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Abstract: Snail shells (Anadora Fulica) calcined at different temperatures were characterized by
X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermal analyses (TG-
DTG), scanning electron microscopy (SEM) and N2 adsorption–desorption experiments (surface area
measurements were found using the coupled BET/BJH method). The principal objective was to
identify different forms of calcium carbonate and calcium hydroxide in snail shells as raw materials.
The calcium hydroxide thus obtained was used in the synthesis of the hydroxyapatite/L-lysine
(HA/Lys) composite. The composite used to chemically modify a glassy carbon electrode (GCE)
was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). It
appeared that the developed sensor Lys/HA/GCE facilitated electronic transfer compared to the
pristine electrode. In a strongly acid medium, this surface protonated and therefore became positively
charged, which allowed it to have a good affinity with [Fe(CN)6]3-. An application in toluidine blue
(TB) electroanalysis in the phosphate buffer was carried out. Optimal sensor performances were
obtained using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The performance
of the sensor was determined in the concentration range 1 to 10 µM of TB, and the limit of detection
(LOD) obtained by the S/N = 3 method was 2.78 × 10−7 M. The sensor was also used to detect the
TB in spring water at 96.79% recovery.

Keywords: hydroxyapatite; electroanalysis; calcination; snail shells; toluidine blue

1. Introduction

Calcium carbonate CaCO3 is an exceptional mineral that is found in large quantities
in nature, rivers and oceans in different forms [1]. Among these different forms, the
most important are calcite (hexagonal, space group R3c) and aragonite (orthorhombic, SG
Pmcn) [2–5]. Most of these minerals are deposited in nature from rocks but also from waters,
countless plants and animals [6,7]. This substance, generally used in building since the time
of ancient Egypt, is today widely used in the manufacture of paper [8], plastics (polyvinyl
chloride, polypropylene, polyethylene) [9], paints and coatings [10,11], in environmental
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protection (desulfurization of combustion gases, neutralization of the most acidic and
treatment of drinking water) and in agriculture [12].

Another particular application of calcium carbonates is the production of calcium
hydroxides by calcination. Newly developed calcium hydroxides are used as a catalyst in
transesterification reactions [13], the sorption of sulfur dioxide [14] and source of calcium
in the synthesis of hydroxyapatites Ca10(PO4)6(OH)2 (HA) [15,16]. Synthetic HA-based
compounds find several applications, e.g.: in biomedicine [17], as important bone substi-
tutes in orthopedics and dentistry because they mimic the mineral phase of human bones
and teeth [18]; in agriculture, as nanoparticles able to spread the amendments in crops [19];
in the environment, as excellent materials for water remediation [20]; in nuclear settings,
as proven materials for nuclear waste storage [21]; and in cultural heritage, where they
make up working films on stone monuments preserving them from weathering and acid
rain [22].

These HA are usually incorporated into polymer matrices in order to increase the
mechanical properties of newly synthesized materials [23]. Another particular application
of this material is its use as a photoluminescent agent. Recent research, in particular
that of Figuerou-Rosales et al. [24], Paterlini et al. [25] and Huerta et al. [26] showed
that in the near future, HA could be used as an optoelectronic material. HA composite
is a good electricity conductor [27], and therefore, in electrochemistry, it is used as an
electrode modifier. In this line of thought, Tchoffo and coworkers used the composite
hydroxyapatite/β-cyclodextrin for the detection of diquat herbicide and lead ions [28,29].
In this class of material, we find the composites consisting of HA and lysine. This composite
is generally obtained by the absorption of L-lysine on the surface of HA [30,31]. The main
objective of the fabrication of Lys/HA composite was to further increase the functional
groups and active sites which allow for increased sequestration of the target analyte during
the electrochemical processes involved. An important application of this new material
is the electrochemical determination of synthetic dyes such as Nile blue A [32], which is
part of a wide range of synthetic dyes used in medicine. In this class of dye, we also have
toluidine blue (also known as tolonium chloride) which has an affinity for nucleic acids
and biomolecules [33].

