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Abstract 

 The chemical and structural similarities of calcium orthophosphates (abbreviated as CaPO4) to the 
mineral composition of natural bones and teeth have made them a good candidate for bone tissue engineering 
applications. Nowadays, a variety of natural or synthetic CaPO4-based biomaterials is produced and has been 
extensively used for dental and orthopedic applications. Despite their inherent brittleness, CaPO4 materials 
possess several appealing characteristics as scaffold materials. Namely, their biocompatibility and variable 
stoichiometry, thus surface charge density, functionality and dissolution properties, make them suitable for both 
drug and growth factor delivery. Therefore, CaPO4, especially hydroxyapatite (HA) and tricalcium phosphates 
(TCPs), have attracted a significant interest in simultaneous use as bone grafts and drug delivery vehicles. 
Namely, CaPO4-based three-dimensional (3D) scaffolds and/or carriers have been designed to induce bone 
formation and vascularization. These scaffolds are usually porous and harbor various types of drugs, biologically 
active molecules and/or cells. Over the past few decades, their application as bone grafts in combination with 
stem cells has gained much importance. This review discusses the source, manufacturing methods and 
advantages of using CaPO4 scaffolds for bone tissue engineering applications. Perspective future applications 
comprise drug delivery and tissue engineering purposes. 

DOI : 10.14302/issn.2576-6694.jbbs-18-2143 

Corresponding Author: Sergey V. Dorozhkin, Kudrinskaja sq. 1-155, Moscow 123242, Russia.                                 
E-mail: sedorozhkin@yandex.ru 

Keywords: Calcium orthophosphates, Hydroxyapatite, Tricalcium phosphate, Scaffolds, Bioceramics, Grafts, 
Biomedical applications, Tissue engineering.  

Received: May 22, 2018                 Accepted: Aug 21, 2018               Published: Aug 30, 2018 

Editor: Benaka Prasad S B, Jain University, India. 

http://www.openaccesspub.org/
http://openaccesspub.org/
http://openaccesspub.org/journals/jbbs
https://openaccesspub.org/journal/jbbs/copyright-license
https://doi.org/10.14302/issn.2576-6694.jbbs-18-2143
mailto:sedorozhkin@yandex.ru


 

 

Freely Available  Online 

www.openaccesspub.org    JBBS                CC-license       DOI : 10.1302/issn.2576-6694.jbbs-18-2143              Vol-1 Issue 3 Pg. no.–  26  

Introduction 

 Bones are organs and the living support 
structures that give the body form and shape. In the 
musculoskeletal system, bones act as the levers and 
pivots that control for direction and range of movement. 
Bones also function to protect our vital organs and act 
as a reservoir for critical vitamins and nutrients such as 
calcium. Bone tissues have an innate ability to remodel 
and regenerate themselves; however, when defects 
appear to be too large or when the normal repair 
process has been interrupted or disregulated, bones 
become unable to completely heal without external 
intervention [1]. 

 In general, utilization of fixation devices and 
implants, such as fixation plates, intramedullary nails 
etc., often in combination with autografts/allografts and 
artificial bone substitutes appears to be the standard 
intervention strategy for complicated fractures. The 
benefits of using autografts are obvious. Briefly, they 
provide a matrix to support cell attachment and 
migration to generate new bone (osteoconductivity), 
contain growth factors and proteins that stimulate 
osteogenic differentiation (osteoinductivity), as well as 
contain live cells that act as a source for new bone 
formation (osteogenesis). A constraint of autografts is 
the limited availability of tissue, the frequent 
requirement of a second surgical site (e.g., iliac crest) 
and the subsequent risk of donor site morbidity. An 
alternative to autografts are allografts, which can be 
derived from donor patients or other species (that is 
xenografts, such as bovine bone chips). Allografts are 
more readily available and range from small bone chips 
to whole bone segments. As a result, allografts are 
osteoconductive, can be osteoinductive (if growths 
factors are preserved during the treatment process), but 
are not osteogenic due to lack of living cells. The 
complication rate and requirement for surgical revision 
have been reported to be significantly higher in bone 
allografts compared to autografts due to poor 
remodeling capability. In addition, there is a risk of 
disease transmission and immune reaction, associated 
with allografts [2]. 

 Therefore, clinicians are looking to emerging 
fields, such as tissue engineering and clinical 
regenerative medicine, to overcome the limitations with 

current intervention strategies associated with 
complicated bone defects. Tissue engineering involves 
the use of scaffolds, biochemical factors or cells to 
restore the structure and function of tissues that have 
been damaged by disease or trauma. Within this field, 
bone tissue engineering is one of the most developed 
and deployed research areas [3]. 

