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Abstract We construct efficient ring signatures (RS) from isogeny and
lattice assumptions. Our ring signatures are based on a logarithmic OR
proof for group actions. We instantiate this group action by either the
CSIDH group action or an MLWE-based group action to obtain our
isogeny-based or lattice-based RS scheme, respectively. Even though the
OR proof has a binary challenge space and therefore requires a number of
repetitions which is linear in the security parameter, the sizes of our ring
signatures are small and scale better with the ring size N than previously
known post-quantum ring signatures. We also construct linkable ring
signatures (LRS) that are almost as efficient as the non-linkable variants.
The isogeny-based scheme produces signatures whose size is an order of
magnitude smaller than all previously known logarithmic post-quantum
ring signatures, but it is relatively slow (e.g. 5.5 KB signatures and 79
s signing time for rings with 8 members). In comparison, the lattice-
based construction is much faster, but has larger signatures (e.g. 30 KB
signatures and 90 ms signing time for the same ring size). For small ring
sizes our lattice-based ring signatures are slightly larger than state-of-
the-art schemes, but they are smaller for ring sizes larger than N ≈ 1024.

1 Introduction

Ring signatures (RS), introduced by Rivest, Shamir, and Tauman [29] allow a
person to sign a message on behalf of a group of people (called ring), without
revealing which person in the ring signed the message. A ring signature is re-
quired to be unforgeable, meaning that one cannot produce a signature without
having the secret key of at least one person in the ring, and anonymous, meaning
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that it is impossible to learn which person produced the signature. The original
motivation behind ring signatures is to allow a whistleblower to leak information
without revealing their identity, while still adding credibility to the information
by proving that it was leaked by one of the people in the ring. Linkable ring
signatures (LRS) are an extension where one can publicly verify whether two
messages were signed by the same person or not. This variant has found ap-
plications in e-voting and privacy-friendly digital currencies. In both cases, to
protect users’ privacy it is important to have at disposal a (linkable) ring signa-
ture scheme that can efficiently support very large ring sizes.

The security of many known (linkable) ring signatures relies on the hardness
of factoring integers or computing discrete logarithms in finite cyclic groups.
Unfortunately, these problems can be solved in quantum polynomial time [30],
and hence all the schemes based on them would be no longer secure in the pres-
ence of adversaries with access to a sufficiently powerful quantum computer. To
resolve this issue it is necessary to consider hard problems that resist attacks
from quantum computers. Post-quantum ring signature schemes scaling poly-
logarithmically with the ring size have been constructed from symmetric crypto-
graphic primitives [20, 11] and the hardness of lattice problems [15, 16, 4, 31, 23].

1.1 Our contributions

In this paper, we introduce a logarithmic OR proof for group actions and we then
use it to construct concretely efficient logarithmic ring signatures and linkable
ring signatures from isogeny and lattice assumptions. Our (linkable) ring signa-
ture schemes are realized by first constructing a generic (linkable) ring signature
scheme based on a group action that satisfies certain cryptographic properties,
and then instantiating this group action by either the CSIDH group action [8] or
a MLWE-based group action. This is, to the best of our knowledge, the first con-
crete construction of (linkable) ring signatures from isogeny-assumptions with
logarithmic signature size.

An advantage of our schemes is that the signature size scales very well with the
ring size N , even compared to other post-quantum logarithmic (linkable) ring
signatures, since the only dependence on N is due to the signatures containing
a small number of paths (in the clear) in Merkle trees of depth logN . There-
fore, the term in the signature size that depends on logN is independent of the
CSIDH or lattice parameters. All previous works that relied on a hidden path in
a Merkle tree had to prove the consistency of a Merkle hash in zero-knowledge.
Therefore, the multiplicative factor of logN was much larger than ours. The very
mild dependence on logN of our schemes can be observed in Figure 1, where
we see that for our lattice-based ring signature scheme a signature for ring size
N = 2048 is only 17% larger than a signature for ring size N = 2.

For efficiency and convenience we chose to implement our (linkable) ring signa-
ture scheme with parameter sets from pre-existing signature schemes: for our iso-
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geny instantiations we consider the CSIDH-512 parameter set, used by CSI-FiSh
[6], while for our lattice instantiation we use the Dilithium II parameter set. This
allows us to reuse large portions of code from CSIDH, CSI-FiSh, and Dilithium
implementations. The signature size and signing speed of our implementations
are shown in Figure 1. The signature size can be estimated as logN+2.7 KB for
the isogeny-based instantiation and as 0.5 logN + 29 KB for the lattice-based
instantiation. For ring size N = 8 our lattice-based instantiation has a signing
time of 90 ms, faster than our isogeny-based instantiation (79 s) by almost 3
orders of magnitude.

Table 1 lists the signature size of our ring signatures and those of some other post-
quantum ring signatures1. Not surprisingly, the signature size of our isogeny-
based (linkable) ring signature is very small compared to the other post-quantum
proposals. In particular, it is an order of magnitude smaller. However, we should
notice that it is hard to make a meaningful comparison between our schemes and
schemes which claim different security levels. For the lattice-based instantiations,
we compute the signature size for a parameter set that achieves NIST security
level II2 (see the third row in Table 1) to allow for a fair comparison with the
work of Esgin et al. [16]. We observe that for small ring sizes our lattice-based
signatures are larger than those of Esgin et al., but for ring sizes larger than
N ≈ 1024 our signatures are the smallest.

Since our isogeny scheme is compact and our lattice scheme is fast, we call our
schemes, respectively, the “Compact And Linkable Anonymous Message Authen-
tication fRom Isogenies” (Calamari) and the “Fast Authentication with Linkable
Anonymity From Lattices” (Falafl). We give the names “Faafl” and “Camari”
to the isogeny and lattice (non-linkable) ring signatures, respectively.

1.2 Technical overview

Our (linkable) ring signature scheme is based on a generalisation to group ac-
tions of the classical sigma protocol for the Graph Isomorphism Problem. Let
⋆ : G×X → X be a group action and fix X0 ∈ X . To prove knowledge of a group
element g such that g ⋆X0 = X, the prover uniformly samples r ∈ G, and sends
R = r⋆X as commitment. The verifier responds with a random challenge bit c. If
c = 0 the prover sends resp = r+g, while they send resp = r if c = 1. The verifier
checks whether resp⋆X0 = R when c = 0, and whether resp⋆X = R when c = 1.

A key observation is that the verification algorithm is independent of X when
the challenge bit is 0. This allows us to design the following OR proof for group

1 We compare only signature sizes since, to the best of our knowledge, ours is the only
post-quantum logarithmic (linkable) ring signature with an implementation.

2 We used the Dilithium III parameters, 168-bit seeds and commitment randomness,
and a challenge space of size 2168, which suffices to achieve NIST level II for low
MAXDEPTH.
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Figure 1. Signing time (left) and signature size (right) of our isogeny-based and lattice-
based (linkable) ring signatures. The left and right scales in the figure of signing time
correspond to the isogeny-based and lattice-based schemes, respectively. Signing time
is measured on an Intel i5-8400H CPU core.

N hardness Security
21 23 26 212 221 assumption Level

Calamari 3.5 5.4 8.2 14 23 CSIDH-512 ∗
Falafl 29 30 32 35 39 MSIS, MLWE NIST 1

Falafl for 2 49 50 52 55 59 MSIS, MLWE NIST 2

RAPTOR[24] ∼ 2.5 ∼ 10 81 5161 / NTRU 100 bits
EZSLL[15, 16] 18 19 31 59 148 MSIS, MLWE NIST 2

KKW[20] / / 250 456 / LowMC NIST 5

Table 1. Comparison of the signature size (KB) of some concretely efficient post-
quantum ring signature schemes.
∗ 128 bits of classical security and 60 bits of quantum security [27].

actions. For some X0, X1, · · · , XN ∈ X , the prover wants to prove knowledge
of g ∈ G such that g ⋆ X0 = XI for some I ∈ {1, · · ·N}. Then they start by
simulating a commitment for each Xi with i ∈ {1, · · · , N}, so that they can
respond to the challenge c = 1, and send these commitments in a random order
to the verifier. If the verifier sends c = 1, we let the prover respond for all the
commitments (and hence I is not leaked). If the verifier sends the challenge bit
c = 0, the prover can answer the I-th challenge, but not the other challenges,
because they do not know group elements gi such that gi ⋆ X0 = Xi for i 6= I.
Therefore, we let the prover respond only to the I-th challenge. This does not
reveal I, because verification is independent of XI .

More concretely, the prover sends N elements R1 = r1 ⋆X1, · · · , RN = rN ⋆XN

in a random order to the verifier, where the ri are chosen uniformly at random
from G. Then, after the verifier sends a challenge bit c, the prover responds with
resp = rI + g if the challenge bit c is 0, or responds with r1, · · · , rN in case
c = 1. The verifier checks whether resp ⋆ X0 ∈ {R1, · · · , RN} in case c = 0 and
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whether {r1 ⋆ X1, · · · , rN ⋆ XN} = {R1, · · · , RN} in case c = 1. Here, note that
the commitments are sent in a random order, so the response hides the index I
in case c = 0.