In the present work, we first identified and characterized (by several physicochemical
and electrochemical methods) the different material forms of calcium carbonate obtained
during the calcination of snail shells at different temperatures. Subsequently, we produced
HA and used it to synthesize the L-lysine/hydroxyapatite (Lys/HA) composite. The
composite was then characterized by electrochemical methods (EIS and CV) and used
to modify the glassy carbon electrode (GCE) in order to carry out the electroanalysis of
toluidine blue (dye).

2. Materials and Methods
2.1. Reagents and Chemicals

The chemicals used to conduct the experiments are as follows: Na2HPO4 and KH2PO4
(BDH Chemical Ltd., Lutterworth, UK); NaOH and EDTA (Fisher Scientific International,
Hampton, New Hampshire, MA, USA); HCl (Pronalys AR, Scoresby, Australia); Nile
blue A (Fischer Scientific International, 91%); L-lysine (Fisher Scientific International);
citric acid monohydrate (J.T. Baker); toluidine blue (TB) (Sigma-Aldrich, Taufkirchen,
Germany); methyl orange (Fisher Scientific International); ascorbic acid (Sigma-Aldrich);
and K3Fe(CN)6 (>99%) (Sigma-Aldrich). For the preparation of solutions of TB at different
concentrations, a stock solution (10−2 M) of TB was prepared in distilled water, and the
dilution of this solution was performed in the phosphate buffer solution (PBS) 0.1 M at
different pHs.
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2.2. Procedure for Obtaining the Different Materials, Preparation of the Hydroxyapatite (HA) and
Hydroxyapatite/L-Lysine (HA/Lys) Composite

Snail shells were collected with the snail meat sold by women in the town of Nkongsamba
located in the Littoral region of Cameroon. The shells were cleaned with distilled water
and dried at room temperature for two weeks. The snail shell calcination was obtained in
an oven at increasing temperatures of 400, 700 and 1000 ◦C for 90 min with a temperature
rise of 5 ◦C/min in order to follow the evolution of the crystallization of materials. The
calcination temperatures used have effects on the morphology and crystalline properties
of the materials obtained. Each material obtained at different temperatures was sieved to
obtain only particles with a diameter less than or equal to 25 µm. The materials obtained
were labeled as follows: escN (pale white powder), esc400 (grey powder), esc700 (grey
powder) and esc1000 (white powder) for uncalcined and calcined materials at 400 ◦C,
700 ◦C and 1000 ◦C, respectively.

For the preparation of HA, 2.8 g of esc1000 were mixed with 50 mL of 0.1 M EDTA to
obtain a 0.1 M Ca–EDTA complex solution. A volume of 50 mL of a 0.06 M Na2HPO4 was
mixed at 4 mL/min, and the mixture was stirred for 120 min maintaining the pH of the
mixture at around 13. A milky white powder was then obtained after drying in oven for
12 h [29]. For the preparation of the Lys/HA composite, 5 mg of L-lysine were mixed with
3 mg of hydroxyapatite in 1 mL of distilled water, and the mixture was passed through
ultrasound for 30 minutes.

2.3. Characterization Techniques and Electroanalytical Methods

The synthesized HA and the composite (HA/Lys) were characterized by various
physicochemical techniques.

2.3.1. X-ray Diffraction (XRD)

Ex-situ XRD data were collected using a STOE STADI P X-ray powder diffractometer
(STOE and Cie GmbH, Darmstadt, Germany), with Cu Kα1 radiation (λ = 1.54056 Å; Ge
monochromator; flat sample). The data were collected for the value of 2θ ranging from 5◦

to 70◦ with a scanning speed of 1.5◦/min.

2.3.2. Fourier Transform Infrared (FTIR) Spectroscopy

Fourier transform infrared spectroscopy (FTIR) spectra were recorded using a genesis
FTIRM spectrometer (ATI Mattson, Bremen, Germany) equipped with a DTGS (deuterated
tri-glycine sulfate).

2.3.3. Thermal Analyses

Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) of the
powder were performed on a NETZSCH STA 449F5 thermal analyzer in air atmosphere at
a heating rate of 10 ◦C/min up to 1000 ◦C (Netzsch Gerätebau GmbH, Selb, Germany).

