shows the
nearest-neighbor level spacings (NNS) and the next-to-nearest (NNNS). The third row shows the
next-to-next-to-nearest (NNNNS) level spacings and the number variance.
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Figure 7. On the left, we show the eigenvalue density for the Laplacian on quintic Calabi-Yau
threefolds drawn from an ensemble of 1,000 samples in complex structure moduli space with each
sample containing the lowest-lying 100 eigenvalues. On the right, we show the integrated eigenvalue
density up to λ = 120 together with the asymptotic number of eigenvalues predicted by Weyl’s
law (4.6) in orange — note that to more easily see the Weyl’s law behavior, we have used the
lowest-lying 200 eigenvalues in this plot.

5.3 Quintic Calabi-Yau threefolds

A quintic threefold can be defined as the vanishing locus of a quintic equation in P4

f =
∑

m,n,p,q,r

cmnpqrzmznzpzqzr , (5.3)

where the cmnpqr are chosen randomly from the unit disk in the complex plane with a flat
measure. There are

(5−1
5
)

= 126 independent components in the cmnpqr and 25 of these can
be absorbed using GL(5,C) transformations of the homogeneous coordinates. This leaves
101 degrees of freedom which can be identified with the complex structure moduli that
parametrise the family of smooth quintic threefolds.

For 1,000 samples, the approximate Ricci-flat metric was computed at kg = 6 with 20
iterations of the T -operator. The spectrum of the Laplacian was then computed at kφ = 2,
allowing calculation of the first 225 eigenvalues — of these, we keep the lowest-lying 100.
For both calculations Np = 1.2× 106 points were used for numerical integrations.

We show the resulting eigenvalue density for the ensemble in figure 7. The density is
much less regular than both the genus-3 and K3 cases, with pronounced gaps in the density
where ρ(λ) = 0. Since a quintic threefold has a 101-dimensional space of complex structures,
1,000 points probe very little of the space. One would likely need a very large ensemble to
even out some of the peaks and troughs present in the density. Note that the results of [112]
suggest that such a smoothing out of the density could indeed occur: there it was found
that taking a single complex structure parameter to be large caused some eigenvalues to
decrease in size, while others increased. Again, we note that the sudden drop in the density
at around λ = 110 is an artifact of keeping only the first 100 eigenvalues for each sample.

After unfolding the spectrum, we compare the spectral statistics to a random matrix
ensemble in figure 1. As with both the genus-3 and K3 examples, we find a good fit to the
GOE for both short- and long-range statistics.
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