Since the prover sends N elements R1, · · · , RN as commitment and N group
elements r1, · · · , rN as response in case c = 1, it looks like the proof size is linear
in N , and that there is no improvement over the generic OR proof. However,
since the ri are chosen at random, they can be generated from a pseudorandom
number generator (PRG) instead, which reduces the communication cost to just
sending a seed as the response in case c = 1. Moreover, instead of sending all
the Ri we can commit to them using a Merkle tree and only send the root as the
commitment. To make verification possible, the prover then sends a path in the
Merkle tree to the verifier as part of the response in case c = 0. This makes the
total proof size logarithmic in N , a clear improvement over generic OR proofs.
Furthermore, since for some group actions it is more efficient to compute N
group actions r ⋆ Xi with the same element r ∈ G rather than computing N
group actions ri ⋆ Xi with distinct ri, in our protocol we set r1 = · · · = rN = r.
Given that this would break the zero-knowledge property of the Sigma protocol,
we replace each Ri by a hiding commitment Com(Ri, bitsi), and we let the prover
include bitsI in the response in case c = 0.

To enlarge the challenge space of the OR proof for group actions, we run paral-
lel executions of it and then we obtain a ring signature scheme by applying the
Fiat-Shamir transform to the OR proof. To avoid multi-target attacks similar to
those of Dinur and Nadler [12] we made a detailed security proof in the random
oracle model, with concrete expressions for the security loss in each step of the
proof. This led us to include a unique salt value in each signature and to carefully
separate the domain of various calls to the random oracles. We notice that in
choosing our concrete parameters, as per usual, we ignore the artificial reduction
loss incurred by the rewinding argument of Fiat-Shamir (since no attacks that
can exploit this loss are known).

We instantiate the group action ⋆ by either the CSIDH group action or the
MLWE group action defined as:

⋆ : Rn+m
q ×Rm

q : (s, e) ⋆ t 7→ A ⋆ s+ e+ t

where Rq = Zq[X]/(Xd + 1) and A is a matrix belonging to Rm×n
q . To achieve

one-wayness it is necessary to restrict the domain to Sn+m
η × Rm

q , where Sη is
the set of elements of Rq with coefficients bounded in absolute value by η. In
this case we need to use the Fiat-Shamir with aborts technique [25] to ensure
that the signatures do not leak the secret key.

In order to obtain a linkable ring signature scheme, we expand our OR proof
to an OR proof with tag where, given two group actions ⋆ : G × X → X ,
• : G × T → T and a list of elements X0, X1, · · · , XN ∈ X and T0, T ∈ T , the
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prover proves knowledge of g ∈ G such that g⋆X0 = XI for some I ∈ {1, · · · , N}
and g • T0 = T . This naturally leads to a linkable signature scheme. The signer
includes the tag T = g • T0 in the signature and then proves knowledge of g.
Two signatures can be linked by checking if the tags are equal (or close with
respect to a well defined metric). We require a number of properties from ⋆ and
• to make the linkable ring signature secure (see Definition 15). For example, it
should not be possible to learn g ⋆ X0 given g • T0, because that would break
the anonymity of the linkable ring signature. We give instantiations of ⋆ and •
based on the CSIDH group action (where we put g •X := (2g) ⋆X) or based on
the hardness of MLWE and MSIS.

Finally, we would like to point out some optimization tricks that allow to fur-
ther lower the size of the signatures. Since our base protocol (either the OR
proof or the OR proof with tag) has a binary challenge, we must execute par-
allel repetitions to lower the soundness error to make it useable for (linkable)
ring signatures. A naive way to accomplish this would be to run the OR proof
(with tag) λ-times, where λ is the security parameter. However, since opening to
c = 1 (which requires communicating only a single seed value) is much cheaper
than opening to c = 0, we can do much better. Specifically, we choose integers
M,K such that

(
M
K

)
≥ 2λ and do M > λ executions of the protocol of which

exactly K executions are chosen to have challenge bit 0. Setting K ≪ λ, we get
a noticeable gain in the signature size. Moreover, since we now only need to open
to seed values in most of the parallel runs, we use a seed tree to further lower
the signature size. Informally, the seed tree generates a number of pseudoran-
dom values and can later disclose an arbitrary subset of them, without revealing
information on the remaining values. Further details on our optimization tricks
can be found in Section 3.4.

Roadmap. In Section 2 we provide some necessary preliminaries. In Section 3
we first define an admissible group action, then we construct a base OR proof
for group actions with binary challenge space, which we then extend to a main
OR proof with exponential challenge space. Finally we apply the Fiat-Shamir
transform to obtain a ring signature scheme. Section 4 follows the same structure:
we define an admissible pair of group actions, for which we construct an OR
proof with tag, which we convert into a linkable ring signature. In Section 5 we
instantiate the group actions from isogeny and lattice assumptions. Finally, in
Section 6 we discuss our parameter choices and implementation results, and we
draw some conclusions.

2 Preliminaries

A note on random oracles. Throughout the paper, we instantiate several stand-
ard cryptographic primitives such as pseudorandom number generators (PRG
in short, and denoted by Expand) and commitment schemes by hash functions
modeled as a random oracle O. We always assume the input domain of the ran-
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dom oracle is appropriately separated when instantiating several cryptographic
primitives by one random oracle. With abuse of notation, we may occasionally
write, for example, O(Expand‖·) instead of Expand(·) to make the usage of the
random oracle explicit. Here, we identify Expand with a unique string when in-
putting it to O. Moreover, we denote by AO an algorithm A that has black-box
access to O, and we may occasionally omit the superscript O when the meaning
is clear. Finally, for a precise definition of relaxed Sigma protocol in the Random
Oracle Model we refer to [5, Sec. 2.1].

2.1 Ring signatures

In this subsection, we review the definition of ring signatures.

Definition 1 (Ring signature scheme). A ring signature scheme ΠRS con-
sists of four PPT algorithms (RS.Setup,RS.KeyGen,RS.Sign,RS.Verify) such that:

RS.Setup(1λ)→ pp : On input a security parameter 1λ, it returns public para-
meters pp used by the scheme.

RS.KeyGen(pp)→ (vk, sk) : On input the public parameters pp, it outputs a pair
of public and secret keys (vk, sk).

RS.Sign(sk,M,R)→ σ : On input a secret key sk, a message M, and a list of
public keys, i.e., a ring, R = {vk1, . . . , vkN}, it outputs a signature σ.

RS.Verify(R,M, σ)→ 1/0 : On input a ring R = {vk1, . . . , vkN}, a message M,
and a signature σ, it outputs either 1 (accept) or 0 (reject).

We require a ring signature scheme ΠRS to satisfy the following properties: cor-
rectness, full anonymity, and unforgeability. Informally, correctness means that
verifying a correctly generated signature will always succeed. Anonymity means
it should not be possible to learn which secret key was used to produce a sig-
nature, even for an adversary that knows the secret keys for all the public keys
in the ring. Finally, unforgeability means that it should be impossible to forge
a valid signature without knowing a secret key that corresponds to one of the
public keys in the ring. For formal security definitions we refer to [5, Sec. 2.2].

2.2 Linkable ring signatures

Linkable ring signatures are a variant of ring signatures where anyone can effi-
ciently check if two messages were signed with the same secret key. Below we
review the formal definition.

Definition 2 (Linkable ring signature scheme). A linkable ring signature
scheme ΠLRS consists of the four PPT algorithms of a ring signature scheme and
one additional PPT algorithm LRS.Link such that:

LRS.Link(σ0, σ1)→ 1/0 : On input two signatures σ0 and σ1, it outputs either
1 or 0, where 1 indicates that the signatures were produced with the same
secret key.
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In addition to the correctness property, we require a linkable ring signature
scheme ΠLRS to satisfy linkability, linkable anonymity, and non-frameability. In-
formally, linkability means that, if an adversary produces more than k signatures
with a ring of k (potentially malformed) public keys, then the LRS.Link algorithm
will output 1 on at least one pair of signatures. Linkable-anonymity means that
an adversary cannot tell which secret key was used to produce a signature. In
contrast to the ring signature case, the adversary is not given all the secret keys,
otherwise they could use the linkability property to deanonymize the signer.
Finally, the non-frameability property says it should be impossible for an ad-
versary to produce a valid signature that links to a signature produced by an
honest party. For formal security definitions we refer to [5, Sec. 2.3].

Remark 3 (Unforgeability). We can also require a linkable ring signature to be
unforgeable, as defined above for a ring signature. However, it can be shown that
unforgeability is implied by linkability and non-frameability.