2.3.4. Scanning Electron Microscopy (SEM)

The morphologies of the HA, Lys and Lys/HA were investigated using SEM. SEM
images of dried powders were taken using a Zeiss Supra 55 VP field emission scanning
electron microscope (FESEM, Carl Zeiss, Jena, Germany) at an acceleration voltage of 20 kV.
Before imaging the dry powders of the samples, they were first coated with a thin gold
layer under vacuum.

2.3.5. BET Analysis

Nitrogen adsorption–desorption isotherms were collected for selected samples using
Sorptomatic Advanced Data Processing, Thermo electron corporation (Waltham, MA, USA).
Before N2 adsorption, the samples were degassed at 307.13 K under vacuum.
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2.4. Electroanalytical Procedures

Electrochemical measurements were carried out at room temperature with µ-Autolab
potentiostat (Ecochimie, Holland). The cyclic voltammograms (CV) were first recorded in
the 10−3 M [Fe3(CN)6]3− probes containing 0.1 M NaCl. As a second step, the analysis was
carried out in 0.1 M of phosphate buffer solution (PBS) containing 1 mM of TB. Optimal
parameters for TB dye detection were recorded using differential pulse voltammetry (DPV).
These parameters were as follows: pulse amplitude 95 mV, stop potential 7.5 mV, initial
potential −0.7 V, final potential 0.2 V and equilibrium time 5 s. The initial (−0.7 V) and
final (0.2 V) potentials were carefully chosen (after optimization) in order to observe the
oxidation and reduction in TB (well-defined curves) in the potential range considered. The
TB dye was electroactive over the wide range of potentials used (from −0.7 V to 0.2 V). The
other parameters are those of the apparatus which has been used without modification. For
the electroanalysis experiments, three electrodes were immersed either in one of the probes
or in the PBS containing the TB dye to be analyzed.

2.5. Working Electrode Preparation Procedure

The modification of the GCE was done by drop coating. Before its surface modification,
GCE was polished with alumina paste. The electrodes were then placed in a 1:1 ethanol–
water solution and cleaned in an ultrasonic bath for 10 min to remove any remaining
alumina particles. Finally, 5 µL of (HA or Lys or Lys/HA, depending on the case) was then
deposited on the surface of the GCE and dried in an oven for one hour.

3. Results and Discussion
3.1. Characterization of the Calcium Source

The uncalcined snail shells are mainly calcium carbonates. Indeed, Figure 1a (curve 1)
shows the internal vibration modes of CO2−

3 ions at wavenumbers of 717 cm−1 (γ4CO2−
3 ),

857 cm−1 (γ2CO2−
3 ), 1084 cm−1 (γ1CO2−

3 ), 1454 cm−1 (γ3CO2−
3 ), 1784cm−1 (γ3CO2−

3 ) and
2521 cm−1 (γ1 + γ3) [30]. In agreement with Zhu and coworkers, the peaks encountered
on the spectrum showed that it mainly consisted of aragonite [34]. When the calcination
temperature reaches 400 ◦C, we find that the peak intensities on the FTIR spectra in
Figure 1a (curve 2) significantly decreased. It can be considered that it is a transition phase
between the aragonite and calcite that was formed. The transition to a temperature of
700 ◦C (curve 3) causes the disappearance of the peak at 1084 cm−1, the slight displacement
of the peak initially at 1454 cm−1 and its appearance at 1402 cm−1. Other peaks appearing
at 873 and 710 cm−1, respectively, indicate the characteristic close to CaCO3 and related to
the Ca–O bond. The peaks recorded at vibration frequencies of 1402, 873 and 710 cm−1 are
associated with the calcite form of calcium carbonate [35]. The FTIR spectrum of the material
obtained after calcination at 1000 ◦C (Figure 1a, curve 4) highlights the characteristic peak
of calcium hydroxide appearing at 3642 cm−1 [36]. Besides these results recorded using
FTIR spectroscopy, other qualitative and quantitative information was obtained for these
materials using XRD analysis. The diffractograms are exhibited in Figure 1b.

