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Abstract

The conventional wisdom is that CPU resources such as cores,
caches, and memory bandwidth must be partitioned to achieve
performance isolation between tasks. Both the widespread
availability of cache partitioning in modern CPUs and the rec-
ommended practice of pinning latency-sensitive applications
to dedicated cores attest to this belief.

In this paper, we show that resource partitioning is nei-
ther necessary nor sufficient. Many applications experience
bursty request patterns or phased behavior, drastically chang-
ing the amount and type of resources they need. Unfortunately,
partitioning-based systems fail to react quickly enough to keep
up with these changes, resulting in extreme spikes in latency
and lost opportunities to increase CPU utilization.

Caladan is a new CPU scheduler that can achieve signifi-
cantly better quality of service (tail latency, throughput, etc.)
through a collection of control signals and policies that rely
on fast core allocation instead of resource partitioning. Cal-
adan consists of a centralized scheduler core that actively
manages resource contention in the memory hierarchy and
between hyperthreads, and a kernel module that bypasses
the standard Linux Kernel scheduler to support microsecond-
scale monitoring and placement of tasks. When colocating
memcached with a best-effort, garbage-collected workload,
Caladan outperforms Parties, a state-of-the-art resource parti-
tioning system, by 11,000×, reducing tail latency from 580
ms to 52 µs during shifts in resource usage while maintaining
high CPU utilization.

1 Introduction

Interactive, data-intensive web services like web search, social
networking, and online retail commonly distribute requests
across thousands of servers. Minimizing tail latency is critical
for these services because end-to-end response times are de-
termined by the slowest individual response [4,14]. Efforts to
reduce tail latency, however, must be carefully balanced with
the need to maximize datacenter efficiency; large-scale data-
center operators often pack several tasks together on the same
machine to improve CPU utilization in the presence of vari-
able load [22, 57, 66, 71]. Under these conditions, tasks must
compete over shared resources such as cores, memory band-
width, caches, and execution units. When shared resource con-
tention is high, latency increases significantly; this slowdown
of tasks due to resource contention is called interference.

The need to manage interference has led to the development
of several hardware mechanisms that partition resources. For

example, Intel’s Cache Allocation Technology (CAT) uses
way-based cache partitioning to reserve portions of the last
level cache (LLC) for specific cores [21]. Many systems use
these partitioning mechanisms to improve performance isola-
tion [8,12,28,38,62,73]. They either statically assign enough
resources for peak load, leaving significant CPU utilization
on the table, or else make dynamic adjustments over hundreds
of milliseconds to seconds. Because each adjustment is incre-
mental, converging to the right configuration after a change
in resource usage can take dozens of seconds [8, 12, 38].

Unfortunately, real-world workloads experience changes
in resource usage over much shorter timescales. For example,
network traffic was observed to be very bursty in Google’s
datacenters, sometimes consuming more than a dozen cores
over short time periods [42], and a study of Microsoft’s Bing
reports highly bursty thread wakeups on the order of microsec-
onds [27]. Phased resource usage is also common. For exam-
ple, we found that tasks that rely on garbage collection (GC)
periodically consume all available memory bandwidth (§2).
Detecting and reacting to such sudden changes in resource
usage is not possible with existing systems.

Our goal is to maintain both high CPU utilization and strict
performance isolation (for throughput and tail latency) under
realistic conditions in which resource usage, and therefore
interference, changes frequently. A key requirement is faster
reaction times, as even microsecond delays can impact la-
tency after an abrupt increase in interference (§2). There are
two challenges toward achieving microsecond reaction times.
First, there are many types of interference in a shared CPU
(hyperthreading, memory bandwidth, LLC, etc.), and obtain-
ing the right control signals that can accurately detect each of
them over microsecond timescales is difficult. Second, exist-
ing systems face too much software overhead to either gather
control signals or adjust resource allocations quickly.

To overcome these challenges, we present an interference-
aware CPU scheduler, called Caladan. Caladan consists of
a centralized, dedicated scheduler core that collects control
signals and makes resource allocation decisions, and a Linux
Kernel module, called KSCHED, that efficiently adjusts re-
source allocations. Our scheduler core distinguishes between
high-priority, latency-critical (LC) tasks and low-priority, best-
effort (BE) tasks. To avoid the reaction time limitations im-
posed by hardware partitioning (§3), Caladan relies exclu-
sively on core allocation to manage interference.

Caladan uses a carefully selected set of control signals
and corresponding actions to quickly and accurately detect
and respond to interference over microsecond timescales. We
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observe that interference has two interrelated effects: first,
interference slows down the execution speed of cores (more
cache misses, higher memory latency, etc.), impacting the ser-

vice times of requests; second, as cores slow down, compute

capacity drops; when it falls below offered load, queueing
delays increase dramatically.

Caladan’s scheduler targets these effects. It collects fine-
grained measurements of memory bandwidth usage and re-
quest processing times, using these to detect memory band-
width and hyperthreading interference, respectively. It then
restricts cores from the antagonizing BE task(s), eliminating
most of the impact on service times. For LLC interference,
Caladan cannot eliminate service time overheads directly, but
it can still prevent a decrease in compute capacity by allowing
LC tasks to steal extra cores from BE tasks.

The KSCHED kernel module accelerates scheduling opera-
tions such as waking tasks and collecting interference metrics.
It does so by amortizing the cost of sending interrupts, of-
floading scheduling work from the scheduler core to the tasks’
cores, and providing a non-blocking API that allows the sched-
uler core to handle many inflight operations at once. These
techniques eliminate scheduling bottlenecks, allowing Cal-
adan to react quickly while scaling to many cores and tasks,
even under heavy interference.

To the best of our knowledge, Caladan is the first system
that can maintain both strict performance isolation and high
CPU utilization under frequently changing interference and
load. To achieve these benefits, Caladan imposes two new re-
quirements on applications: the adoption of a custom runtime
system for scheduling and the need for LC tasks to expose
their internal concurrency (§8). In exchange, Caladan is able
to converge to the right resource configuration 500,000×
faster than the typical speed reported for Parties, a state-of-
the-art resource partitioning system [12]. We show that this
speedup yields an 11,000× reduction in tail latency when
colocating memcached with a BE task that relies on garbage
collection. Moreover, we show that Caladan is highly general,
scaling to multiple tasks and maintaining the same benefits
while colocating a diverse set of workloads (memcached, an
in-memory database, a flash storage service, an x264 video
encoder, a garbage collector, etc.). Caladan is available at
https://github.com/shenango/caladan.

2 Motivation

In this section, we demonstrate how performance can degrade
when interference is not quickly mitigated. Many workloads
exhibit phased behavior, drastically changing the types and
quantities of resources they use at sub-second timescales.
Examples include compression, compilation, Spark compute
jobs, and garbage collectors [49, 59]. The request rates issued
to tasks can also change rapidly, with bursts occurring over
microsecond timescales [5, 27, 42]; these bursts in load can
cause bursts of resource usage. In both cases, abrupt changes

0

50

100

M
em

. B
/W

 (%
)

GC Init Mark Phase Sweep Phase

0 1 2 3 4 5 6
Time (s)

102
103
104
105

99
.9

%
 L

at
. (
μs

)

memcached

Figure 1: Periodic GC in a background task (shaded regions) in-
creases memory bandwidth usage (top), causing severe latency
spikes for a colocated memcached instance (bottom). Note the log-
scaled y-axis in the bottom graph.

in resource usage can abruptly increase interference. This
degrades request service times and causes request queues to
grow when the rate of arriving requests exceeds the rate at
which a task can process them.

