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ABSTRACT

We review some aspects of the geometry of the moduli space of superstring vacua with
(2,2) superconformal symmetry, its connection with the deformation theory of holomorphic
three forms and its relation to space-time supersymmetry.
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Calabi-Yau threefolds [1], i.e. three-dimensional Kéhler manifolds with vanishing first
Chern class (Ricci flatness) are both perturbative [2] and non-perturbative [3] solutions of
string vacua with N = 1 and N = 2 four-dimensional space-time supersymmetry for heterotic
[4] and type-II [5] strings, respectively.

In the language of o-model perturbation theory, perturbative vacua are those obtained
in a coupling-constant expansion, namely the moduli parameters of the Calabi-Yau (C-Y)
space, small coupling being in correspondence with large values of the moduli fields.

Non-perturbative string vacua are those which include all non-perturbative effects
due to the world-sheet topology, i.e. arbitrary instanton configurations. Non-perturbative
solutions correspond to exact superconformal field theories on the world-sheet [3], [6].

The N = 2 superconformal invariant o-model describes deformations of the Kihler
class which correspond to the H? cohomology.

However, in string theory, quantum symmetries exist, which exchange a large radius
for a small ome, i.e. small for large o-model coupling constants [7]. To incorporate these
symmetries one needs to solve the two-dimensional ¢-model exactly. For complex-structure
deformations, the other deformation parameters of C—Y manifolds, tree-level string results,
actually give exact results [8], [9], since the correlators of complex structure moduli are
independent of the s-model coupling constants, which are (1,1) moduli, and the two sets of
deformation parameters form a product space [10]-[13].

Another important discovery is the mirror symmetry [14] among pairs of C-Y three-
folds C', €, in which the even and odd cohomology classes are exchanged:
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this implies an intriguing symmetry between Kahler class and complex structure deforma-
tions. However, the very same symmetry reduces the problem of computing non-perturbative
instanton corrections to a ‘classical’ problem in the mirror image.

Mirror symmetry implies that solving exactly a (2,2) superconformal field theory re-
duces to a problem of algebraic geometry [15], that of studying the deformation theory of
three-form cohomology.

The metricin the moduli space of C-Y manifolds is locally a product metric for the two
types of moduli. The two spaces are (locally) special Kahler, i.e. they are Hodge manifolds
with Riemann tensors given by
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where Wiy, is a totally symmetric (tensor) section on a U(1) bundle whose first Chern class
is the Kahler class. Equation (2) was derived in three ways: from space-time supersymme-
try arguments [10], [12], as a Ward identity among string amplitudes in four-dimensional
compactifications on (2,2) vacua [13], and from the moduli geometry of Kihler class and
complex structure deformations of C-Y threefolds [11], [12].
The Kahler potential is —log Y. Equation (2) actually implies the existence of % +
1 holomorphic sections [16]-[18] L(Z) with the Kahler potential satisfying the following
condition [19]
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Equation (3) is solved by setting

Y = LANABZB Nyp=Fa g+ Fap

where F(L') is a holomorphic section homogeneous of degree 2:

L Fy = 2F
In special, projective coordinates L7/L® = Z;, Eq. (3) becomes

Bi0i0Y = Wisp = 00,0 F,  F = (L°)F (4)

Equation (4) is actually a relation within different correlators of the underlying (2,2) con-
formal field theory, since it relates the holomorphic three-point function which appears in
O.P.E. coefficients of the chiral ring [20] with the (non-holomorphic) correlation of the top
chiral primary field [21] (with its Hermitian conjugate)
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The function F' (up to terms for which 8*F = 0) can be identified [19], [22] with a
holomorphic generating function (zero-point function) for all {(holomorphic) A-point (A > 3)
functions of the corresponding N = 2 (twisted) TQFT [23].