The XRD spectrum of the uncalcined shells in Figure 1b (curve 1) in comparison with
XRD data already reported for CaCO3 mainly shows the presence of calcium carbonate
in aragonite form [37,38]. Figure 1b (curve 2) shows the XRD spectrum of esc400. Curve
2 highlights the intensity of the diminished peaks and especially, the appearance of the
new peaks showing a transition phase between two different forms of calcium carbonate.
The XRD pattern of the material obtained after calcining the shells at 700 ◦C is shown in
Figure 1b (curve 3). In agreement with data reported for CaCO3 (JCPDS file No. 05-0586),
it can be seen that the peaks of the aragonite form have given way to a more stable form
of calcium carbonate which is calcite [39]. The XRD pattern of material resulting from the
calcination of the shells at 1000 ◦C is presented in Figure 1b (curve 4). The peaks observed
on this curve match well with the reported data of CaO (JCPDS file no.48-1467), thus
confirming the formation of CaO [40]. The thermal behavior of these materials has been
studied through thermal analyzes, and the results obtained are presented in Figure 2.
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Figure 2 displays the outcomes of the thermal analyzes performed on the materials
escN, esc400, esc700 and esc1000. Figure 3 shows two mass losses. The first, which begins
at 200 ◦C and ends around 540 ◦C, corresponds to a mass loss of around 5.5 %. The less
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significant variation around 350.44 ◦C characterizes the endothermic nature of this process.
This process is linked both to the degradation of the organic phase in the materials as well
as to the transformation of the endothermic phase of aragonite into calcite. It is reported
that the natural aragonite phase of the CaCO3 transition temperature ranges from 450 ◦C
to 500 ◦C [41]. The second mass loss begins at 600 ◦C and practically ends at 790 ◦C. This
weight loss is estimated at 40% and corresponds to the total decomposition of calcium
carbonate into CaO. The release of CO2 from calcium carbonate which is an exothermic
process takes place at the temperature of 740 ◦C [42]. The TGA curve of esc700 is displayed
in Figure 3. Analyzes performed in the temperature range of 0 to 1000 ◦C show a one-time
mass loss of approximately 43% in the temperature range of 610 to 800 ◦C. The DTG curve
of esc700 also shows an endothermic process in the case of the escN sample. This confirms
the disappearance of CO2 during calcination, and the formation of CaO which, in the
presence of atmospheric air, is transformed into Ca(OH)2. As for the esc1000 sample, the
curves recorded following thermal analyzes carried out on this sample are presented in
Figure 2d. This figure highlights two endothermic phenomena described as follows: the
first whose mass loss (16%) is between 310 and 450 ◦C corresponds to loss of free water
inside the crystal lattice [43]; and the second mass loss of 13% between 650 and 825 ◦C
corresponds to a decomposition of the remaining calcium carbonate and that which has
formed due to the presence of CO2 [44].
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The SEM images of the materials escN, esc400, esc700 and esc1000 are displayed in
Figure 3. This analysis made it possible to follow the evolution and the change in the mor-
phology and texture of materials impacted by the different calcination temperatures used.

In general, all materials exhibited a compact structure with a homogeneous and
wrinkled surface. The particles are agglomerated in the form of platelets. In addition, SEM
images highlight the crystalline character of the materials studied. The particles tend to
agglomerate, and in some cases, regular stacks of chains have formed, which constitute
crystalline zones or crystallites. When the temperature rises to 400 ◦C, the morphology
of the material begins to change due to the progressive elimination of organic matter and
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water contained in the matrix. The increase in the calcination temperature up to 700 ◦C
highlights a new modification of the morphology of the material which is accompanied by
a reduction in the size of its pores on the surface. The surface morphology of the esc1000
shell calcined at 1000 ◦C was rougher, as shown in Figure 4 for the esc1000 sample. This
change in surface morphology may have resulted from a transformation of the calcite phase
(CaCO3) into CaO while releasing CO2 [45].
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(c) GCE/Lys and (d) GCE/HA in a 0.1 M NaCl solution containing 10−3 M [Fe(CN)6]3−/4−.

The specific surface area and pore volume of the different materials were calculated
using the Brunauer–Emmett–Teller (BET) and the Barrett–Joyner–Halenda (BJH) methods.
The results are showed in Table 1 below.