To better understand the challenges associated with time-
varying interference, we consider what happens when we
colocate an LC task, memcached [43], with a BE workload
that exhibits phased behavior due to garbage collection. In
this example, we use the Boehm GC (see §7), which employs
the mark-sweep algorithm to reclaim dead heap objects [10].
We have observed similar problems with more sophisticated,
incremental GCs, such as the Go Language Runtime [60].

In this experiment, we offer a fixed load to memcached and
statically partition cores between the two tasks. memcached
is given enough cores to keep its 99.9th percentile tail latency
below 50 µs when run in isolation. As shown in Figure 1, this
allocation is sufficient to protect tail latency when the GC is
not running but it fails when the GC starts. The GC pauses
normal execution of the BE task for 100–200 ms and scans
the entire heap using all cores available to the BE task, which
saturates memory bandwidth. During this brief period, each
memcached request experiences a higher rate of cache misses
and larger memory access latencies, causing the rate at which
memcached can service requests to drop by about half and
queues to build up. As a result, memcached’s queueing delay
increases at a rate of 5 µs every 10 µs, eventually reaching a
tail latency that is 1000× higher than normal.

This example illustrates that fixed core partitioning is in-
sufficient, and also indicates what core reallocation speed
is necessary in order to effectively mitigate interference. If
changes in interference can instantaneously reduce the re-
quest service rate by half, then in order to keep latencies from
increasing by X , the CPU scheduler must detect and respond
to interference within 2X . Thus, preventing a latency increase
of 50 µs requires reaction times within 100 µs. Unfortunately,
existing systems are not designed to respond this quickly
(§3), forcing datacenter operators to either tolerate severe tail
latency spikes, or else isolate these tasks on different servers.
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System Decision
Interval

Typical Con-
vergence

Requires
CAT

Supports
HT

Heracles [38] 2–15 s 30 s ✓ ✗

Parties [12] 500 ms 10–20 s ✓ ✗

Caladan 10–20 µs 20 µs ✗ ✓

Table 1: A comparison of Caladan to state-of-the-art systems that
use partitioning to manage interference. Caladan can converge to the
right resource configuration 500,000× faster.

3 Background

Throughout this paper, we discuss three forms of interference
that can occur when sharing a CPU: hyperthreading interfer-
ence, memory bandwidth interference, and LLC interference.
Hyperthreading interference is usually present at a baseline
level whenever tasks are running on sibling cores because
the CPU divides certain physical core resources (e.g., the
micro-op queue), but it can become more severe depending
on whether shared resources (L1/L2 caches, prefetchers, exe-
cution units, TLBs, etc.) are contended. Memory bandwidth
and LLC interference, on the other hand, can vary in intensity,
but impact all cores that share the same physical CPU. As
memory bandwidth usage increases, memory access latency
slowly increases due to interference, until memory bandwidth
becomes saturated; access latency then increases exponen-
tially [62]. LLC interference is determined by the amount of
cache each application uses: when demand exceeds capacity,
LLC miss rates increase.

In this section, we discuss why existing systems are unable
to manage abrupt changes in interference (§3.1) and explore
the limitations imposed on them by the hardware extensions
available in commercial CPUs (§3.2).

3.1 Existing Approaches to Interference

State-of-the-art systems such as Heracles [38] and Parties [12]
handle interference by dynamically partitioning resources,
such as cores and LLC partition sizes. However, both Hera-
cles and Parties make decisions and converge to new resource
allocations too slowly to manage bursty interference (Table 1).
There are two main reasons. First, both systems detect interfer-
ence using application-level tail latency measurements, which
must be measured over hundreds of milliseconds in order to
obtain stable results; the Parties authors found that shorter
intervals produced “noisy and unstable results” [12]. Second,
both systems make incremental adjustments to resource al-
locations, gradually converging to a configuration that can
meet latency objectives. These systems lack the ability to
identify the source of interference (application and contended
resource) directly, so convergence can involve significant trial-
and-error as different resources are throttled, requiring sec-
onds to converge to a new resource allocation. During the
adjustment period, latency often continues to suffer because
the LC task must wait to be given enough resources to reduce
its queueing delay buildup.

Thus, both Heracles and Parties take at least 50× as long to
adapt to changes in interference as the duration of a GC cycle
in our example. As a result, operators must make tradeoffs
based on tunable parameters: either tail latency tolerances
(e.g., 99.9th percentile tail latency) can be set higher, causing
the GC interference to be tolerated without resource realloca-
tions, or they can be set lower, causing the GC workload to be
throttled continuously. Because the GC workload causes min-
imal interference during the majority of its execution (while
not collecting garbage), faster reaction times are needed to
keep cores busy without compromising tail latency.

In addition to convergence speed, existing systems suffer
from scalability limitations. For example, a typical datacen-
ter server must handle several LC and BE tasks simultane-
ously [66, 71], but Heracles is limited to only a single LC
task (and many BE tasks). Parties can support multiple LC
and BE tasks, but because it can only guess at which task is
causing interference, its convergence time increases with each
additional task.

The hardware mechanisms on which these systems rely
also impose limitations. For example, hyperthreads lack con-
trol over resource partitioning, so Heracles and Parties turn
them off entirely. Using both hyperthreads on a core simul-
taneously can yield up to 30% higher throughput than using
a single hyperthread [40, 44, 45, 54], so this lowers system
throughput significantly. Furthermore, the available hardware
partitioning mechanisms that can be controlled constrain both
reaction speeds and scalability. We discuss this problem next.

3.2 Limitations of Hardware Extensions

Intel has added several extensions to its server CPUs that are
designed to partition and monitor the LLC and memory band-
width. These extensions are optimized for scenarios where
resource demand changes slowly, but as shown in our study
of the GC workload, this assumption does not always hold.
To better understand these limitations, we discuss each com-
ponent in more detail.

The most commonly used extension is CAT, a technology
that divides portions of the LLC between tasks to increase
performance determinism [21]. CAT’s way-based hardware
implementation suffers from two limitations. First, changes
to the partition configuration can take considerable time to
have an effect; Intel cautions that “a reduction in the per-
formance of [CAT] may result if [tasks] are migrated fre-
quently” [26, sec. 17.19.4.2]. Appropriately sizing a partition,
however, is challenging under time-varying demand because
it must be large enough to accommodate peak usage. Sec-
ond, CAT must divide a finite number of set-associative ways
between partitions, reducing associativity within each parti-
tion. Unfortunately, performance can degrade significantly as
associativity decreases [56, 67]; KPart avoids this by group-
ing complementary tasks together in the same partition, but
it relies on frequent online profiling to identify groupings,
resulting in high tail latency [18].
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Another extension called Memory Bandwidth Allocation
(MBA) applies a per-core rate limiter to DRAM accesses to
throttle bandwidth consumption. MBA is necessary for sys-
tems that statically assign cores because it is the only method
they can use to limit bandwidth consumption. Unfortunately,
it is at odds with our goal of achieving high CPU utilization:
a core that is heavily rate-limited by MBA will spend the ma-
jority of its time stalling. Instead, we found it is more efficient
to allocate fewer cores, achieving the same throughput for a
task, but with higher per-core utilization.

Finally, configuring partitioning mechanisms effectively
requires the attribution of resource usage to specific tasks.
To help with this goal, Intel introduced Cache Monitoring
Technology (CMT) and Memory Bandwidth Monitoring
(MBM) [72]. Unfortunately, these mechanisms are unable
to detect changes in system conditions quickly. For example,
when monitoring a streaming task with CMT, it takes 112
ms for its cache occupancy measurement to stabilize [21].
Similarly, we discovered experimentally that MBM requires
milliseconds to accurately estimate memory bandwidth usage.