2.3 Isogenies and ideal class group actions

Let Fp be a prime field, with p ≥ 5, and E a supersingular elliptic curve defined
over Fp. The ring Endp(E) of all endomorphisms of E that are defined over Fp is
isomorphic to an order O of the field K = Q(

√−p) [8]. The invertible fractional
ideals of O form an abelian group whose quotient by the subgroup of principal
fractional ideals is finite, called the ideal class group of O and denoted by Cℓ(O).
The ideal class group Cℓ(O) acts freely and transitively on the set Eℓℓp(O, π),
which contains all supersingular elliptic curves E over Fp - modulo isomorphisms
defined over Fp - such that there exists an isomorphism between O and Endp(E)
mapping

√−p ∈ O into the Frobenius endomorphism π : (x, y) 7→ (xp, yp). We
denote this action by ∗. Recently, it has been used to design several cryptographic
primitives [8, 10, 6], whose security proofs rely on (variations of) the Group
Action Inverse Problem (GAIP), defined as follows:

Definition 4 (Group Action Inverse Problem (GAIP)). Let [E0] be a an
element in Eℓℓp(O, π), where p ≥ 5 is an odd prime. Given [E] sampled uniformly
at random from Eℓℓp(O, π), the GAIPp problem consists in finding an element
[a] ∈ Cℓ(O) such that [a] ∗ [E0] = [E].

For the security of the isogeny-based instantiations of our (linkable) ring signa-
ture schemewe will rely on a newly-introduced hard problem, called the Squaring
Decisional CSIDH Problem (sdCSIDH in short).

Definition 5 (Squaring Decisional CSIDH (sdCSIDH) Problem). Let
[E0] be an element in Eℓℓp(O, π), where p ≥ 5 is an odd prime. Given [a] sampled
uniformly at random from Cℓ(O), the sdCSIDHp problem consists in distinguish-
ing the two distributions ([a] ∗ [E0], [a]

2 ∗ [E0]) and ([E], [E′]), where [E], [E′] are
both sampled uniformly at random from Eℓℓp(O, π).

In analogy with the classical group-based scenario [3], we assume the above
problem is equivalent to the decisional CSIDH problem, recently used in [14, 9].
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2.4 Lattices

For positive integers n and q, let R and Rq denote the rings Z[X]/(Xn +1) and
Z[X]/(q,Xn+1), respectively. Norms over R are defined through the coefficient
vectors of the polynomials, which lie over Zn. Norms over Rq are defined in the
conventional way by uniquely representing coefficients of polynomials in Rq by
elements in the range (−q/2, q/2] when q is even and [−(q−1)/2, (q−1)/2] when
q is odd (see, for example, [13] for more details).

The hard problems that we rely on for our lattice-based schemes are the module
short integer solution (MSIS) problem and module learning with errors (MLWE)
problem, first introduced in [22].

Definition 6 (Module short integer solution Problem). Let n, q, k, ℓ, γ
be positive integers. The advantage for the (Hermite normal form) module short
integer solution problem MSISn,q,k,ℓ,γ for an algorithm A is defined as

AdvMSIS
n,q,k,ℓ,γ(A) = Pr

[
0 < ‖u‖∞ ≤ γ ∧ [A | I] · u = 0

∣∣ A← Rk×ℓ
q ;u← A(A)

]
.

Definition 7 (Module learning with errors Problem). Let n, q, k, ℓ be
positive integers and D a probability distribution over Rq. The advantage for the
decisional module learning with errors problem dMLWEn,q,k,ℓ,D for an algorithm
A is defined as

AdvdMLWE
n,q,k,ℓ,D(A) = |Pr[A(A,As+ e)→ 1]− Pr[A(A,v)→ 1]| ,

where A← Rk×ℓ
q , s← Dℓ, e← Dk and v← Rk

q .
The advantage for the search learning with errors problem sMLWEn,q,k,ℓ,D is

defined analogously to above as the probability that A(A,v := As + e) outputs
(s̃, ẽ) such that As̃+ ẽ = v and (s̃, ẽ) ∈ Supp(Dℓ)× Supp(Dk).

When it is clear from the context, we omit the subscript n and q from above
for simplicity. The MLWE assumptions are believed to hold even when D is
the uniform distribution over ring elements with infinity norm at most B, say
B ≈ 5, for appropriate choices of n, q, k, ℓ [1]. We write MLWEk,ℓ,B when we
consider such distribution. For example, the round-2 NIST candidate signature
scheme Dilithium [13] uses such parameters. Looking ahead, we will choose our
parameters for MSIS and MLWE in accordance with [13].

2.5 Index-hiding Merkle trees

Merkle trees [26] allow to hash a list of elements A = (a1, · · · , aN ) into one
hash value (often called root). At a later point, one can efficiently prove to a
third party that an element ai was included at a certain position in the list A.
In the following, we consider a slight modification of the standard Merkle tree
construction, such that one can prove that a single element ai was included in
the tree without revealing its position in the list. Security proofs for the binding

9



and index-hiding properties of our Merkle tree construction can be found in [5,
Sec. 2.6].

Formally, the index-hiding Merkle tree technique consists of three algorithms
(MerkleTree, getMerklePath, ReconstructRoot) with access to a common collision-
resistant hash function HColl : {0, 1}⋆ → {0, 1}2λ (with λ being the security
parameter):

– MerkleTree(A)→ (root, tree): On input a list of 2k elementsA = (a1, · · · , a2k),
with k ∈ N, it constructs a binary tree of height k with {li = HColl(ai)}i∈[2k]

as its leaves, and where every internal node h, with children hleft and hright,
equals the hash of a concatenation of its two children. While it is standard
to consider the concatenation hleft||hright, for index-hiding Merkle trees we
consider a variation which consists in ordering the two children according
to the lexicographical order (or any other total order on binary strings). We
denote by (hleft, hright)lex this concatenation. The algorithm then outputs the
root root of the Merkle tree, as well as a description of the entire tree tree.

– getMerklePath(tree, i)→ path: On input the description of a Merkle tree tree
and an index i ∈ [2k], it outputs the list path, which contains the sibling of
li (i.e. a node, different from li, that has the same parent as li), as well as
the sibling of any ancestor of li, ordered by decreasing height.

– ReconstructRoot(a, path) → root: On input an element a in the list of ele-
ments A = (a1, · · · , a2k) and path = (n1, · · · , nk−1), it outputs a reconstruc-
ted root root′ = hk, which is calculated by putting h0 = HColl(a) and defining
hi for i ∈ [k] recursively as hi = HColl((hi−1, ni)lex).

2.6 Seed tree

We formalize a primitive called seed tree, whose purpose is to first generate a
number of pseudorandom values and later disclose an arbitrary subset of them,
without revealing information on the remaining values. A seed tree is a complete
binary tree3 of λ-bit seed values such that the left (resp. right) child of a seed
seedh is the left (resp. right) half of Expand(seed‖h), where Expand is a pseu-
dorandom number generator (PRG). The unique identifier h of the parent seed
is appended to separate the input domains of the different calls to the PRG. A
sender can efficiently reveal the seed values of a subset of the set of leaves by
revealing the appropriate set of internal seeds in the tree. We detail the formal
construction of a seed tree below, where Expand : {0, 1}λ+⌈log

2
(M−1)⌉ → {0, 1}2λ

is a PRG for any λ,M ∈ N, instantiated by a random oracle O. Then, a seed
tree consists of the following four oracle-calling algorithms:

– SeedTreeO(seedroot,M) → {leafi}i∈[M ] : On input a root seed seedroot ∈
{0, 1}λ and an integer M ∈ N, it constructs a complete binary tree with M

3 A complete binary tree is a binary tree in which every level, except possibly the last,
is completely filled, and all nodes are as far left as possible.
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leaves by recursively expanding each seed to obtain its children seeds. Calls
are of the form O(Expand‖seed‖h), where h ∈ [M − 1] is a unique identifier
for the position of seed in the binary tree.

– ReleaseSeedsO(seedroot, c) → seedsinternal : On input a root seed seedroot ∈
{0, 1}λ, and a challenge c ∈ {0, 1}M , it outputs the list of seeds seedsinternal
that covers all the leaves with index i such that ci = 1. Here, we say that
a set of nodes F covers a set of leaves S if the union of the leaves of the
subtrees rooted at each node v ∈ F is exactly the set S.

– RecoverLeavesO(seedsinternal, c)→ {leafi}i s.t. ci=1 : On input a set seedsinternal
and a challenge c ∈ {0, 1}M , it computes and outputs all the leaves of the
subtrees rooted at the seeds in seedsinternal.

– SimulateSeedsO(c) → seedsinternal : On input a challenge c ∈ {0, 1}M , it
identifies the set of nodes covering the leaves with index i such that ci = 1.
It then randomly samples a seed from {0, 1}λ for each of these nodes, and
finally outputs the set of these seeds as seedsinternal.

By construction, the leaves {leafi}i s.t. ci=1 output by SeedTree(seedroot,M) are
the same as those output by RecoverLeaves(ReleaseSeeds(seedroot, c), c) for any
c ∈ {0, 1}M . The last algorithm SimulateSeeds can be used to argue that the seeds
associated with all the leaves with index i such that ci = 0 are indistinguishable
from uniformly random values for a recipient that is only given seedsinternal and c.
For a formal proof we refer to [5, Lemma 2.11].

3 From group actions to ring signatures

In this section, our main result consists in showing an efficient OR sigma protocol
for group actions. Unlike generic OR sigma protocols, whose proof size grows
linearly in N , the proof size of our construction will only grow logarithmically
in N . Moreover, the multiplicative overhead in logN is much smaller (i.e., only
the size of a single hash) compared to previous works. To obtain ring signatures,
we apply the Fiat-Shamir transform (with aborts) to our OR sigma protocol.