Table 1. Specific surface area and pore volume values of materials.

Samples Surface Area (m2/g) Pore Volume (cm3/g)

escN 3.03 0.0022
esc400 2.27 0.0046
esc700 4.96 0.004
esc1000 5.22 0.0099

Table 1 above shows that, in general, the specific surface area and the pore volume
increase with the increase in the calcination temperature. These results are in agreement
with those found by Laskar and coworkers [41]. When the calcination temperature increases,
the adsorption–desorption loop shifts to the right, causing the corresponding pore diameter
and volume to increase. The steady increase in pore size as well as the decrease in particle
size as the calcination temperature increases probably favors the increase in surface area
and pore volume of the resulting materials.

3.2. Electrochemical Characterization of HA, Lys and Lys/HA Materials

As described in the previous section, the material obtained by calcining snail shells at
a temperature of 1000 ◦C was used for the production of HA. To highlight the applications
of this material, we used it alone or in a composite form (associating it with an essential
amino acid, L-lysine (Lys), as an electrode modifier in order to improve the sensitivity
and the selectivity of electrodes for the detection and quantification of target analytes in
contaminated environmental media).

Figure 4 exhibits the Nyquist EIS curve of a bare glassy carbon electrode modified by
HA, L-lysine and Lys/HA in 25 mL of solution containing 0.1 M NaCl and 10−3 mol/L of
[Fe(CN)6]3−/4−.

From the EIS analyzer software, we realized the equivalent circuits. Therefore, the
characteristics are given in Table 2 below: R1 is the resistance of solution; R2 is the charge
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transfer resistance; W is the Warburg impedance; C1 is the double layer capacitance at the
surface of the electrode; and CPE1 is the constant phase element.

Table 2. Values taken by the different elements of each circuit.

Electrodes C1 (F) R1 (Ω) R2 (Ω) W (Hz) CPE1

GCE 0.0006 9800 15,000 2000 0.001
HA/GCE 0.0006 400 12,000 1000 0.09
Lys/GCE 0.0005 200 12,000 1000 0.09

Lys/HA/GCE 0.0005 200 9000 1950 0.0003

The charge transfer resistance was calculated when moving from one electrode to
another. This value is higher on the GCE (15 kΩ), followed by Lys/GCE (12 kΩ), followed
by Lys/HA/GCE (9 kΩ) and at the end of HA/GCE (12 kΩ). The results show that
the electron transfer capacity at the electrode is improved when adding HA which has
good electron transfer capacity. The ability of HA to transfer electrons is commonly used
for electroplating [46,47]. It should be noted that compared to GCE, the charge transfer
property is much better for the three materials.

In addition, the characterizations of the different materials Lys, HA and HA/Lys were
also carried out in a solution containing [Fe(CN)6]3− ions at a concentration of 10−3 M
in 0.1 M KCl solution at pH 2 and pH 7. The voltammograms recorded are displayed in
Figure 5 below.
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Figure 5. Cyclic voltammogram of a solution [Fe(CN)6]3− 10−3 M after 7 scans recorded in a 0.1 M
(K+ + Cl−) at (A) pH 2 and (B) pH 7 of (a) GCE, (b) Lys/GCE, (c) Lys/HA/GCE and (d) HA/GCE
(scan rate V = 20 mV/s).

Indeed, the L-lysine group adsorbed on the surface of the HA has three pKa, 2.18,
8.95 and 10.53, respectively, associated with the -NH2 and -OH groups [28]. The choice
of pH 2 makes it possible to demonstrate the totally protonated character of these amine
groups and to promote an interaction between the surface of the material and the analyte
which is, in this case, [Fe(CN)6]3− (Figure 5A). On the other hand, when using pH 7, this
protonation of amino groups decreases, and the carboxylic function also loses these protons.
The surface becomes progressively negatively charged, and a decrease in the intensity of
the oxidation peak of the [Fe(CN)6]3− ion is noted, as observed in Figure 5B. According
to the analyzes carried out on this electrochemical probe [Fe(CN)6]3− at two very distinct
pHs (2 and 7), it can be noted that when the pH becomes lower and acidic (pH 2), the
protonation of the functional groups of L-lysine (NH3

+) leads to electrostatic interactions
with negatively charged molecules in solution ([Fe(CN)6]3−). This is reflected in Figure 5A
by the intensity of the peaks which are much higher compared to that obtained in Figure 5B
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at pH 7, where the protonation is much weaker leading to less increased interaction with
the negative molecules in solution.