4 Challenges and Approach

Our overarching goal is to maintain performance isolation
while maximizing CPU utilization. Achieving this goal is
difficult because managing changes in interference requires
microsecond-scale reaction times. Partitioning resources in
hardware is too slow for these timescales (§3.2), so Caladan’s
approach is to instead manage interference by controlling
how cores are allocated to tasks. Prior systems have adjusted
cores as part of their strategy for managing interference [12,
28, 38, 70], but Caladan is the first system to rely exclusively
on core allocation to manage multiple forms of interference.
To mitigate interference quickly enough, we had to overcome
two key challenges:

1. Sensitivity: For fast and targeted reactions, Caladan re-
quires control signals that can identify the presence of in-
terference and its source—task and contended resource—
within microseconds. Commonly used performance met-
rics like CPI [71] or tail latency [12,38] (as well as hard-
ware mechanisms like MBM and CMT) are too noisy to
be useful over short timescales. Metrics like queueing
delay [8, 42, 47, 68] can be measured over microsecond
timescales, but cannot identify the source of interference,
only that a task’s performance is degrading.

2. Scalability: Existing systems depend heavily on the
Linux Kernel in order to gather control signals and adjust
resource allocations (e.g., using sched_setaffinity()
to adjust core allocations) [8,12,20,38,47,52,68]. Unfor-
tunately, Linux adds overhead to these operations, and
these overheads increase in the presence of interference
and as the number of cores and tasks increase.

We address the challenge of sensitivity by carefully select-
ing control signals that enable fast detection of interference

Caladan’s Actions to Mitigate Interference

Impact of Interference
Contended Resource ↑ Service Times ↓ Compute Capacity

Hyperthreads idle sibling core add victim cores
Memory Bandwidth throttle antagonist add victim cores
LLC none add victim cores

Table 2: When a resource (left) becomes contended, Caladan takes
action to avoid increased service times (middle). When this is in-
sufficient to maintain compute capacity, Caladan takes additional
action (right).

and by dedicating a core to monitor these signals and take
action to mitigate interference as it arises. We address the
challenge of scalability with a Linux Kernel module named
KSCHED. We describe these in more detail below.

4.1 Caladan’s Approach

Caladan dedicates a single core, called the scheduler, to con-
tinuously poll and gather a set of control signals over mi-
crosecond timescales. The scheduler uses these signals to
detect interference and then reacts by adjusting core alloca-
tions. The scheduler is designed to manage several forms of
interference (§3), using control signals tailored to each. For
hyperthreads, we assume interference is always present when
both siblings are active (because some physical core resources
are partitioned) and focus on reducing interference for the
requests that will impact tail latency—that is, the longest run-
ning requests [70]. We measure request processing times to
identify these requests. For memory bandwidth, we measure
global memory bandwidth usage to detect DRAM saturation
and measure per-core LLC miss rates to attribute usage to a
specific task. For cases like the LLC where we cannot directly
measure or infer interference, we can still measure a key side
effect of interference: increased queueing delays, caused by
reductions in compute capacity. By focusing on interference-
driven control signals, Caladan can detect problems before
quality of service is degraded.

Table 2 summarizes the actions Caladan takes to mitigate
interference. We first try to prevent service time increases
by reducing interference directly. For example, Caladan re-
duces hyperthreading interference by controlling which log-
ical cores (hyperthreads) may be used, idling a logical core
when its sibling exceeds a request processing time threshold.
In addition, it reduces memory bandwidth interference by
limiting how many cores each task may use; this is effective
because reducing the number of cores allocated to a task re-
duces its memory bandwidth usage. However, reducing LLC
interference is more difficult: the magnitude of LLC inter-
ference is determined primarily by how much LLC capacity
a task uses, but reducing a task’s number of cores reduces
its LLC access rate rather than its LLC capacity. Therefore,
Caladan compensates for LLC interference—and any remain-
ing hyperthreading and memory bandwidth interference—by
granting extra cores to victim tasks, allowing them to recoup
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Figure 2: Caladan’s system architecture. Caladan relies on a sched-
uler core to gather control signals from shared memory regions
(provided by KSCHED, runtimes, and the DRAM controller). It uses
these control signals to adjust core allocations via KSCHED.

the compute capacity lost to interference. Although this can-
not fully protect service times, it can prevent queueing delays.

Finally, Caladan introduces a Linux Kernel module called
KSCHED. KSCHED performs scheduling functions across
many cores at once in a matter of microseconds, even in the
presence of interference. KSCHED achieves these goals with
three main techniques: (1) it runs on all cores managed by
Caladan and shifts scheduling work away from the scheduler
core to cores running tasks; (2) it leverages hardware support
for multicast interprocessor interrupts (IPIs) to amortize the
cost of initiating operations on many cores simultaneously;
and (3) it provides a fully asynchronous scheduler interface
so that the scheduler can initiate operations on remote cores
and perform other work while waiting for them to complete.

5 Design

5.1 Overview

Figure 2 presents the key components of Caladan and
the shared memory regions between them. Caladan shares
some architectural and implementation building blocks with
Shenango [47]: each application is linked with a runtime sys-
tem, and a dedicated scheduler core (run with root privileges)
busy polls shared memory regions to gather control signals
and make core allocations. Both systems are designed to inter-
operate in a normal Linux environment, potentially managing
a subset of available cores.

Despite these commonalities, Caladan adopts a radically
different approach to scheduling and relies on different
scheduling mechanisms. Shenango uses queueing delay as its
only control signal to manage changes in load; Caladan uses
multiple control signals to manage several types of interfer-
ence as well as changes in load. Moreover, Shenango’s sched-
uler core combines network processing with CPU scheduling;
Caladan’s scheduler core is only responsible for CPU schedul-
ing, eliminating packet processing bottlenecks (§6). Finally,
Shenango relies on standard Linux system calls to allocate
cores, limiting its scalability; Caladan uses KSCHED to more
efficiently perform its scheduling functions, including pre-

empting tasks, assigning cores to tasks, detecting when tasks
have yielded voluntarily, and reading performance counters
from remote cores.

Caladan’s runtimes share many properties with those of
Shenango. Applications managed by Caladan run inside nor-
mal Linux processes, which we refer to as tasks. Within each
task, the runtime provides “green” threads (light-weight, user-
level threads) and kernel-bypass I/O (networking and storage).
Runtimes use work stealing to balance load across the cores
that are allocated to them—a best practice for minimizing tail
latency [51]—and yield cores when they run out of work to
steal. Handling threading and I/O in userspace makes manag-
ing interference easier in two ways. First, by performing all
processing inside the task that needs it, we can better manage
the resource contention it generates. By contrast, the Linux
Kernel handles I/O on behalf of its tasks, making it difficult to
attribute resource usage or interference to a specific task. Sec-
ond, we can easily instrument the runtime system to export
the right per-task control signals (discussed further in §5.2).

Provisioning cores: Users provision each task with a discrete
number of guaranteed cores (zero or more) that are always
available when needed. They can also allocate tasks additional
burstable cores beyond the number guaranteed, allowing them
to make use of any idle capacity. Additionally, each task is
designated as LC or BE. BE tasks operate at a lower priority:
they are only allocated burstable cores when LC tasks do not
need them, they are always provisioned zero guaranteed cores,
and they are throttled as needed to manage interference.

In some configurations, it may not be possible to manage
interference without harming the performance of LC tasks.
To prevent these cases, we recommend a configuration that
leaves a small number of cores that are not guaranteed to
any task, providing enough slack to manage interference. Cal-
adan can also detect when provisioning constraints prevent it
from mitigating interference. As a last resort, this information
could be reported back to the cluster scheduler so that it could
migrate tasks to other machines. A rich body of prior work
has explored adding similar types of interference coordina-
tion, as well as identifying complementary workloads, at the
cluster scheduler layer [12, 15, 16, 41, 69, 71].