3.1 Admissible group actions

Definition 8 (Admissible group action). Let G be an additive group, S1, S2

two symmetric subsets of G, X a finite set, δ in [0, 1] and DX a distribution over
a set of group actions ⋆ : G×X → X . We say that AdmGA = (G,X , S1, S2, DX )
is a δ-admissible group action with respect to X0 ∈ X if the following holds:

1. One can efficiently compute g ⋆X for all g ∈ S1 ∪S2 and all X ∈ X , sample
uniformly from S1, S2 and DX , and represent elements of G and X uniquely.

2. The intersection of the sets S2 + g, for g ∈ S1, is sufficiently large. More
formally, let S3 =

⋂
g∈S1

S2 + g, then

|S3| = δ |S2| .

11



Furthermore, it is efficient to check whether an element g ∈ G belongs to S3

and to compute g ⋆ X for all g ∈ S3, X ∈ X .
3. It is difficult to output g′ ∈ S2+S3 such that g′ ⋆X0 = X with non-negligible

probability, given X = g ⋆ X0 for some g sampled uniformly from S1. That
is, for any efficient adversary A we have

Pr



g′ ∈ S2 + S3,
g′ ⋆ X0 = X

∣∣∣∣∣∣∣∣

⋆← DX

g ← S1

X ← g ⋆ X0

g′ ← A(⋆,X)


 ≤ negl(λ).

Hereafter, when the context is clear, we omit the description of the group action ⋆
provided to the adversary and implicitly assume the probabilities are taken over
the random choice of ⋆.

3.2 From an admissible group action to base OR sigma protocol
Π

RS-base

Σ
.

Before presenting the main OR sigma protocol used for our ring signature, we
present an intermediate base OR sigma protocol with a binary challenge space.
Looking ahead, our main OR sigma protocol will run the base OR sigma pro-
tocol several times to amplify the soundness.

Let AdmGA = (G,X , S1, S2, DX ) be an admissible group action with respect
to X0 ∈ X , and suppose that X1 = s1 ⋆ X0, · · · , XN = sN ⋆ X0 are N pub-
lic keys, where the corresponding secret keys s1, · · · , sN are drawn uniformly
from S1. In this section, we give an efficient binary-challenge OR sigma protocol
ΠRS-base

Σ = (P ′ = (P ′
1, P

′
2), V

′ = (V ′
1 , V

′
2)) proving knowledge of (sI , I) ∈ S1×[N ],

such that sI ⋆ X0 = XI .
4

We sketch the description of our base OR sigma protocol ΠRS-base
Σ . First, the

prover samples an element r uniformly from S2, and computes Ri = r ⋆ Xi

for all i ∈ [N ]. The prover further samples random bit strings {bitsi}i∈[N ]

uniformly from {0, 1}λ, and commits to Ri with the random oracle as Ci ←
O(Com‖Ri‖bitsi). Then, the prover builds a index-hiding Merkle tree with C1, · · · ,CN

as its leaves.5 Note that this procedure can be done deterministically, by gener-
ating randomness by a pseudorandom number generator (PRG) Expand from a
short seed seed. The prover sends the root root of the Merkle tree to the verifier,
who responds with a uniformly random bit c.

4 To be accurate, we prove knowledge of sI ∈ S2+S3, as we consider “relaxed” special
soundness.

5 For simplicity, we will assume that N is a power of 2. If this is not the case we add
additional dummy commitments to make the number of leaves a power of 2.
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If the challenge bit c is 0, then the prover computes z = r + sI . If z 6∈ S3, then
the prover aborts (this happens with probability 1 − δ). Otherwise the prover
sends z, the path in the Merkle tree that connects CI to the root of the tree
and the opening bits bitsI for the commitment CI . The verifier then computes
R̃ = z ⋆ X0 and C̃ := Com(R̃, bitsI), and uses the path to reconstruct the root
r̃oot of the index-hiding Merkle tree. They finally check if z ∈ S3 and r̃oot = root.

If the challenge bit c is 1 then the prover reveals r to the verifier, as well as
the opening bits bitsi for all i ∈ [N ]. This allows the verifier to recompute the
index-hiding Merkle tree and to check if its root matches the value of root that
they received earlier. Note that in this case, it suffices for the prover to just send
seed, since r and the bitsi are derived pseudorandomly from this seed.

A toy protocol is displayed in Figure 2 and the full protocol is detailed in Figure 3.
In the full protocol, we assume the PRG Expand and the commitment scheme
to be instantiated by a random oracle O. We further assume w.l.o.g. that the
output length of the random oracle is adjusted appropriately.

c = 0 c = 1

X0

R1

R2

R3

R4

X1

X2

X3

X4

C1

C2R2

C3

C4

(r + sI)⋆
Com

r⋆

r⋆

r⋆

r⋆

Com

Merkle tree

root

Figure 2. The base sigma protocol ΠRS-base
Σ to prove knowledge of (sI , I) such that

sI ⋆ X0 = XI (In the drawing N = 4 and I = 2). If the challenge bit c is 0, then the
left side of the picture is revealed, otherwise the right side of the picture is revealed.

3.3 Security proof for the base OR sigma protocol ΠRS-base

Σ

The following Theorems 9 and 10 provide the security of ΠRS-base
Σ . For their

proofs we refer to [5, Sec. 3.3]

Theorem 9. Let O be a random oracle. Define the relation

R = {((X1, · · · , XN ), (s, I)) | s ∈ S1, Xi ∈ X , I ∈ [N ], XI = s ⋆ X0}
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round 1: P ′O
1 ((X1, · · · , XN ), (sI , I))

1: seed← {0, 1}λ ⊲ The only randomness used by the Prover
2: (r, bits1, · · · , bitsN )← O(Expand||seed) ⊲ Sample r ∈ S2 and bitsi ∈ {0, 1}

λ

3: for i from 1 to N do

4: Ri ← r ⋆ Xi

5: Ci ← O(Com||Ri||bitsi) ⊲ Create commitment Ci ∈ {0, 1}
2λ

6: (root, tree)← MerkleTree(C1, · · · ,CN ) ⊲ Index-hiding Merkle tree
7: Prover sends com← root to Verifier.

round 2: V ′
1 (com)

1: c← {0, 1}
2: Verifier sends chall← c to Prover.

round 3: P ′
2((sI , I), chall)

1: c← chall

2: if c = 0 then

3: z ← r + sI
4: if z 6∈ S3 then

5: P aborts the protocol.

6: path← getMerklePath(tree, I)
7: rsp← (z, path, bitsI)
8: else

9: rsp← seed

10: Prover sends rsp to Verifier

Verification: V ′O
2 (com, chall, rsp)

1: (root, c)← (com, chall)
2: if c = 0 then

3: (z, path, bits)← rsp

4: R̃← z ⋆ X0

5: C̃← O(Com‖R̃‖bits)

6: r̃oot← ReconstructRoot(C̃, path)
7: Verifier outputs accept if z ∈ S3 and r̃oot = root, and otherwise outputs

reject

8: else

9: Verifier repeats the computation of round 1 with seed← rsp

10: Verifier outputs accept if the computation results in root, and otherwise
outputs reject

Figure 3. Construction of the base OR sigma protocol ΠRS-base
Σ = (P ′ = (P ′

1, P
′
2), V

′ =
(V ′

1 , V
′
2 )), given an admissible group action AdmGA = (G,X , S1, S2, DX ) with respect

to X0 ∈ X together with a random group action ⋆ ← DX . Above, the PRG Expand

and the commitment scheme Com are modeled by a random oracle O.
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and the relaxed relation

R̃ =




((X1, · · · , XN ), w)

∣∣∣∣∣∣∣∣

Xi ∈ X and
w = (s, I) : s ∈ S2 + S3, I ∈ [N ], XI = s ⋆ X0 or
w = (x, x′) : x 6= x′,HColl(x) = HColl(x

′) or
O(Com||x) = O(Com||x′)





.

Then the OR sigma protocol ΠRS-base
Σ of Figure 3 has correctness with probability

of aborting (1− δ)/2 and relaxed special soundness for the relations (R, R̃).6

Theorem 10. The OR sigma protocol ΠRS-base
Σ of Figure 3 is non-abort honest-

verifier zero-knowledge. More concretely, there exists a simulator Sim such that
for any (X,W) ∈ R, chall ∈ ChSet and any (computationally unbounded) ad-
versary A that makes Q queries to the random oracle O, we have

∣∣∣Pr[AO(P̃O(X,W, chall))→ 1]− Pr[AO(SimO(X, chall))→ 1]
∣∣∣ ≤ 2Q

2λ
.

Here P̃ denotes a non-aborting prover P ′ = (P ′
1, P

′
2) run on (X,W) with challenge

fixed as chall. In other words, Sim simulates to A the view of an honest non-
aborting execution of the sigma protocol without using the witness.