3.3. Electrochemical Sensing of Toluidine Blue using Lys/HA Composite as Glassy Carbon
Electrode Modifier

The work carried out as well as the results collected following the electroanalysis of
toluidine blue on a vitreous carbon electrode modified by the Lys/HA composite film will
be progressively presented in the following sections.

3.3.1. Preliminary Study on the Effect of the Working Electrode Modification with Respect
to Electrochemical Detection of TB Dye

DPV curves obtained using GCE, modified, respectively, by HA (HA/GCE), Lys
(GCE/Lys) and Lys/HA (Lys/HA/GCE) as modified electrodes were produced for com-
parison purposes with respect to the detection and quantification of TB in solution. The
recorded voltammograms are shown in Figure 6 below.
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Figure 6. DPV curves obtained in 0.1 M PBS (pH 8) containing 1 µM of TB on (2) bare GCE, (3)
GCE/HA, (4) GCE/Lys and (5) GCE/Lys/HA. (1) represents the curve recorded in blank electrolyte
using GCE/Lys/HA.

According to these voltammograms, the most intense peak was obtained when the
composite was used as modifier of the glassy carbon electrode (Imax = 1.556 × 10−5 A,
E = −0.2467 V). The ratio of the intensity of this peak compared to the peaks of other
materials showed, respectively, 1.12, 1.22 and 1.43 for Lys (−0.2133 V), HA (−0.2467 V)
and bare GCE (−0.2318 V). From these results, we can say that the addition of the Lys/HA
composite material on the surface of the electrode (Lys/HA/GCE) quantitatively improves
the signal intensity. This could be due to the ability of the composite material deposited on
the electrode to facilitate the electron transfer from the electrode to the analyte or from the
analyte to the electrode. This is in line with the results obtained during the electrochemical
characterization with the [Fe(CN)6]3− ion. The electrocatalytic effect of Lys/HA on the
analyte is observed because the potential on bare glassy carbon is EGCE = −0.2318 V,
whereas on glassy carbon modified by Lys/HA, it shows negative potentials and takes the
value shown above.



Crystals 2022, 12, 1189 10 of 17

3.3.2. Kinetics Studies at GCE/Lys/HA Sensor by Cyclic Voltammetry

To determine some kinetic parameters related to the redox electrochemical reaction of
TB at the surface of GCE/Lys/HA, the effect of the scan rate (v) on the peak current of the
oxidation and that of the reduction in TB was investigated by varying the scan rate values
between 20 and 230 mV s−1. Voltammograms obtained in 0.1 M PBS (pH 8) containing
1 mM TB are shown in Figure 7a.
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Figure 7. (a) Cyclic voltammograms recorded in 0.1 M PBS (at pH 8) + 1 mM TB at various scan rates:
(1) 20, (2) 30, (3) 50, (4) 90, (5) 130 and (6) 230 mV s−1, (b) Plot potential as a function of the logarithm
of scan rate, (c) Plot of the anodic and cathodic peak currents as a function of scan rate recorded on
GCE/Lys/HA.

It emerged from these investigations that the peak currents increased with the scan
rate and a quasi-reversible system was recorded. The plot of peak intensity as a function of
scan rate (Figure 7c) was linear. The recorded linear regression equations for oxidation and
reduction in TB were, respectively:

Iox (µA) = 0.357 v (V/s) + 0.535, R2 = 0.9934 (1)

Ired (µA) = −0.245 v (V/s) - 14.700, R2 = 0.9917 (2)

R2 values close to 1 promote electrochemical reactions at the surface of GCE/Lys/HA
essentially controlled by adsorption. Such behavior was obtained by Zeng et al. [48].
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The number of electrons and the electron transfer rate constant were determined from
both the plot in Figure 7b and Laviron’s Equations (3) and (4) for the quasi-reversible
system [49].