5.2 The Caladan Scheduler

Figure 3 shows the scheduler’s key components, the control
signals they each use, and their interactions. Separate con-
troller modules detect memory bandwidth and hyperthreading
interference, each placing constraints on how cores can be
allocated and revoking cores as necessary. The memory band-
width controller restricts how many cores can be assigned
to a task, while the hyperthread controller bans cores within
sibling pairs. A top-level core allocator incorporates these re-
strictions and decides when to grant additional cores to tasks.
It tries to minimize queueing delay (to manage changes in load
and any unmitigated interference), allocating cores to tasks in
a way that respects constraints from the controllers and each
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many cores the top-level allocator may grant.

task’s resource configuration (the number of guaranteed cores,
BE vs. LC, etc.). The controllers and core allocator run once
every 10 µs on the scheduler’s dedicated core. Because the
scheduler can reallocate cores so quickly, it is possible to allo-
cate fractional cores to tasks on average over time (e.g., when
less than a full core is needed to accommodate load). This is
made efficient through KSCHED’s scheduling optimizations
(§5.3).

The scheduler gathers control signals from three sources.
First, runtimes provide information about request processing
times and about queueing delays. Second, the DRAM con-
troller provides information about global memory bandwidth
usage. Third, KSCHED provides information about per-core
LLC miss rates and notifies the scheduler core when a task
has yielded voluntarily. We now discuss each component in
more detail. We present each algorithm as synchronous code
for clarity, but to handle many tasks concurrently without
delaying the scheduler, all code is asynchronous in practice.
Each algorithm relies on one tunable parameter; these are
described in more detail in Appendix A.

5.2.1 The Top-level Core Allocator

The goal of the top-level core allocator is to grant more cores
to tasks that are experiencing queueing delays, whether these
delays are due to lingering interference (as shown in the
rightmost column of Table 2) or due to changes in load. Algo-
rithm 1 shows its basic operation. The core allocator periodi-
cally checks the queueing delay of each task, and, when per-
mitted by the memory bandwidth controller, tries to add cores
to the tasks that have delays above a configurable per-task
threshold (THRESH_QD). Queueing can occur in each runtime
core’s green thread runqueue, network ingress queue, stor-
age completion queue, and timer heap. Each queued element
contains a timestamp of its arrival time, and all queues are
placed in shared memory. QueueingDelay() computes the
delay for each core by summing the delays experienced by
the oldest element in each of its queues. It then reports the
maximum delay observed across the task’s cores.

When a task’s delay exceeds its THRESH_QD, the allocator

1 while True:

2 for each task T :

3 if QueueingDelay(T ) < THRESH_QD[T]:

4 continue;
5 if T is limited by BW controller:

6 continue;
7 // try to allocate a core

8 for each core C:

9 if C is banned by HT controller:

10 continue;
11 if task_on_core[C] has priority over T :

12 continue;
13 score[C] = CalculateScore(C, T );

14 find core C with highest score;
15 allocate C to T (if found);

16 sleep(10 µs);

Algorithm 1: The top-level core allocator.

loops over all cores, checking which cores are allowed by the
hyperthread controller and checking which tasks are running
on each core. An idle core can be allocated to any task, but
a busy core can only be preempted if the core provisioning
configuration allows it. For example, if an LC task is only
using guaranteed cores, it cannot be preempted by another
task. Moreover, a BE task can never preempt an LC task.

Finally, CalculateScore() assigns a score to each core,
and the core allocator picks the allowed core with the highest
score (if one is found). Our scoring function is based on
three factors (in order of priority). First, we prefer sibling
pairs that are both idle because they have no hyperthreading
interference. Second, we prefer hyperthread pairings between
different tasks because hyperthreading is most efficient when
tasks have different performance bottlenecks [31, 45]. Finally,
we optimize for temporal locality: Caladan keeps track of the
time each task last used each core, and gives the most recent
timestamp the highest score. Timestamps are shared between
hyperthread siblings, reflecting their shared cache resources.

The core allocator also receives notifications from KSCHED

whenever a runtime yields a core voluntarily (not shown in Al-
gorithm 1). When this happens, it updates the task_on_core
array and immediately tries to grant the core to another task,
reducing the cycles the core spends idling.

5.2.2 The Memory Bandwidth Controller

Algorithm 2 shows our memory bandwidth controller. Our
aim is to use the majority of available memory bandwidth
while avoiding saturation. The memory bandwidth controller
periodically polls the DRAM controller’s global memory
bandwidth usage counter, calculating the access rate since
the last polling interval, and triggers when it crosses a satura-
tion threshold (THRESH_BW). It then attributes memory band-
width usage to a specific task by relying on KSCHED to effi-
ciently sample LLC misses from the performance monitoring
unit (PMU) [25] of each scheduled core. We found that LLC
misses are a good indicator of overall memory bandwidth
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1 while True:

2 if GlobalMemBandwidth() < THRESH_BW:

3 increment the core limit on the most limited task;
4 sleep(10 µs);
5 continue;

6 for each core C:

7 start[C] = ReadLLCMisses(C);
8 sleep(10 µs);
9 for each core C:

10 end = ReadLLCMisses(C);
11 misses[task_on_core[C]] += end - start[C];

12 find task T that is BE and has the highest misses;
13 decrement task T ’s core limit and revoke a core;

Algorithm 2: The memory bandwidth controller.

1 while True:

2 for each core C:

3 T = task_on_core[C]
4 if T is LC and now - GetRequestStartTime(C) ≥
5 THRESH_HT[T]:

6 ban sibling of C;
7 else:

8 unban sibling of C;

9 sleep(10 µs);

Algorithm 3: The hyperthread controller.

usage, with the exception that they exclude non-temporal
memory accesses, which don’t allocate lines in the cache. For-
tunately, these are rarely used, but we recommend they be
counted in future CPUs. Waiting 10 µs between samples is
enough to accurately estimate LLC misses. The bandwidth
controller revokes one core from the worst offending task
every time it runs until memory bandwidth is no longer satu-
rated. When one task is throttled, another task (that consumes
less memory bandwidth) can still use the throttled core.

While Algorithm 2 summarizes this controller’s basic be-
havior, we had to take extra steps to improve its accuracy. First,
because ReadLLCMisses() initiates PMU counter reads with
IPIs (see §5.3), there can be timing skew. Therefore, KSCHED

includes the local timestamp counter (TSC), which is stable
across cores, when it stores PMU results. This allows us to
calculate an LLC miss rate instead of a raw miss count. Sec-
ond, we discard samples from tasks that have yielded or have
been preempted during the measurement interval.

5.2.3 The Hyperthread Controller

Caladan’s hyperthread controller detects hyperthread interfer-
ence and then bans use of the sibling hyperthread until the cur-
rent request completes (Algorithm 3). Runtimes place times-
tamps in shared memory to indicate when each hyperthread
begins handling a green thread. The hyperthread controller
then uses GetRequestStartTime() to retrieve these times-
tamps and check if the current thread has been running for
more than a per-task processing time threshold (THRESH_HT).

When the threshold has been exceeded, the controller bans

use of the sibling hyperthread via KSCHED. The sibling’s run-
time receives a request from KSCHED to preempt the core and
places the current green thread back into its runqueue. The
top-level core allocator can detect this as an increase in queue-
ing delay and add back a different (not banned) core. Then
KSCHED places the sibling in the shallow C1 idle state us-
ing the mwait instruction; mwait parks the local hyperthread
and reallocates shared physical core resources to the sibling,
increasing its performance.

