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Calcium in plant peroxisomes. What for?
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ABSTRACT
Peroxisome organelles have a versatile metabolism whose enzymatic content can be modulated by
physiological and environment-dependent cellular conditions. They are characterized by a highly active
nitro-oxidative metabolism and basic elements (H2O2 and nitric oxide (NO)) with signaling properties.
However, new elements have increased our understanding of the connections between peroxisomes and
other cellular compartments. Furthermore, the presence of calcium (Ca2C) intensifies communication
between different signaling molecules and the relationship of Ca2C itself with NO and H2O2.
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At the biochemical level, peroxisomes have been defined as sub-
cellular compartments containing catalase and H2O2-producing
flavin oxidases as basic enzymatic constituents surrounded by a
single membrane.1-3 However, behind the apparently simple
morphology of plant peroxisomes, there is a complex biochemi-
cal machinery characterized by flexibility, which endows them
with a great capacity to modulate their metabolism according to
physiological and environment-dependent cellular conditions.4,5

Peroxisomes are widely recognized to be involved in classic
pathways such as photorespiration, the glyoxylate cycle and fatty
acid b-oxidation. However, over the last twenty years, new enzy-
matic and non-enzymatic components in these organelles, such
as hormone biosynthesis and polyamine catabolism, have been
reported, which has increased our understanding of their complex
metabolism.2,5-7 Peroxisomes have been found to be a source of
nitric oxide (NO) and other NO-derivedmolecules which extends
our knowledge of the highly active oxidativemetabolism to a close
family of molecules called reactive nitrogen species (RNS) which
are also involved in physiological and stress processes.5

Calcium (Ca2C), which is a mineral nutrient element essential
for plant growth and development, is involved in numerous pro-
cesses such as root development, cell division, stomatal move-
ment, as well as pathogen and abiotic stress responses.8 Ca2C,
whose cellular fluctuations can modulate the activity of many
pathways, is considered to be a universal intracellular second
messenger.9 Biochemical sensors, which decode Ca2C signals
into specific physiological responses, include calmodulin (CaM),
calmodulin-like proteins, Ca2C-dependent protein kinases
(CDPKs) and calcineurin B-like (CBL) proteins.10,11 At the sub-
cellular level, the presence and importance of Ca2C in the differ-
ent subcellular compartments, including the cytosol, nucleus,
chloroplasts and mitochondria, have been demonstrated and
analyzed extensively.12-16 Surprisingly, the presence and

potential significance of Ca2C in plant peroxisomes is less well
known, and only a few studies have reported its occurrence in
these organelles.17,18 There is also evidence that plant peroxi-
somes house some of the biochemical sensors mentioned above
such as calcium-dependent protein kinase 1 (AtCPK1) involved
in pathogen resistance,19 the CaM-like protein (AtCML3), which
mediates the dimerization of peroxisomal processing protease
AtDEG15,20 and Ca-dependent protein kinase 2 (PiCDPK2)
involved in regulating pollen tube growth in Petunia inflate.21

Based on information currently available, Fig. 1 illustrates a
working model which shows the functional involvement of
Ca2C in the metabolism of plant peroxisomes and especially in
NO biosynthesis. Two principal targeting signals, which direct
proteins into the peroxisomal matrix, have so far been described:
peroxisomal targeting signal type 1 (PTS1) at the C terminus
and peroxisomal targeting signal type 2 (PTS2) at the N termi-
nus of the protein. By using Arabidopsis mutants expressing
chimeric fluorescent proteins with either PTS1 or PTS2, it has
been possible to demonstrate that Ca2C and CaM are necessary
for the import of peroxisomal matrix proteins with both types
of PTS.22,23 These include the protein responsible for NO gener-
ation from L-arginine inside peroxisomes which appear to con-
tain PTS2.22 Additionally, NO synthase (NOS)-like activity
present in these organelles also requires the presence of Ca2C

and CaM.24 On the other hand, NO can mediate post-transla-
tional modifications, such as nitration and S-nitrosation, which
regulate the protein functions of affected targets such as catalase
and hydroxypyruvate reductase. In certain circumstances, NO
can go out to the cytosol and participate in either signaling or
responses to environmental stresses caused by salinity, cadmium
and lead.25-27 Ca2C can thus modulate the generation of peroxi-
somal NO and consequently initiate a cascade of signals through
NO-derived post-translational modifications. Catalase, which is
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the main antioxidant peroxisomal enzyme, is also regulated not
only by Ca2C and CaM28 levels but also by NO-derived mole-
cules; thus, H2O2 content is indirectly regulated by the level of
NO, with a clear connection being observed between ROS and
RNS metabolisms in these organelles.

However, these data are merely the first step in an analysis of
the importance of calcium in plant peroxisomes.29 The following
issues need to be resolved in future research: how Ca2C and CaM
move through the peroxisomal membrane; identification of new
potential protein targets in the peroxisomal import system and in
the regulatable peroxisomalmetabolism.

Abbreviations

AtCPK1 calcium-dependent protein kinase 1
GSH reduced glutathione
GSNO S-nitrosoglutathione
NO nitric oxide
NOS nitric oxide synthase
PEX peroxin
PiSCP1 Petunia inflata small CDPK-interacting protein 1
PTS1 peroxisomal targeting signal type 1
PTS2 peroxisomal targeting signal type 2
RNS reactive nitrogen species
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