Epa = E◦ +
(

2.303RT
(1 − α)nF

)
logv +

(
2.303RT

(1 − α)nF

)
log

(
nF(1 − α)

RTKs

)
(3)

Epc = E◦ +
(

2.303RT
αnF

)
logv +

(
2.303RT
αnF

)
log

(
nFα

RTKs

)
(4)

where R = 8.314 J·mol−1·k−1, T = 298 K and F = 96,487 C·mol−1.
The value of the transfer coefficient α resulting from the slope ratio of Equations (3)

and (4) is calculated from Equation (5).

α

1− α
=

0.0066
0.0369

= 0.179 (5)

The calculated value of α is 0.179. Reporting this in the slope of Equation (3) or
Equation (4), the number of electrons transferred was found to be n = 4.57, more than four
as in the literature [50]. The heterogeneous electron transfer rate constant Ks was calculated
at a scan rate of 0.130 V·s−1 from Equation (6):

logKs = α log(1 − α) + (1 − α) logα− log
(

RT
nFv

)
− α(1 − α)nF∆E

2.303RT
(6)

A value of Ks = 0.255 s−1 was obtained, indicating that the electron transfer kinetics
are quite fast despite the process at the electrode being quasi-reversible.

3.3.3. Effect of pH on the Peak Current and Potential

To highlight the oxidation mechanism of TB on the GCE/Lys/HA electrode, the varia-
tion of the peak potential with pH was investigated. For this purpose, DPV experiments at
different pH values were performed in the PBS (Figure 8A). The plots of the peak current
and peak potential versus pH are shown in Figure 8B. As noted, the current intensity
increases with pH from four to six (maximum value) and then decreases from pH 6 to 7.5.
Regarding the plot of the peak potential vs. pH, a linear decreasing dependent relationship
was obtained, according to the equation E(V) = −0.0298 pH − 0.08281 (R2 = 0.9999). The
slope of −0.0298 V/pH obtained close to half for the theoretical value of −0.059 V/pH
showed that the number of protons is equal to half the number of electrons [51]. Accord-
ing to the number of electrons found (four), we have two protons exchanged. The TB
electro-oxidation mechanism for a unit of molecule is described according to the following
Scheme 1 [51]. To be able to obtain the number of electrons exchanged according to the
protons, the TB is dimerized, and the electrochemical reaction involved is presented in
Scheme 2 [52].
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3.3.4. Calibration Curve of TB Using Lys/HA/GCE as Sensor

DPV studies of TB in the concentration range of 1–10 µM were performed using
GCE/Lys/HA under optimized conditions, and the recorded results are shown in Figure 9.
It can be observed in the inset of Figure 9 that the peak current Ipa increases with
the concentration of TB. The calibration equation and its correlation coefficient were
Ipa (A) = 0.39831 [TB] (mol·L−1) + 8.6554 × 10−8; R2 = 0.9979, respectively. The errors on
the slope and the intercept are 0.00616 and 0.03694, respectively. The limit of detection,
LOD = 2.78 × 10−7 mol·L−1, was determined taking into account the relation 3 s/m, where
s is the standard deviation on the blank, and m is the slope of the line [53]. The results
obtained were the subject of a comparative study with those obtained with methylene
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blue (MB) and Nile blue A (NBA), as there is no work in the literature that deals with the
electroanalysis of TB dye. The results are recorded in Table 3 below.
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Figure 9. (A) DPV curves obtained on GCE/Lys/HA in PBS (pH 6) at different concentrations (0, 1, 2,
3, 4, 6, 7, 8, 9 and 10 µM) of TB. (B) (The inset shows the corresponding calibration curve.).

Table 3. Comparison of the detection limit of TB on the GCE/Lys/HA sensor with those obtained for
other dyes analyzed by other modified electrodes.