Caladan’s hyperthread controller benefits from global
knowledge. First, it will only ban a sibling that is handling
an LC task if that LC task can be allocated another core, to
avoid degrading throughput under high load. Second, if there
are not enough cores available, it will prioritize speeding up
the green threads that have spent the most time processing
a request, keeping tail latency as low as available compute
capacity permits. The hyperthread controller can also unban
cores, respecting the same priority, when the top-level core
allocator needs to allocate a guaranteed core, but none are
available due to bans.

Caladan’s approach to managing hyperthread interference
was inspired by Elfen Scheduling [70]. Our policy for identi-
fying interference is similar to Elfen’s refresh budget policy,
and both use mwait to idle hyperthreads. However, Caladan’s
approach differs in two key ways. First, Elfen relies on trusted
BE tasks to measure interference and yield voluntarily, while
Caladan’s scheduler makes and enforces these decisions, lever-
aging the benefits of global knowledge. Second, Elfen can
only support pinning one LC task and one BE task to each
hyperthread pair. Instead, we allow any pairing (even self
pairings) and can handle interference between LC tasks. This
enables significantly higher throughput because all logical
cores are available for use by any task (§7.3).

5.2.4 An Example: Reacting to Garbage Collection

As an example, we explain how Caladan’s scheduler responds
when a GC cycle begins, causing memory bandwidth interfer-
ence for an LC task (the workload depicted in Figure 1). As
soon as global memory bandwidth usage exceeds THRESH_BW,
the memory bandwidth controller will revoke cores from the
GC task, revoking one core every 10 µs until total memory
bandwidth usage falls below THRESH_BW (Algorithm 2). In
the meantime, the LC task may suffer from interference, in-
creasing its queueing delay. This will cause the top-level
core allocator to grant it additional cores, beginning with any
idle cores, but preempting additional cores from the GC task
if necessary. It will add one core every 10 µs until the LC
task’s queueing delay falls below its THRESH_QD again (Al-
gorithm 1). Once the GC interference has been successfully
mitigated, the LC task will yield the extra cores.

5.3 KSCHED: Fast and Scalable Scheduling

KSCHED’s goal is to efficiently expose control over CPU
scheduling to the userspace scheduler core. A scheduler core
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that relies on the current Linux Kernel system call interface is
subject to its limitations; KSCHED must overcome these. First,
Linux system calls, like sched_set_affinity(), perform
computationally expensive work (e.g., locking runqueues) on
the core that calls them. Second, Linux system calls block
and reschedule while waiting for their operation to complete,
preventing the scheduler core from performing other work.
Third, Linux system calls can only perform one operation at
a time, squandering any opportunity to amortize costs across
multiple operations and cores. Finally, cores may only directly
read their own performance counters and Linux provides no
efficient mechanism to query those on other cores.

KSCHED adopts a radically different approach from Linux’s
existing mechanisms, supporting direct communication be-
tween the scheduler core and kernel code running on other
cores via per-core, shared-memory regions. The scheduler
core writes commands into these regions and then uses an
ioctl() to kick the remote cores by sending them IPIs.
KSCHED then executes the commands (in kernelspace on
the remote cores) and writes back results.

KSCHED supports three commands: waking tasks (poten-
tially preempting the current task), idling cores, and reading
performance counters. Before preempting a task or idling a
core, KSCHED delivers a signal to the runtime to give it a
few microseconds to yield cleanly, saving the current green
thread’s register state and placing it back in the runqueue.
Then, to wake a new task on a core, KSCHED locks the task’s
affinity so that Linux cannot migrate it to another core and
calls into the Linux scheduler. To idle a core instead, KSCHED

calls mwait. Finally, KSCHED can sample any performance
counter on any core, and includes the TSC in the response.

When the scheduler kicks a core, the IPI handler immedi-
ately processes any pending commands. Commands can also
be processed without IPIs by cores that are idle through effi-
cient polling. To achieve this, KSCHED bypasses the standard
Linux idle handler, setting a flag that notifies the scheduler
core that the current task has yielded voluntarily. KSCHED

then checks for new commands; if none are available, it runs
the monitor instruction, telling the core to watch the cache
line containing the shared region. Finally, it parks the core
with the mwait instruction, placing it in the shallow C1 idle
state. mwait monitors cache coherence messages and imme-
diately resumes execution when the shared region is written
to by the scheduler core.

One of the most expensive operations that both Linux and
KSCHED must perform is sending IPIs. When there are mul-
tiple operations, KSCHED leverages the multicast capability
of the interrupt controller to send multiple IPIs at once, sig-
nificantly amortizing costs. To facilitate this, the scheduler
core writes all pending operations to shared memory and
then passes a list of cores to kick to an ioctl() that initi-
ates IPIs. In addition, all of KSCHED’s commands are issued
asynchronously, so that the scheduler core can perform other
work while waiting for them to complete. Finally, KSCHED

performs expensive operations such as sending signals and
affinitizing tasks to cores on the targeted cores rather than
on the scheduler core. In combination, these three properties
allow KSCHED to perform scheduling operations with low
overhead, enabling Caladan to support high rates of core real-
location and performance counter sampling even with many
concurrent tasks (§7.3).

6 Implementation

Caladan is derived from the open-source release of
Shenango [61], but we implemented a completely new sched-
uler and the KSCHED kernel module, which are 3,524 LOC
and 533 LOC, respectively. Shenango was a good starting
point for our system because of its feature-rich runtime with
support for green threads and TCP/IP networking. Moreover,
Shenango’s runtime is already designed to handle signals to
cleanly preempt cores [47].

We modified Shenango’s runtime in two important ways.
First, Shenango relies on its scheduler core to forward packets
in software to the appropriate runtime over shared memory
queues. Instead, we linked the libibverbs library directly
into each runtime, providing fast, kernel-bypass access to
networking. This implementation strategy allowed us to com-
pletely eliminate the packet forwarding bottlenecks imposed
by Shenango and also reduced our scheduler core’s exposure
to interference, by reducing its memory and computational
footprint. Our scheduler core measures packet queueing de-
lay by mapping the NIC’s RX descriptor queues (for each
task) over shared memory and accessing the packet arrival
timestamps encoded in the descriptors by the NIC. Second,
we augmented the runtime with support for NVMe storage us-
ing Intel’s SPDK library to bypass the kernel. These changes
required us to add 2,943 new LOC to the runtime, primarily
to add integration with libibverbs and SPDK.

To support idling in KSCHED, each per-core shared mem-
ory region uses a single cache line (64 bytes) because mwait
can only monitor regions of this size. We packed these cache
lines into a contiguous array so that our scheduler core could
take advantage of hardware prefetching to speed up polling.
KSCHED allows the scheduler core to control which idle state
mwait enters, but we have not yet explored power manage-
ment. We also modified the Linux Kernel source to accelerate
multicast IPIs; although the Linux Kernel provides an API
called smp_call_function_many() that supports this fea-
ture, it imposes additional software overhead, especially under
heavy memory bandwidth interference.

7 Evaluation

We evaluate Caladan by answering the following questions:
1. How does Caladan compare to previous systems (§7.1)?
2. Can Caladan colocate different tasks while maintaining

low tail latency and high CPU utilization (§7.2)?