3.4 From base OR sigma protocol Π
RS-base

Σ
to main OR sigma

protocol ΠRS

Σ

To have an OR sigma protocol where a prover cannot cheat with more than
negligible probability, we have to enlarge the challenge space. In this section, we
show how to obtain our main OR sigma protocol ΠRS

Σ , with a large challenge
space, from our base OR sigma protocol ΠRS-base

Σ with a binary challenge space.
Below, we also incorporate three optimization techniques that lead to a much
more efficient protocol compared to simply running ΠRS-base

Σ in parallel λ-times.

Unbalanced challenge space CM,K . Notice that in ΠRS-base
Σ , responding to a

challenge with challenge bit c = 0 is more costly than responding to the challenge
bit c = 1 (which requires communicating only a single seed value). Therefore,
rather than λ independent executions of ΠRS-base

Σ , it is more convenient to choose
positive integers M,K such that

(
M
K

)
≥ 2λ and do M > λ executions of the

protocol, of which exactly K are chosen to have challenge bit 0. For example,
when targeting 128 bits of security, we can do M = 250 executions, out of which
K = 30 correspond to the challenge bit c = 0 (so M − K = 220 correspond
to c = 1). Assuming the cost of responding to the challenge c = 1 is negligible,
this reduces the response size by roughly a factor 2. Moreover, this optimization
makes the response size constant and reduces the probability that the prover
needs to abort and restart (which allows for better parameter choices). Below,
we denote CM,K as the set of strings in {0, 1}M such that exactly K-bits are 0.

6 We note that the notion of collision in O may seem non-standard at this point since
the truth table of O is typically filled in one at a time when queried so it is not
clear who is querying the O right now. However, we observe that this non-standard
notion suffices for our (linkable) ring signature application w.l.o.g.
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Using seed tree. Using the unbalanced challenge space, we now run our base
OR sigma protocolΠRS-base

Σ in parallelM times, and in (M−K) ≈M of the runs,
we simply output the random seed sampled by ΠRS-base

Σ . Here, we use the seed
tree (introduced in Section 2.6) to optimize this step. In particular, instead of
choosing independent seeds for each of the M instances of ΠRS-base

Σ , we generate
the M seeds using a seed tree. Furthermore, instead of responding with (M−K)
seeds, the prover outputs seedsinternal ← ReleaseSeeds(seedroot, c), where c is the
challenge sampled from CM,K . The verifier can then use seedsinternal along with
c to recover the (M − K) seeds by running RecoverLeaves. This reduces the
response length.

Adding salt. As a final tweak to the standard parallel repetition of sigma
protocols, the prover P1 of the main OR sigma protocol ΠRS

Σ picks a 2λ bit
salt and runs the i-th (i ∈ [M ]) instance of ΠRS-base

Σ with the random oracle
Oi(·) := O(salt‖i‖·). The prover also salts the seed tree construction. This tweak
allows us to prove a tighter security proof for the zero-knowledge property. In
practice, this modification does not affect the efficiency of the protocol by much,
but it avoids multi-target attacks such as those by Dinur and Nadler [12].

The description of our main OR sigma protocol which incorporates all the above
optimizations is depicted in Figure 4.

Remark 11 (Commitment recoverable). Notice that the underlying base OR
sigma protocol ΠRS-base

Σ is commitment recoverable. That is, given the statement
X, the challenge chall and the response rsp, there is an efficient deterministic al-
gorithm RecoverCom(X, chall, rsp) that recovers the unique commitment com that
leads the verifier to accept. This property allows the signer of a Fiat-Shamir type
signature to include the challenge rather than the commitment in a signature,
which shortens the signature size. Our main sigma protocol is “almost” commit-
ment recoverable, since one can recover the entire commitment except for the
random salt. We use this property in Section 3.6.

3.5 Security proof for the main OR sigma protocol ΠRS

Σ

The following Theorems 12 and 13 provide the security of ΠRS
Σ . Their proofs can

be found in [5, Sec. 3.5]

Theorem 12. Define the relation R and the relaxed relation R̃ as in Theorem 9.
Then the OR sigma protocol ΠRS

Σ has correctness with probability of aborting
1− δK , high min-entropy and relaxed special soundness for the relations (R, R̃).

Theorem 13. The OR sigma protocol ΠRS
Σ is non-abort special zero-knowledge.

More concretely, there exists a simulator Sim such that, for any (X,W) ∈ R,
chall ∈ ChSet and any (computationally unbounded) adversary A that makes Q
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round 1: PO
1 ((X1, · · · , XN ), (sI , I))

1: seedroot ← {0, 1}
λ

2: salt← {0, 1}2λ

3: O′(·) := O(salt||·)

4: (seed1, · · · , seedM )← SeedTreeO
′

(seedroot,M)
5: for i from 1 to M do

6: Oi(·) := O(salt||i||·)
7: comi ← P

′Oi

1 ((X1, · · · , XN ), (sI , I); seedi) ⊲ Run P ′
1 on randomness seedi

8: Prover sends com← (salt, com1, · · · , comM ) to Verifier.

round 2: V1(com)

1: c← CM,K

2: Verifier sends chall← c to Prover.

round 3: PO
2 ((sI , I), chall)

1: c = (c1, · · · , cM )← chall

2: for i s.t. ci = 0 do

3: rspi ← P ′
2((sI , I), ci; seedi) ⊲ Run P ′

2 on randomness seedi

4: O′(·) := O(salt||·)

5: seedsinternal ← ReleaseSeedsO
′

(seedroot, c)
6: Prover sends rsp← (seedsinternal, {rspi}i s.t. ci=0) to Verifier

Verification: V O
2 (com, chall, rsp)

1: ((salt, com1, · · · , comM ), c = (c1, · · · , cM ))← (com, chall)
2: (seedsinternal, {rspi}i s.t. ci=0)← rsp

3: O′(·) := O(salt||·)

4: {respi}i s.t. ci=1 ← RecoverLeavesO
′

(seedsinternal, c)
5: for i from 1 to M do

6: Oi(·) := O(salt||i||·)
7: Verifier outputs reject if V ′Oi

2 (comi, ci, rspi) outputs reject

8: Verifier outputs accept

Figure 4. Construction of the main OR sigma protocol ΠRS
Σ = (P = (P1, P2), V =

(V1, V2)) based on the base OR sigma protocol ΠRS-base
Σ = (P ′ = (P ′

1, P
′
2), V

′ =
(V ′

1 , V
′
2 )). The challenge space is defined as CM,K := {c ∈ {0, 1}M | ‖c‖1 = M −K}.

The seed tree and ΠRS-base
Σ have access to the random oracle O.
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queries of the form salt||· to the random oracle O - where salt is the salt value

included in the transcript returned by P̃ or Sim, we have

∣∣∣Pr[AO(P̃O(X,W, chall))→ 1]− Pr[AO(SimO(X, chall))→ 1]
∣∣∣ ≤ 3Q

2λ
.

Remark 14. We notice that, for the application of (linkable) ring signatures, it
suffices to be able to simulate non-aborting transcripts, because an aborting
transcript will never be released by the signer.

3.6 From main OR sigma protocol ΠRS

Σ
to ring signature

We apply the Fiat-Shamir transform [17] to our main OR sigma protocol ΠRS
Σ

to obtain a ring signature. The resulting scheme is illustrated in Figure 5, where
we also exploit the almost commitment recoverability of ΠRS

Σ (see Remark 11).
There, HFS is a hash function, with range CM,K , modeled as a random or-
acle. The correctness, anonymity, and unforgeability of the ring signature are a
direct consequence of the correctness, high min-entropy, non-abort special zero-
knowledge, and (relaxed) special soundness property of the underlying OR sigma
protocol ΠRS

Σ . Since we believe the proofs are folklore (see for example [18, The-
orem 4] for some details), we do not provide them (a brief sketch of them can
be found in [5, Sec. A.1]).

RS.KeyGen(pp)

1: s← S1

2: X ← s ⋆ X0

3: return (vk = X, sk = s)

RS.Sign(sk,M,R)

1: (vk1, · · · vkN )← R ⊲ Let vkI be associated
to sk = sI .

2: com = (salt, (comi)i∈[M ])← PO
1 (R, (sk, I))

3: chall← HFS(M,R, com)
4: rsp← PO

2 ((sk, I), chall)
5: return σ = (salt, chall, rsp)

RS.Verify(R,M, σ)

1: (vk1, · · · vkN )← R

2: (salt, chall, rsp)← σ

3: com← RecoverCom(R, salt, chall, rsp)
4: if accept = V O

2 (com, chall, rsp) ∧ chall = HFS(M,R, com) then

5: return ⊤
6: else

7: return ⊥

Figure 5. Ring signature ΠRS from our main OR sigma protocol ΠRS
Σ with almost

commitment revocability and access to a random oracle O. The setup algorithm
RS.Setup(1λ) outputs a description of an admissible group action (G,X , S1, S2, DX )
with respect to a fixed X0 ∈ X , together with a random group action ⋆← DX and as
the public parameters pp.
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4 From a pair of group actions to linkable ring signatures.