Electrodes Modifiers DLR (µM) LOD (µM) Methods Analytes References

CPE (a) Thiol functionalized-clay 1 to 14 0.4000 CV (b) MB (c) [54]
CPE Ibuprofen coated gold 0.01 to 1 0.0039 DPV (d) MB [55]
CPE Coffee husks 1 to 125 3.0000 SWV (e) MB [56]
GCE CMTN (f) 0.01 to 10 0.0030 DPV MB [57]

GCE (g) Lys/HA 0.1 to 1 0.0507 DPV NBA (h) [32]
GCE Lys/HA 1 to 10 0.278 DPV TB This work

(a) Carbon paste electrode, CPE; (b) Cyclic voltammetry, CV; (c) Methylene blue, MB; (d) Differential pulse voltam-
metry, DPV; (e) Square wave voltammetry, SWV; (f) Carbon modified titanium dioxide nanostructured, CMTN; (g)

Glassy carbon electrode, GCE; (h) Nile blue A, NBA.

3.3.5. Interference Studies and Analytical Application of Lys/HA Coated GCE Sensor

The interfering molecules chosen in this case to conduct this study are, respectively,
Nile blue A (NBA), methyl orange (MO), iron III ion (Fe3+), citric acid (CA) and oxalic acid
(OA), and they are presented in the Table 4. NBA, OA and CA significantly reduce the
intensity of the TB oxidation peak. The decrease in the TB oxidation peak in the presence
of NBA, OA and CA could be due to a competition phenomenon of TB with each of these
molecules in solution for interactions with the functional groups of the composite graft
at the surface of the glassy carbon electrode. On the other hand, the Fe3+ and MO used
increase the intensity of the anodic peak.
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Table 4. Highlighting the influence of other species on the GCE/Lys/HA sensor response using TB
at 5 × 10−6 mol/L TB in 0.1 M PBS pH 6.

Interference Species Added Amount over TB
Concentration

% Variation in the Anodic Peak
Current of TB

NBA 2
4

−10.36
−15.02

MO 2
4

+1.26
+8.48

Fe3+ 2
4

+5.19
+20.71

CA 2
4

−8.05
−9.14

OA 2
4

−9.21
−14.01

Thus, in the electrochemical cell containing a 5 × 10−6 M TB solution, the previously
mentioned species were added in concentration equivalent to two- and four-fold that of
TB. The peak current of TB was then recorded in optimized conditions (5 mg of Lys, 3 mg
of HA, 0.1 M phosphate buffer pH 6.0) and its variations were determined and shown in
Table 4.

The performance of Lys/HA as a glassy carbon electrode modifier was also highlighted
in a real environment using spring water. To carry out this experiment, we took 50 mL of
this water in a bottle. Previously, 25 mL of this spring water was electrochemically analyzed
and showed no trace of TB. Subsequently, we introduced 6 × 10−6 M of TB in 25 mL of
sampled water and recorded the voltammograms which allowed us to obtain the intensity
of the maximum oxidation current for the addition (2.40 × 10−6 A). Using the equation
of the calibration curve, we obtained the concentration in [TB] equal to 5.808 × 10−6 M.
A recovery percentage of 96.80% was determined. Depending on the results recorded
both in the real environment and on TB aqueous solutions, it can be said that the sensor
developed (Lys/HA/GCE) exhibited good electroanalytical performances and can be used
in particular for the detection and quantification of dyes in liquid effluents.

4. Conclusions

In this work, a source of calcium (snail shells) was identified and characterized by
physicochemical techniques (FTIR, XRD, SEM, TG-DTG and N2 adsorption–desorption).
These characterizations made it possible to highlight the form of calcium carbonate present
in the snail shells after calcination at different temperatures (aragonite, calcite and calcium
oxide). The resulting material allowed the synthesis of the Lys/HA composite which
was characterized by electrochemical methods (CV and EIS). The synthetized composite
was then used for the electroanalysis of TB dye in aqueous solution. It appeared that
the electrochemical redox reaction of TB at the surface of the Lys/HA/GCE modified
electrode was quasi-reversible with a higher oxidation peak than those obtained when
hydroxyapatite and L-lysine were individually used for the modification of the surface
of the GCE. The DPV electrochemical method made it possible to determine the optimal
parameters for the electroanalysis of TB dye on the Lys/HA/GCE sensor. The limit of
detection obtained was 2.78 × 10−7 M, and 96.80% of this dye was detected in spring water.
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