288    14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



3. How do the individual components of Caladan’s design
enable it to perform well (§7.3)?

Experimental setup: We evaluate our system on a server
with two 12 physical core (24 hyperthread) Xeon Broadwell
CPUs and 64 GB of RAM running Ubuntu 18.04 with kernel
5.2.0 (modified to speed up multicast IPIs). We do not con-
sider NUMA, and direct all interrupts, memory allocations,
and threads to the first socket. The server is equipped with
a 40 Gb/s ConnectX-5 Mellanox NIC and a 280 GB Intel
Optane NVMe device capable of performing random reads at
550,000 IOPS. To generate load, we use a set of quad-core ma-
chines with 10 Gb/s ConnectX-3 Mellanox NICs connected
to our server via a Mellanox SX1024 non-blocking switch.
We tune the machines for low latency in accordance with rec-
ommended practices, disabling TurboBoost, CPU idle states,
CPU frequency scaling, and transparent hugepages [37]. We
also disable Meltdown [2] and MDS [24] mitigations, since
these vulnerabilities have been fixed by Intel in recent CPUs.
When evaluating Linux’s performance, we run BE tasks with
low-priority using SCHED_IDLE and use kernel version 5.4.0
to take advantage of recent improvements to SCHED_IDLE.
We use loadgen, an open-loop load generator, to generate
requests with Poisson arrivals over TCP connections [61]. Un-
less stated otherwise, we configure all Caladan experiments
with 22 guaranteed cores for LC tasks, leaving one physical
core for the scheduler.

Evaluated applications: We evaluate three LC tasks. First,
memcached (v1.5.6) is a popular in-memory, key-value store
that has been extensively studied [43]. We generate a mix
of reads and writes based on Facebook’s USR request distri-
bution [6] (service times of about 1 µs). Second, silo is a
state-of-the-art, in-memory, research database [64]. We feed
it the TPC-C request pattern, which has high service time
variability (20 µs median; 280 µs 99.9%-ile) [63]. Silo is
only a library, so we integrated it with a server that can han-
dle RPCs, performing one transaction per request. Finally,
we built a new NVMe block storage server inspired by Re-
Flex [34], that we call storage. We added compression (using
Snappy [1]) and encryption (using AES-NI [46]) to study
the hyperthreading effects of RPC frameworks that rely on
vector processing. We preload the SSD with XML-formatted
data from Wikipedia [39], and issue requests for blocks of
varying lengths (99% 4KB, 1% 44KB) to evaluate service
time variability (35 µs and 250 µs for each respective size).

For BE tasks, we use workloads from the PARSEC bench-
mark suite [9]. In particular, we evaluate x264, an H.264/AVC
video encoder, swaptions, a portfolio pricing tool, and stream-

cluster, an online clustering algorithm. We modified swap-
tions to use the Boehm garbage collector to allocate its mem-
ory objects [10], allowing us to study the interference caused
by garbage collection; we call this version swaptions-GC.
All three workloads exhibit phased behavior, changing their
resource usage over regular intervals (some have much larger
variance than others). Finally, we evaluate a synthetic antago-

nist that continuously reads and writes arrays of memory in
two configurations: stream-L2 displaces the L2 cache, while
stream-DRAM displaces the LLC and consumes all available
memory bandwidth.

All applications run in our modified Shenango runtime,
which supports standard abstractions such as TCP sockets and
the pthread interface (via a shim layer), making it relatively
straightforward to port and develop applications (§8).

Parameter tuning: Caladan has three parameters that are
user-tunable and can make tradeoffs between latency and
CPU efficiency. Appendix A explains how to tune these pa-
rameters and shows how sensitive Caladan’s performance is to
particular choices of these parameters. In our evaluation, we
tuned all three for low latency. First, we set THRESH_QD (the
queueing delay threshold) to 10 µs for all tasks. Second, we
set THRESH_BW (the memory bandwidth threshold) to 25 GB/s.
Finally, we set a THRESH_HT (the processing time threshold)
for each LC task (not supported for BE tasks). We set it to
25 µs for silo, 40 µs for storage, and infinite for memcached.

Comparison with Parties: Parties [12] is the most relevant
prior work for mitigating interference. It builds upon Hera-
cles [38] by adding support for multiple LC tasks. Ideally,
we would compare directly to Parties, but its source code
is not publicly available, and we were unable to obtain it
from the Parties authors. Instead, we reimplemented Parties
in accordance with the details described in its paper.

By implementing Parties ourselves, we were able to use
the same runtime system for both Caladan and Parties, so
they could benefit equally from kernel-bypass I/O, allowing
us to evaluate only differences in scheduling policy. We did
not implement some components in Parties that were not
relevant to our experiments. Specifically, our workloads do not
contend over disk, network, or memory capacity. Managing
these resources is important but unrelated to our focus on CPU
interference. Moreover, we did not include the CPU frequency
scaling controller, as reducing energy consumption is outside
the scope of our work. We did implement all of Parties’ key
mechanisms, including core allocation, CAT, and an external
measurement client that samples tail latencies over 500 ms
periods. We also invested considerable effort in tuning Parties’
latency thresholds to yield the best possible performance.

Normally, Parties leaves hyperthreads disabled because it is
unable to manage this form of interference, reducing its CPU
throughput. Instead, we enabled hyperthreads with a policy
that prefers self pairings. For specifically memcached—the
workload we evaluated—this forms a complementary pairing
that has minimal effect on latency, but allowed us to conduct
a direct comparison with the same number of cores. The
addition of kernel-bypass networking and hyperthread pairing
enable our version of Parties to significantly outperform the
reported performance of the original, so we refer to it as
Parties*.
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7.1 Comparison to Other Systems

Constant interference: To demonstrate the necessity of man-
aging interference, we first compare Parties* and Caladan to
systems that do not explicitly manage interference. We evalu-
ate a relatively less challenging scenario, where an LC task
(memcached) is colocated with stream-DRAM, a BE task that
generates constant memory bandwidth interference.

Figure 4 illustrates that, as expected, both Linux and
Shenango suffer significant increases in tail latency in the
presence of colocation, reaching tail latencies up to 235× and
6× higher than without interference, respectively. Shenango’s
throughput also decreases by 75% in the presence of inter-
ference, because its scheduler core becomes overloaded with
packet processing, due to higher cache miss rates and memory
access latency caused by stream-DRAM. In contrast, Caladan
and Parties* are both able to maintain similar tail latency with
and without interference, because they manage it explicitly.
Both also achieve much higher throughput than Linux and
Shenango because runtime cores send and receive packets
directly using our runtime’s kernel-bypass network stack (§6),

preventing the Linux network stack or the scheduler core from
becoming a bottleneck. While adapting Shenango to use our
runtime’s kernel-bypass network stack would eliminate this
throughput bottleneck, it would not improve the tail latency
of LC tasks suffering from interference.

Phased interference: We now focus on interference caused
by phased behavior, a more difficult and realistic case that
Caladan is designed to solve. We revisit the garbage collec-
tion experiment from Section §2, colocating an instance of
memcached with swaptions-GC. We issue 800,000 requests
per second to memcached for a period of 120 seconds and
measure its tail latency over 20 ms windows. We show the first
20 seconds of the experiment in Figure 5, which we found to
be representative of the behavior during the entire experiment.

Caladan throttles the BE task’s cores as soon as each GC
cycle starts, preventing latency spikes, and it gives back cores
to the BE task as soon as the GC cycle ends, maintaining
high BE throughput. Parties* attempts to find an allocation of
cores and cache ways that minimizes latency and maximizes
resources for the BE task, but it is unable to converge when
resource demands are shifting at timescales much smaller
than its 500 ms adjustment interval. Often Parties* grants
additional cores in response to GC cycles, but these adjust-
ments happen too slowly to prevent latency spikes. As a result,
Parties* experiences 99.9% latency that is 11,000× higher
than Caladan during GC cycles. In addition, Parties* also
harms BE throughput, achieving an average of 5% less than
Caladan because it punishes swaptions-GC by too much and
for too long. These results show that faster reaction times are
essential when handling tasks with phased behaviors.