In this section we construct a linkable ring signature from a pair of group ac-
tions, ⋆ : G × X → X and • : G × T → T , that satisfy certain properties. The
proposed linkable ring signature is similar to the ring signature in Section 3. In
particular, a secret key is a group element s ∈ S1 ⊂ G and the corresponding
public key is s ⋆ X0 ∈ X for a fixed public element X0. To achieve linkability,
in this section the signature contains also a tag T ∈ T , which is obtained as
T = s • T0 for a fixed public element T0. The signature consists of the tag T ,
as well as a proof of knowledge of s such that simultaneously T = s • T0 and
s ⋆ X0 is a member of the ring of public keys. To check if two signatures are
produced by the same party we simply check whether the tags included in the
two signatures are “close”. Looking ahead, the notion of closeness depends on
the underlying algebraic structure used to instantiate the pair of group actions;
in the isogeny case, this amounts to checking whether the tags are equal while
in the lattice case, this amounts to checking whether the tags are close for the
infinity norm.

We require a number of properties from the group actions to make the signature
scheme secure. Informally, we need one property per security property of linkable
ring signatures (see [5, Sec. 2.3]) :

– Linkability. It is hard to find secret keys s and s′ such that s′ ⋆X0 = s⋆X0

but s′ • T0 6≈ s • T0. Otherwise, an adversary can use s and s′ to sign two
messages under the same public key that do not link together.

– Linkable anonymity. For a random secret key s, the distributions (s⋆X0, s•
T0) and (X,T )← X×T are indistinguishable. Otherwise, an adversary could
link the tag to one of the public keys and break anonymity.

– Non-Frameability. Given X = s ⋆ X0 and T = s • T0 it is hard to find s′

such that s′ • T0 is close to T . Otherwise, an adversary can register s′ ⋆ X0

as a public key and frame an honest party with public key s ⋆X0 for signing
a message.

4.1 Admissible pairs of group actions

Definition 15 (Admissible pair of group actions). Let G be an additive
group, S1, S2 two symmetric subsets of G, X and T two finite sets, δ in [0, 1], and
DX and DT distributions over a set of group actions ⋆ : G×X → X and • : G×
T → T , respectively. Finally, let LinkGA : T ×T → 1/0 be an associated efficiently
computable function. We say that AdmPGA = (G,X , T , S1, S2, DX , DT , LinkGA)
is a δ-admissible pair of group actions with respect to (X0, T0) ∈ X × T if the
following holds:

1. One can efficiently compute g ⋆ X, g • T for any g ∈ S1 ∪ S2 and any
(X,T ) ∈ X × T , sample uniformly from S1, S2, DX and DT , and represent
elements of G,X and T uniquely.
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2. For any T ∈ T , LinkGA(T, T ) = 1.
3. The intersection of the sets S2+g, for g ∈ S1, is large. Let S3 =

⋂
g∈S1

S2+g,
then

|S3| = δ |S2| .
Furthermore, it is efficient to check whether an element g ∈ G belongs to S3,
and to compute g ⋆ X, g • T for all g ∈ S3, X ∈ X , T ∈ T .

4. For g sampled uniformly from S1, (g ⋆ X0, g • T0) is indistinguishable from
(X,T ) sampled uniformly from X × T :

{(⋆, •, g ⋆ X0, g • T0) | (⋆, •, g)← DX ×DT × S1}
≈c {(⋆, •, X, T ) | (⋆, •, X, T )← DX ×DT ×X × T }.

5. It is difficult to output g, g′ ∈ S2 + S3 such that g ⋆ X0 = g′ ⋆ X0 and
LinkGA(g

′•T0, g•T0) = 0. That is, for any efficient adversary A, the following
is negligible:

Pr




g, g′ ∈ S2 + S3

g ⋆ X0 = g′ ⋆ X0

LinkGA(g • T0, g
′ • T0) = 0

∣∣∣∣∣∣
(⋆, •)← DX ×DT

(g, g′)← A(⋆, •)


 ≤ negl(λ)

6. It is difficult to output g′ ∈ S2+S3 such that LinkGA(g
′ •T0, T ) = 1 with non-

negligible probability, given X = g ⋆ X0 and T = g • T0 for some g sampled
uniformly from S1. That is, for any efficient adversary A we have

Pr




g′ ∈ S2 + S3

LinkGA(g
′ • T0, T ) = 1

∣∣∣∣∣∣∣∣

(⋆, •, g)← DX ×DT × S1

X ← g ⋆ X0

T ← g • T0

g′ ← A(⋆, •, X, T )


 ≤ negl(λ)

Hereafter, when the context is clear, we omit the description of the group actions
⋆ and • provided to the adversary and implicitly assume the probabilities are
taken over the random choice of the group actions.

4.2 From an admissible pair of group actions to base OR sigma
protocol with tag

As in Section 3, we start by introducing an intermediate base OR sigma protocol
with tag that has a binary challenge space. The main OR sigma protocol with
tag used for our linkable ring signature will run parallel executions of the base
OR sigma protocol with tag to amplify the soundness error.

Let AdmPGA = (G,X , T , S1, S2, DX , DT ) be a pair of admissible group actions
with respect to (X0, T0) ∈ X × T , and suppose that X1 = s1 ⋆ X0, · · · , XN =
sN ⋆ X0 are N public keys and T = sI • T0 a tag associated to the I-th user,
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where the corresponding secret keys s1, · · · , sN are drawn uniformly from S1.
In this section, we introduce an efficient binary-challenge OR sigma protocol
with tag ΠLRS-base

Σ = (P ′ = (P ′
1, P

′
2), V

′ = (V ′
1 , V

′
2)) proving knowledge of

(sI , I) ∈ S1 × [N ], such that sI ⋆ X0 = XI and sI • T0 = T .7

We outline the base OR sigma protocol with tag ΠLRS-base
Σ . First, the prover

samples an element r uniformly from S2, and computes Ri = r ⋆ Xi for all
i ∈ [N ] and T ′ = r • T . The prover further samples random bit strings bitsi
uniformly from {0, 1}λ for i ∈ [N ] and commits Ri as O(Com‖Ri‖bitsi) (or,
equivalently, Com(Ri, bitsi)). Then, the prover builds a index-hiding Merkle tree
with C1, . . . ,CN as its leaves and hashes the root root of the Merkle tree ob-
taining T ′ as h = HColl(T

′, root). Here, the only reason for hashing (T ′, root) is
to lower the communication complexity and it has no impact on the security.
Moreover, we note that this whole procedure can be done deterministically, with
randomness generated from a seed seed. Finally, the prover sends the hash value
h to the verifier, who responds with a uniformly random bit c.

If the challenge bit c is 0, then the prover computes z = r+sI . If z 6∈ S3, then the
prover aborts (this happens with probability 1− δ). Otherwise, the prover sends
z, the opening bits bitsI for the commitment CI , and the path in the index-hiding
Merkle tree that connects CI to the root of the tree. The verifier then computes
R̃ = z ⋆ X0, T̃ = z • T0 and C̃ = Com(R̃, bitsI), and uses the path to reconstruct
the root r̃oot of the Merkle tree. It finally accepts if and only if h is equal to
HColl(T̃ , r̃oot). If the challenge bit c is 1 then the prover reveals r and the bitsi,
for all i ∈ [N ], to the verifier. This allows the verifier to recompute the Merkle
tree and T ′ = r•T , and to check if the hash of T ′ and the obtained root matches
the value h received earlier. In this case, it suffices for the prover to just send
seed, since r and bitsi are derived pseudorandomly from it. In the full protocol,
displayed in Figure 6, we assume the PRG Expand and the commitment scheme
Com to be instantiated by a random oracle O. We further assume w.l.o.g. that
the output length of the random oracle is adjusted appropriately.

The following Theorems 16 and 17 provide the security of ΠLRS-base
Σ . Their proofs

can be found in [5, Sec. A.2].

Theorem 16. Let O be a random oracle. Define the relation

R = {((X1, · · · , XN , T ), (s, I)) | s ∈ S1, Xi ∈ X , T ∈ T , I ∈ [N ], XI = s ⋆ X0, T = s • T0}
and the relaxed relation

R̃ =




((X1, · · · , XN , T ), w)

∣∣∣∣∣∣∣∣∣∣

Xi ∈ X , T ∈ T and w such that :
w = (s, I) : s ∈ S2 + S3, I ∈ [N ], XI = s ⋆ X0, T = s • T0

or
w = (x, x′) : x 6= x′,HColl(x) = HColl(x

′) or
O(Com||x) = O(Com||x′)





.

7 To be accurate, we prove knowledge of sI ∈ S2+S3, as we consider “relaxed” special
soundness.
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round 1: P ′O
1 ((X1, · · · , XN , T ), (sI , I))

1: seed← {0, 1}λ ⊲ The only randomness used by the Prover
2: (r, bits1, · · · , bitsN )← O(Expand‖seed) ⊲ Sample r ∈ S2 and bitsi ∈ {0, 1}

λ.
3: T ′ ← r • T
4: for i from 1 to N do

5: Ri ← r ⋆ Xi

6: Ci ← O(Com‖Ri‖bitsi) ⊲ Create commitment Ci ∈ {0, 1}
2λ

7: (root, tree)← MerkleTree(C1, · · · ,CN ) ⊲ Index-hiding Merkle tree
8: h← HColl(T

′, root)
9: Prover sends com← h to Verifier.

round 2: V ′
1 (com)

1: c← {0, 1}
2: Verifier sends chall← c to Prover.

round 3: P ′
2((sI , I), chall)

1: c← chall

2: if c = 0 then

3: z ← r + sI
4: if z 6∈ S3 then

5: P aborts the protocol.