A special property of the moduli geometry is that, using the W coefficients, one can
construct two (closed) forms in terms of the Kihler and Ricci form

IC)* = (h+1)J - R, (6)
in such a way that (in components)
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The factorNyy is actually the real part of the period matrix Fr;. Equations (6) and
(7) are proven by contracting Eq. (2) with the inverse metric and by noticing that
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where «, 3 is an integral cohomology basis in H3. Note that under a Sp(2(1+ h);Z) transfor-
mation, the F' matrix undergoes a projective transformation (F'rs is actually a global section
of a U(1) line bundle since it is of degree zero):
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iF1;(Zr) — (1AF + B)(iCF + D)™, (9)

where
AB
(C’ D) € Sp(2h +2;2Z),

i.e. ABT,CDT are symmetric and ADT — BCT = 1; Zr is the action of the modular group
on the moduli space so that, by definition (g is a holomorphic function of the moduli):
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In terms of the matrix Fy;, it is then possible to introduce C-Y modular forms in two
ways [24]. One is to take matrix-valued modular functions 8(F) transforming covariantly
under Eq. {9). The other possibility is to introduce a sort of generalized Dedekind function
defined through
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(the sum is meant to be performed over an ‘orbit’ of I').
For the particular case
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after regularization, f reduces to

3
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This case corresponds to the geometry of the moduli space of the Z3/Z; orbifold [25]. In this
case I is the free-energy for the three-torus, an orbifold version of a C-Y space.
Observe that Eq. (11) defines (after regularization) a C-Y superpotential [24] for
general functions F:

—log Wiegu = Y. log (MAX 4 — iNyF4), (13)
M,N(T)

which is indeed a holomorphic section of a U(1) bundle.

The (A + 1) holomorphic sections have a more direct meaning in type II superstrings
[5] where in fact they are in correspondence with (A + 1) (Ramond-Ramond vectors) vector
fields, the NV = 2 superpartners of the moduli scalars, and the graviphoton [26]-[28].

The self-dual 10-dimensional five-form F of type IIB supergravity can be projected on
M, x K¢, where K4 is C-Y; it becomes a two-form over M, and a three-form over the C-Y
manifold. This five-form is conserved over space-time:

8,F,, =0.

Projecting this equation over the homology cycles one obtains the Bianchi identities
and the equations of motion for the vector fields coupled to the moduli fields, exactly as
dictated by supergravity.

On the other hand, if one expands F on the physical basis of three-forms, elements of
the H°°, H*! Delbault cohomology, one obtains moduli-dependent combinations of the 4-D
field strengths F~/) T~; these are exactly the ones that appear in the transformation laws of
the gaugino and gravitino fields, respectively {27]. In mirror manifolds, because of the dual
rate of even and odd forms, type ITA and type IIB theories, in the massless sector, coincide
with the chirality-reversed theories in the mirror image.

Given a particular C-Y manifold, it is in principle possible to compute the prepotential
function F(Z). Then all other relevant geometrical quantities can be computed. Because of
its relation with N = 2 superconformal theories, this exercise amounts to exactly solving a
two-dimensional superconformal field theory with methods of algebraic geometry.



Equations (11)~(13) can be computed by the knowledge of the periods X4, F4 [12].
Recently a non-trivial example of an exactly solvable model was provided [29]. This was
the mirror manifold of P,(3) for which Ay = 1. The periods are found to be solutions
of a differential equation with hypergeometric functions as solutions. The modular group
is, in this case, a discrete subgroup of SL(2,R), different from SL(2,Z), which acts on the
periods X4, Fy, with a linear action of Sp(4;Z) matrices. Inserting the period functions into
Eqs. (11)-(13), one may obtain the generalized free-energy and ‘Dedekind function’ for this
case. In a more general setting, the (Picard-Fuchs) differential equations satisfied by the
periods [13], [30] should have [19] the same content as certain differential equations satisfied
by the generating function F' [23] in the corresponding N = 2 superconformal field theory.
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