7.2 Diverse Colocations

Two tasks: To understand if Caladan can maintain its benefits
in diverse situations, we evaluate 15 colocations between pairs
of LC and BE tasks with different resource usages, service
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time distributions, and throughputs. 9 out of 15 pairings in-
clude BE tasks with phased behaviors. We consider the impact
on each LC task’s tail latency and the amount of throughput
the BE task can achieve by using burstable cores.

In this experiment (Figure 6), each data point represents a
different fixed average load offered to an LC task (columns),
while it is paired with a BE task (colors/linetypes). Caladan is
highly effective at mitigating interference: storage and mem-

cached achieve nearly the same tail latency as they do without
colocation. Silo experiences a small increase in tail latency at
low load because it is sensitive to LLC interference, leading to
service time but not queueing delay increases. At higher load,
silo generates self interference, so it experiences similar tail
latency with and without colocation. Overall, Caladan can eas-
ily maintain microsecond-level tail latency under challenging
colocation conditions.

At the same time, Caladan yields excellent BE task through-
put. The exact BE throughput depends on the degree of
resource contention with the LC task. For example, x264,
swaptions-GC, and stream-L2 use less memory bandwidth
(on average), so they can linearly trade CPU time with the LC
task. Streamcluster and stream-DRAM both consume a larger
amount of memory bandwidth, so they are throttled by our
memory bandwidth controller. However, they also pair well
with LC tasks as siblings (especially memcached) because
they use different physical core resources. At higher LC load,
these BE tasks are given fewer cores so they use less memory
bandwidth and are then throttled less. Overall, BE throughput
depends on the specific interactions between the BE and LC
tasks, and varies with LC load. To the best of our knowledge,
Caladan is the first system to achieve both microsecond-level
LC tail latency and high BE throughput under such a broad
range of conditions.

Many tasks: To demonstrate Caladan’s ability to manage
many tasks simultaneously, we colocate all 3 of the LC tasks
along with swaptions-GC and streamcluster (each LC task
is configured with 6 guaranteed cores). Figure 7 shows a 30-
second trace from this experiment, during which the load of
each of the LC apps changes multiple times (4th graph) and
swaptions-GC performs garbage collection three times (gray
bars). When load or interference changes, Caladan converges
nearly instantly. When GC is not running, the combination of
streamcluster and swaptions-GC does not saturate memory
bandwidth. However, when GC begins, both tasks together
saturate DRAM bandwidth and are throttled by Caladan. Cal-
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adan’s fast reactions (up to 230,000 core reallocations per
second) enable all three LC tasks to maintain low tail latency
(top three graphs) throughout constantly shifting load and
interference.

7.3 Microbenchmarks

KSCHED: To evaluate the benefits of KSCHED’s faster
scheduling operations, we run a simple microbenchmark
where we continuously rotate tasks to different cores. To
measure scalability, we migrate different numbers of tasks
together in groups. We run the benchmark both with KSCHED

and with a variant that uses standard Linux system calls such
as sched_setaffinity(), tgkill(), and eventfd().

Figure 8a shows both the scheduling work (time spent by
the scheduler core) and the scheduling latency (time until
the migration completes) per migration. Both metrics benefit
tremendously from KSCHED’s multicast IPIs, allowing it to
amortize the cost of multiple simultaneous migrations. By
contrast, Linux’s system call interface suffers from overhead
and because it cannot support batching; operations must be
serialized, increasing scheduling work by 43× and scheduling
latency by 5× when moving 22 tasks. In addition, KSCHED

maintains low scheduling work even with many tasks by of-
floading expensive operations such as sending signals to re-
mote cores.

We demonstrate the value of these improvements in an
experiment with 11 synthetic LC tasks and 2 synthetic non-
interfering BE tasks. The LC tasks have 5 µs average service
times that are exponentially distributed and each is config-
ured with 2 guaranteed cores. We compare against an earlier
version of Caladan that employed the Linux scheduling mech-
anisms evaluated above. In Figure 8b, we show that Caladan
is able to maintain much lower tail latency for the LC tasks
(close to that of running with cores pinned). In this exper-
iment, Caladan performs up to 560,000 core reallocations
per second at its peak (at a load of 0.65 million RPS), while
the version using Linux mechanisms bottlenecks at around
285,000 allocations per second. KSCHED provides similar
benefits for sampling performance counters (not shown).

Controllers: We found that both the memory bandwidth and
hyperthread controllers were necessary in order to ensure

0 200 400
0

200

400

600

800

99
.9

%
 L

at
. (
μs

)
0 200 400

0

50

100

BE
 O

p/
s (

%
)

Requests Per Second (Thousand)

Elfen Borrow Idle
Elfen Refresh Budget

Caladan
No HT Controller

Figure 9: Caladan enables higher LC throughput than Elfen by
allowing arbitrary tasks to co-run on a physical core (including the
same LC task).

isolation across a variety of tasks and loads. To provide one
concrete example, Figure 8c evaluates the contribution of each
controller module to the storage LC task when colocated with
the stream-DRAM BE task. At very low loads, the bandwidth
controller is sufficient to provide low tail latency. This is
because as Caladan revokes cores from the BE task, it leaves
the hyperthread pair cores of the LC task idle, rendering the
hyperthread controller unnecessary. However, at higher LC
loads, both controllers are necessary in order for the storage
task to achieve nearly the same tail latency as it would have
without colocation.

Next we focus on the hyperthread controller and evaluate
the benefits of allowing any two tasks to co-run on a physical
core (e.g., two LC tasks or even two hyperthreads in the same
task). Figure 9 compares Caladan to two modified versions
of Caladan that implement Elfen’s [70] scheduling policies,
when colocating storage and stream-L2. Elfen’s borrow idle
policy disallows co-running, only allowing the BE to run on a
physical core when it is not being used by the LC; this yields
low tail latency for the LC task but also low BE through-
put. Elfen’s refresh budget policy, which Caladan generalizes
(§5.2.3), yields higher BE throughput at the cost of a slight in-
crease in tail latency, demonstrating the benefits of using both
hyperthreads simultaneously. Caladan achieves 37% more
LC throughput than Elfen by enabling the LC task to co-run
with itself. Similarly, at low LC loads, Caladan is able to
achieve 5% higher BE throughput than Elfen since BE tasks
can use both hyperthread lanes. Finally, running Caladan with
the hyperthread controller disabled yields slightly higher BE
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throughput but at a cost of up to 117 µs higher tail latency,
highlighting the need to explicitly manage hyperthread inter-
ference to achieve both high throughput and low tail latency.

8 Discussion

Compatibility: Caladan requires applications to use its run-
time system because it depends on it to export control signals
to the scheduler, and to rapidly map threads and packet pro-
cessing work across a frequently changing set of available
cores. Our runtime is not fully Linux compatible, but it pro-
vides a realistic, concurrent programming model (inherited
from Shenango) that includes threads, mutexes, condition vari-
ables, and synchronous I/O [47]. Caladan also includes a par-
tial compatibility layer for system libraries (e.g., libpthread)
that can support PARSEC [9] without modifications, giving
us some confidence our design is flexible enough to support
unmodified Linux applications in the future. Applications that
do not use our runtime can coexist on the same machine, but
they must run on cores that are not managed by Caladan, and
they cannot be throttled if they cause interference.

The more fundamental requirement for Caladan is the need
for LC tasks to expose their internal concurrency to the run-
time (e.g., by spawning green threads), potentially requiring
changes to existing code. If there is insufficient concurrency,
a task will be unable to benefit from additional cores, hinder-
ing Caladan’s ability to manage shifts in load or interference.
In general, we recommend that tasks expose concurrency by
spawning either a thread per connection or a thread per request.
For example, normally memcached multiplexes multiple TCP
connections per thread, but we modified it to instead spawn a
separate thread to handle each TCP connection.