6: path← getMerklePath(I, tree)
7: rsp← (z, path, bitsI)
8: else

9: rsp← seed

10: Prover sends rsp to Verifier

Verification: V ′O
2 (com, chall, rsp)

1: (h, c)← (com, chall)
2: if c = 0 then

3: (z, path, bits)← rsp

4: R̃← z ⋆ X0

5: C̃ = O(Com‖R̃‖bits)

6: T̃ ← z • T0

7: r̃oot← ReconstructRoot(C̃, path)

8: Verifier outputs accept if z ∈ S3 and HColl(T̃ , r̃oot) = h, and otherwise
outputs reject.

9: else

10: Verifier repeats the computation of round 1 with rsp as seed.
11: Verifier outputs accept iff the computation results in h, and otherwise out-

puts reject.

Figure 6. Construction of the base OR sigma protocol with tag ΠLRS-base
Σ = (P ′ =

(P ′
1, P

′
2), V

′ = (V ′
1 , V

′
2 )), given an admissible pair of group actions AdmPGA =

(G,X , T , S1, S2, DX , DT , LinkGA) with respect to (X0, T0) ∈ X ×T , together with ran-
dom group actions (⋆, •) ← DX ×DT . Above, the PRG Expand and the commitment
scheme Com are modeled by a random oracle O.
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Then the base OR sigma protocol with tag ΠLRS-base
Σ of Figure 6 has correct-

ness with probability of aborting (1− δ)/2 and relaxed special soundness for the
relations (R, R̃).

Theorem 17. The OR sigma protocol with tag ΠLRS-base
Σ of Figure 6 is non-

abort honest-verifier zero-knowledge. More concretely, there exists a simulator
Sim such that, for any (X,W) ∈ R, chall ∈ ChSet and any (computationally
unbounded) adversary A that makes Q queries to the random oracle O, we have

∣∣∣Pr[AO(P̃O(X,W, chall))→ 1]− Pr[AO(SimO(X, chall))→ 1]
∣∣∣ ≤ 2Q

2λ
.

4.3 From base OR sigma protocol with tag Π
LRS-base

Σ
to main OR

sigma protocol with tag Π
LRS

Σ

As in Section 3.4, we enlarge the challenge space of our base OR sigma protocol
with tag ΠLRS-base

Σ to obtain our main OR sigma protocol with tag ΠLRS
Σ . We

also include the same optimization techniques presented in Section 3.4. Since
the description of our main OR sigma protocol with tag is almost identical to
the one depicted in Figure 4, we omit the details. The only notable difference
between ΠRS

Σ from Figure 4 and ΠLRS
Σ is that in the latter, the statement addi-

tionally includes a tag T and runs ΠLRS-base
Σ as a subroutine instead of ΠRS-base

Σ .
Otherwise, the way we transform our base to our main OR sigma protocol is
identical. We also note that it is easy to check that our ΠLRS-base

Σ enjoys almost
commitment revocability (see Remark 11). We use this fact when constructing
a linkable ring signature in Section 4.4.

The following Theorems 18 and 19 provide the security of ΠLRS
Σ . We refer to [5,

Sec. A.3] for their proofs.

Theorem 18. Define the relation R and the relaxed relation R̃ as in The-
orem 16. Then the OR sigma protocol with tag ΠLRS

Σ has correctness with prob-
ability of aborting 1 − δK , high min-entropy and relaxed special soundness for
the relations (R, R̃).

Theorem 19. The OR sigma protocol with tag ΠLRS
Σ is non-abort special zero-

knowledge. More concretely, there exists a simulator Sim such that, for any
(X,W) ∈ R, chall ∈ ChSet and any (computationally unbounded) adversary A
that makes Q queries of the form salt||· to the random oracle O - where salt is

the salt value included in the transcript returned by P̃ or Sim, we have:
∣∣∣Pr[AO(P̃O(X,W, chall))→ 1]− Pr[AO(SimO(X, chall))→ 1]

∣∣∣ ≤ 3Q

2λ
.

4.4 From main OR sigma protocol with tag Π
LRS

Σ
to linkable ring

signatures

We apply the Fiat-Shamir transform [17] to our main OR sigma protocol with tag
ΠLRS

Σ to obtain a linkable ring signature ΠLRS. This is illustrated in Figure 7,
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where we also rely on the almost commitment recoverable property of ΠLRS
Σ

(see Remark 11). Here, HFS is a hash function, with range CM,K , modeled as a
random oracle. The correctness and security ofΠLRS are provided in the following
theorem, whose proof can be found in [5, Sec. A.4] .

LRS.KeyGen(pp)

1: s← S1

2: X := s ⋆ X0

3: return (vk = X, sk = s)

LRS.Link(σ0, σ1)

1: (saltb, Tb, challb, rspb) ← σb for b ∈
{0, 1}

2: if 1← LinkGA(T0, T1) then

3: return ⊤
4: else

5: return ⊥

LRS.Sign(sk,M,R)

1: (vk1, · · · vkN )← R ⊲ Let vkI be
associated to sk = sI .

2: T := sI • T0

3: com = (salt, (comi)i∈[M ]) ←
PO
1 ((R, T ), (sk, I))

4: chall← HFS(M, (R, T ), com)
5: rsp← PO

2 ((sk, I), chall)
6: return σ = (salt, T, chall, rsp)

LRS.Verify(R,M, σ)

1: (vk1, · · · vkN )← R

2: (salt, T, chall, rsp)← σ

3: com← RecoverCom((R, T ), salt, chall, rsp)
4: if accept = V O

2 (com, chall, rsp) ∧ chall =
HFS(M, (R, T ), com) then

5: return ⊤
6: else

7: return ⊥

Figure 7. Linkable ring signature ΠLRS from our main OR sigma protocol with tag
ΠLRS

Σ , with almost commitment revocability and access to a random oracle O. The
setup algorithm LRS.Setup(1λ) outputs a description of a pair of admissible group
actions (G,X , S1, S2, DX , DT ) with respect to a fixed (X0, T0) ∈ X ×T , together with
random group actions (⋆, •)← DX ×DT as the public parameters pp.

Theorem 20. Assuming that AdmPGA is an admissible pair of group actions
(Definition 15) and HFS is a collision-resistant hash function, then the linkable
ring signature scheme ΠLRS in Figure 7 is correct, linkable, linkable anonymous
and non-frameable in the random oracle model.

5 Post-quantum admissible (pair of) group actions from
isogeny and lattice assumptions

For concrete instantiations of our generic framework for ring signatures (Section
3) and linkable ring signatures (Section 4), we consider three admissible (pairs
of) group actions, based on isogenies between elliptic curves and lattices.

5.1 Isogeny-based instantiations

The isogeny-based instantiations we propose exploit the CSIDH paradigm. For
the three sets of CSIDH parameters that have been proposed so far - CSIDH-
512, CSIDH-1024 and CSIDH-1792 ([8, 10]) - the structure of the corresponding
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ideal class group Cℓ(O) is only known for the first set [6]. We can instantiate
our RS and LRS with any CSIDH parameter set regardless of whether the class
group is known or not, but the resulting schemes are much more efficient in the
former case. We first discuss the case when the structure of Cℓ(O) is known.

Known class group For simplicity, we assume that the ideal class group Cℓ(O)
is cyclic with generator g of order cl. Then, the group Zcl acts freely and trans-
itively on Eℓℓp(O, π) via the group action ⋆ defined as a ⋆ X := ga ∗ X (see
Section 2.3). In practice, the action of each a ∈ Zcl can be computed efficiently
when p has a suitable form (in that case the approximate closest vector problem
can be solved efficiently in the relation lattice [6]). It can be verified (see [5,
Thm. 5.1] ) that this group action satisfies all the properties of an admissible
group action assuming the hardness of the GAIPp problem. In this case we have
S1 = S2 = S3 = G, so δ = 1 and the signing algorithm will never need to abort.
Moreover, if we define ⋆2 to be the group action of Zcl on Eℓℓp(O, π) defined by
a ⋆2 X := (2a) ⋆ X, then (⋆, ⋆2) satisfies all the properties of an admissible pair
of group actions, assuming the hardness of the GAIPp and sdCSIDHp problem
([5, Thm. 5.1] ).

Unknown class group. When the structure of the ideal class group O is not
known, computing the action [a] ∗ [E0] of an arbitrary [a] ∈ Cℓ(O) on some
[E0] ∈ Eℓℓp(O, π) has exponential complexity. However, the ideal class action ∗
can still be efficiently computed for a small set of class group elements [8]. In
particular, considering p of the form 4ℓ1ℓ2 · · · ℓk − 1, with ℓ1, . . . , ℓk small odd
primes, a special fractional ideal Iℓi can be associated to each prime ℓi. The ac-
tion of one of these ideals (and their inverses) can be computed very efficiently,
since it is determined by an isogeny whose kernel is the unique subgroup of
E0(Fp) of order ℓi. We can thus efficiently compute the action of elements in

Cℓ(O) of the form
∏k

i=1[Iℓi ]
ei when the integral exponents ei are chosen from

some small interval [−B,B].