On the other hand, Caladan can support BE tasks that do not
expose their internal concurrency, as it can still throttle them
if they cause too much interference. For example, if a BE task
is single-threaded (i.e., has no concurrency), and it consumes
too much memory bandwidth, Caladan will oscillate between
giving it one and zero cores, effectively time multiplexing its
memory bandwidth usage. However, BE tasks can optionally
achieve higher performance by exposing their internal con-
currency: load will be more evenly balanced and they will be
able to take advantage of burstable cores.

Limitations: Our current implementation of Caladan has two
limitations. First, it is unable to manage interference across
NUMA nodes. NUMA introduces additional shared resources
that are vulnerable to interference, including an inter-socket
interconnect and separate memory controllers per node. For-
tunately, high-precision performance counters are available
for these resources, and we plan to explore NUMA-aware in-
terference mitigation strategies in the future, such as revoking
cores or migrating tasks between nodes. Second, our schedul-
ing policies do not minimize the threat of transient execution
attacks across hyperthread siblings [3, 11, 65]. Ideally, only
mutually-trusting tasks should be allowed to run on sibling

cores. At the time of writing, a similar capability is under
development for the Linux Kernel [13].

Future work: One promising opportunity for future work
is to incorporate hardware partitioning back into Caladan’s
design. For example, if a BE task uses high memory band-
width and lacks temporal locality, many of the cache lines it
occupies in the LLC will be wasted. Under these conditions,
Caladan is still effective at preventing latency increases, but
it must allocate extra cores to victim tasks. If future hardware
partitioning mechanisms could be designed to accommodate
frequently shifting LLC usage—or if static LLC usage could
be identified and managed through existing mechanisms—
CPU efficiency could be further improved.

9 Related Work

Interference management: Many prior systems manage in-
terference between LC and BE tasks by statically partitioning
resources [19, 28, 50, 62]. While this approach can reduce
interference, it sacrifices CPU utilization because each task
must be provisioned enough resources to accommodate peak
load. Heracles [38], Parties [12], and PerfIso [27] instead ad-
just partitions dynamically. However, unlike Caladan, these
systems cannot manage changes in interference while main-
taining microsecond latency and high utilization.

Efforts to isolate the network [35, 36, 53] or storage [34]
are complementary to Caladan. We do not currently focus on
power management [32, 58] or TurboBoost [23], because we
optimize for the setting in which all cores are fully utilized,
but it should be possible to integrate power management with
Caladan to improve its CPU efficiency at lower utilization.

User-level core allocators: To enable low latency in the
face of fluctuating load, systems like IX [8], PerfIso [27],
Shenango [47], and Arachne [52] introduce user-level core
allocators that estimate load and reallocate cores to BE tasks
when they are not needed by LC tasks. Similarly, TAS [33] and
Snap [42] adjust cores in response to changes in packet pro-
cessing load. Like these systems, Caladan manages changes
in load through core allocations, but it goes a step further by
using core allocation to manage interference too.

Scheduling optimizations: Shinjuku [30] proposes fine-
grained preemption to reduce tail latency, using Dune [7]
to provide fast, direct access to IPIs in userspace. KSCHED

includes kernel optimizations that allow for similar perfor-
mance when sending an IPI to a single core, but it speeds up
IPIs over Shinjuku’s reported speeds when sending more than
one IPI at a time because of its multicast IPI optimization.

Dataplane systems: There has also been significant work
on optimizing OS networking for throughput and latency [8,
29, 33, 48, 52, 55]. ZygOS proposes work stealing as a tech-
nique to reduce tail latency under variable service times [51].
Arachne [52] and Shenango [47] build a similar latency reduc-
tion strategy on top of green threads to improve programma-
bility. Caladan builds upon all of these ideas to eliminate
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Figure 10: Parameter sensitivity for the storage LC task; the parameters used in our evaluation appear in bold. (a) THRESH_QD allows an
operator to achieve better tail latencies at the expense of BE throughput. (b) THRESH_HT reins in the latency of long requests, but setting it too
low reduces BE throughput. (c) THRESH_BW is set to avoid exponential increases in memory access latencies.

network processing and queueing bottlenecks, allowing it to
manage interference unperturbed by software overheads or
load imbalances.

10 Conclusion

This paper presented Caladan, an interference-aware CPU
scheduler that significantly improves performance isolation
while maintaining high CPU utilization. Caladan’s effective-
ness comes from its speed: by matching control signals and
actions to the same timescale that interference affects perfor-
mance, Caladan can mitigate interference before it can harm
quality of service. Caladan relies on a carefully selected set
of control signals to manage multiple forms of interference
in a coordinated fashion, and combines a wide range of op-
timizations to rapidly gather control signals and make core
allocations faster. These contributions allow Caladan to de-
liver microsecond-level tail latency and high CPU utilization
while colocating multiple tasks with phased behaviors.

11 Acknowledgments

We thank our shepherd Kathryn S. McKinley, the anony-
mous reviewers, Frans Kaashoek, Malte Schwarzkopf, Ak-
shay Narayan, and other members of PDOS for their use-
ful feedback. We thank CloudLab [17] and Eitan Zahavi at
Mellanox for providing equipment used to test and evaluate
Caladan. This work was funded by the DARPA FastNICs
program under contract #HR0011-20-C-0089, by a Facebook
Research Award, and by a Google Faculty Award.

A Parameter Tuning and Sensitivity

In this Appendix, we describe how to set Caladan’s three
user-tunable parameters and show how sensitive Caladan’s
performance is to particular choices of these parameters. To il-
lustrate the behavior of THRESH_QD and THRESH_HT, we colo-

cate the storage workload with stream-L2. For THRESH_BW,
we colocate the storage workload with stream-DRAM. In
each case, we vary a single parameter, while fixing other pa-
rameters to the values used in our evaluation.
THRESH_QD represents the per-task queueing delay limit

before the top-level core allocator tries to grant another
core. As shown in Figure 10a, an operator can trade some
LC tail latency for higher BE throughput using a value of
THRESH_QD larger than Caladan’s default 10 µs. For example,
a THRESH_QD of 100 µs enables 7% more BE throughput at
the cost of 54 µs higher LC tail latency for these workloads.
We chose to optimize for tail latency, and found that values be-
low 10 µs degraded BE throughput without further improving
LC tail latency.
THRESH_HT places a worst-case limit on how long a request

can be delayed by a task generating interference on its hyper-
thread sibling. If it is set too low (i.e., most request processing
requires a dedicated physical core), BE throughput will suffer
and LC latency will degrade at high load due to insufficient
compute capacity. For a skewed service time distribution, like
our storage workload, choosing a value above the median is a
good heuristic. Figure 10b illustrates that setting THRESH_HT
below the median of 35 µs significantly lowers BE throughput,
while values that are slightly above the median yield increased
BE throughput and good tail latency. For workloads with ser-
vice times less than 5 µs (e.g., memcached), we recommend
setting THRESH_HT to infinite because mwait requires a few
microseconds to park a hyperthread.

Finally, THRESH_BW represents the global maximum al-
lowed memory bandwidth usage before Caladan begins to
throttle tasks. THRESH_BW should be set once per machine to a
bandwidth just low enough to avoid the exponential increase
in memory access latency that occurs close to memory band-
width saturation. We use 25 GB/s for our machine (70–80% of
its capacity), which keeps memory latency low for any access
pattern. Figure 10c shows this setting trades a small amount
of BE throughput in exchange for predictable latency.
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B Artifact

Caladan’s source code, ported applications, and experiment
scripts can be found at https://github.com/shenango/
caladan-all.
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