We denote by ⋆ the group action of Zk on Eℓℓp(O, π) defined by

((e1, . . . , ek), X) 7→
k∏

i=1

[Iℓi ]
ei ∗X .

Then it can be verified that, for the sets S1 = [−B,B]k and S2 = [−B′, B′]k

(with B′ > B) the group action ⋆ satisfies all the properties of an admissible

group action with δ = ((2(B′ −B) + 1)/(2B′ + 1))
k
, assuming the hardness of

the GAIPp problem (see [5, Thm. 5.4]) . We note that, for a fixed value of B, the
bigger the value of B′, the bigger δ, and the smaller the aborting probability of
the ring signature scheme. However, a big B′ implies high computational costs
for the action of elements in S2 and S3. Consequently, in concrete instantiations
the value of B′ must be tuned to balance the two effects. Moreover, if we define
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⋆2 similarly as before, then (⋆, ⋆2) satisfies all the properties of an admissible pair
of group actions, assuming the hardness of the GAIPp and sdCSIDHp problem
([5, Thm. 5.4] ).

Remark 21. To avoid using the sdCSIDH hardness assumption, we can formu-
late an admissible pair of group actions differently. If, considering • = ⋆, we
can determine a uniformly random base point T0 for the tag space such that
the element g ∈ G satisfying T0 = g ⋆ X0 is unknown to any user, instead of
the sdCSIDH hardness assumption we then only require the standard CSIDH as-
sumption. The drawback is that we require a trusted setup to choose such a T0.
Alternatively, we can look at this as a linkable group signature scheme where
the group manager sets T0 = t ⋆ X0 and remembers t. The group manager can
deanonymize any signature because (−t) ⋆ T is the public key of the signer.

Remark 22. Recently, a variant of CSIDH, called CSURF, has been proposed
[7]. This work considers the maximal order OK and the corresponding set of
supersingular elliptic curves Eℓℓp(OK, π). The action of Cℓ(OK) on Eℓℓp(OK, π)
can be used in our framework instead of the CSIDH group action.

5.2 Lattice-based instantiation

We instantiate an admissible group action (AdmGA) and an admissible pair of
group actions (AdmPGA) based on lattices under the MSIS and MLWE assump-
tions. For the AdmGA, we consider (G,X ) to be (Rℓ

q×Rℓ
q, R

k
q ) and Sb := {(s, e) ∈

G | ‖s‖∞, ‖e‖∞ ≤ Bb} for b ∈ {1, 2}, where B1 < B2 < q are given positive
integers. Then, the group action ⋆A, uniquely defined by a matrix A ∈ Rk×ℓ

q , is

defined as (s, e) ⋆A w := (As+ e) +w, for any w in Rk
q .

We can similarly instantiate the AdmPGA, with the only difference that we
have to take care of the tag. To this end, we define G = Rℓ

q × Rℓ
q × Rℓ

q and
extend S1, S2 accordingly, in order to be subsets of G. Then, the group actions
⋆A, •B (where B ∈ Rk×ℓ

q ) are defined as (s, e, ẽ) ⋆A w := (As + e) + w and

(s, e, ẽ) ⋆B w := (Bs + ẽ) + w, for any w in Rk
q . Finally, for two tags v,v′,

we define LinkGA(v,v
′) = 1 if and only if ‖v − v′‖∞ ≤ 2 · (2B2 − B1). It is an

easy calculation checking that our instantiations satisfy the required properties
of an AdmGA and AdmPGA, assuming the MSIS and MLWE assumptions (with
appropriate parameters). For a formal treatment we refer to [5, Sec. 5.2].

Further optimization using Bai-Galbraith [2]. Although we can no longer
capture it by our generic construction from admissible (pair of) group actions,
we can apply the simple optimization technique of Bai-Galbraith [2], which uses
the specific algebraic structure of lattices, to our base OR sigma protocols in Fig-
ures 3 and 6. Effectively, this allows to lower the signature size of our lattice-based
(linkable) ring signature scheme with no additional cost. The main observation
is that for MLWE, proving knowledge of a short s ∈ Rℓ

q indirectly proves know-

ledge of a short e ∈ Rk
q since e is uniquely defined as v −As. We incorporate

26



this idea to our base OR sigma protocol by letting the prover only send a short
vector z in Rℓ

q rather than a short vector z in Rk
q × Rℓ

q (for ring signatures) or

z in Rk
q × Rℓ

q × Rℓ
q (for linkable ring signatures) as the response. Since k ≈ ℓ,

this shortens the response without any actual cost. We believe this optimization
is standard by now as it is used by most of the recent proposals for efficient
lattice-based signature schemes. Therefore we refer to [5, Appendix B] for the
full details. In terms of security, the only difference is that the extracted witness
from the base OR sigma protocol will be slightly larger than before. Otherwise,
all our proofs in Sections 3 and 4 are unmodified by this optimization.

6 Parameter selection, implementation results and
conclusions

We implemented the isogeny-based instantiations with known class group and
the lattice-based instantiations of our ring signature schemes (standard and link-
able). We reuse parameter sets from the pre-existing cryptosystems CSI-FiSh and
Dilithium. This allows us to reuse large portions of code from the CSIDH/CSI-
FiSh and Dilithium implementations and to rely on earlier work to estimate the
concrete security of our parameter choices. We use 128-bit seeds and commit-
ment randomness, and we use 256-bit salts, commitments, and hash values.

Isogeny parameters. We use the CSIDH-512 prime p, and define our first group
action g ⋆X exactly as in CSI-FiSh. This parameter set was proposed to achieve
NIST security level 1. State of the art analysis of this parameter set suggests
that it provides 128 bits of classical security and about 60 bits of security against
quantum adversaries [27]. We set M = 247 and K = 30 such that the challenge
space consists of binary strings of length M = 247 with hamming weight M −
K = 217. The number of these strings is

(
247
30

)
≈ 2128.1.

Lattice parameters. We use the “medium” parameter set from the NIST PQC
candidate Dilithium. More concretely we use the ring Rq = Zq[X]/(X256 + 1),
where q = 8380417. The parameters of the MLWE problem are (k, l) = (3, 4)
and the coefficients of the LWE secrets are sampled uniformly from [−6, 6]. In
our implementation we use the optimization by Bai and Galbraith [2]. We chop
off d = 20 bits of the commitment vector, in such a way that the parameters
of the MSIS problem match the parameters of the MSIS problem relevant for
the security of the Dilithium scheme. Since we work with binary challenges, the
probability that a single rejection sampling check fails is much lower compared to
Dilithium. This effect is roughly canceled out by the fact that in our protocol we
need a number of parallel checks to succeed all at the same time. The Dilithium
“medium” parameters are believed to achieve NIST security level I. Since the
lattice signatures are fast, we can afford to have a large number of iterations
with a small number of c = 0 challenges. This trades signing and verification
speed for smaller signatures. Concretely, we set M = 1749 and K = 16.
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6.1 Implementation

For the isogeny-based instantiations we reuse the non-constant-time implement-
ation of the group action CSI-FiSh, which in turn relies on the implementation of
the CSIDH group action by Castryck et al. [6, 8]. For the lattice-based instanti-
ations we reuse code of the Dilithium NIST submission for arithmetic and pack-
ing/unpacking operations. For both instantiations we use cSHAKE to instantiate
the random oracles [21]. In the isogeny-based implementation, the performance
bottleneck is the evaluation of the CSIDH group action. In the lattice-based im-
plementation the bottleneck is not the lattice arithmetic, but rather the use of
symmetric primitives (i.e. hashing, commitments and expanding seeds). This is
especially true in the case of large ring sizes since the number of multiplications
in Rq is independent of the ring size. The signature sizes and signing times of
our implementations are displayed in Figure 1. Our implementation is publicly
available on

https://github.com/WardBeullens/Calamari-and-Falafl .

6.2 Conclusions

So far, no efficient logarithmic ring signatures have been proven secure in the
quantum random oracle model, since the usual multiple rewinding of the ad-
versary in the unforgeability proof is non-trivial in the quantum setting. It re-
mains an interesting open problem to provide security proofs of our schemes in
the QROM.

In terms of practical efficiency, we believe the lattice-based implementation can
be speed up significantly by using more efficient symmetric primitives and/or
by using vectorized implementations. Concerning the isogeny case, we note that,
using the larger CSIDH parameters CSIDH-1024 and CSIDH-1792 under the
hypothesis that the structure of the ideal class group was know also for them,
the signatures sizes would increase with respect to the CSIDH-512 parameters
of 0.9 KB or 2.3 KB respectively, independently of the ring size N . This shows
that the impact of the CSIDH parameters on the signature size is not dramatic,
especially for large N .
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