 The purpose of this review is to evaluate the 
role and impact of one particular subset of biomaterials 
in tissue engineering applications, namely: calcium 
orthophosphate (CaPO4) scaffolds for hard tissue 
regeneration. The focus is on the recent developments 
of new formulations and their formation into scaffolds 
with the requisite anatomical shape and architecture. 
Methods that can be used to manipulate the materials 
structure and the variables that affect the materials 
performance in these applications are analyzed. 

General Knowledge and Definitions 

 According to the available literature, the term 
“tissue engineering” first appeared in 1984 in a paper by 
Wolter and Meyer [4] to overcome the major limitations 
of tissue grafting. Further, it was officially coined in 1988 
at a meeting of the U.S. National Science Foundation as 
“the application of the principles and methods of 
engineering and life sciences towards the fundamental 
understanding of structure/function relationships in 
normal and pathological mammalian tissues and the 
development of biological substitutes to restore, 
maintain or improve functions” [5]. Thus, this field of 
science started more than two decades ago [6, 7] and 
the famous publication by Langer and Vacanti [8] has 
greatly contributed to the promotion of tissue 
engineering research worldwide. Since then, the better 
definitions for tissue engineering have been sought and 
the following ones were proposed by Prof. David 
Williams (that time he was the Editor-in-Chief of 
Biomaterials journal) in 1999 and 2008, respectively: 
“The persuasion of the body to heal itself, through the 
delivery to the appropriate sites of molecular signals, 
cells and/or supporting structures” (1999) and “Tissue 
engineering is the creation of new tissue for the 
therapeutic reconstruction of the human body, by the 
deliberate and controlled stimulation of selected target 
cells through a systematic combination of molecular and 
mechanical signals” (2008) [9]. 
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 Tissue engineering may be achieved through 
several different routes but there is a basic paradigm of 
ex vivo tissue regeneration, which may serve as a 
template, in which there is a progression from cell 
sourcing through cell manipulation and signaling to 
tissue expression and construct formation, followed by 
implantation into the host and its full incorporation into 
that host. In the centre of this paradigm is the seeding 
of the required cells into a biomaterial scaffold or matrix, 
wherein they produce the new tissue. Usually, although 
not necessarily, the biomaterial is required to degrade or 
dissolve as the new tissue forms [9]. 

 Nevertheless, tissue/organ repair has been the 
ultimate goal of surgery from ancient times to              
nowadays [10, 11]. The repair has traditionally taken 
two major forms: tissue grafting followed by organ 
transplantation and alloplastic or synthetic material 
replacement. Both approaches, however, have 
limitations. Grafting requires second surgical sites with 
associated morbidity and is restricted by limited amounts 
of material, especially for organ replacement. Synthetic 
materials often integrate poorly with host tissue and fail 
over time due to wear and fatigue or adverse body 
response [12]. In addition, all modern orthopedic 
implants lack three of the most critical abilities of living 
tissues: (i) self-repairing; (ii) maintaining of blood 
supply; (iii) self-modifying their structure and properties 
in response to external aspects such as a mechanical 
load [13]. Needless to mention, that bones not only 
possess all of these properties but, in addition, they are 
self-generating, hierarchical, multifunctional, nonlinear, 
composite and biodegradable; therefore, the ideal 
artificial bone grafts must possess similar            
properties [14]. 

 Bone substitute materials can be defined as “a 
synthetic, inorganic or biologically organic                    
combination – biomaterial – which can be inserted for 
the treatment of a bone defect instead of autogenous or 
allogenous bone” [15]. This is a broad definition and a 
variety of materials have been used over time to 
substitute or generate bone tissue. In order to be 
ultimately applicable in the human body, one of the key 
requirements is that the bone substitute materials must 
be non-carcinogenic, non-toxic, non-teratogenic and 
possess a high cell and tissue biocompatibility (ability of 

a material to perform with an adequate response in a 
specific application). Since the inorganic part of bones 
and teeth of mammals consist of CaPO4 of biological 
origin, synthetically manufactured CaPO4 (a list of the 
known CaPO4, including their standard abbreviations and 
major properties, is summarized in                         
Table 1 [16, 17]), appear to fulfill all these                 
requirements. 

 In 2007, a “diamond concept” of bone tissue 
engineering was proposed as a “standard tissue 
engineering approach to provide solutions for impaired 
fracture healing, bone restoration and           
regeneration” [18, 19], which has become widely 
accepted and acknowledged in the field of bone tissue 
engineering. According to this concept, the ideal bone 
tissue engineering approaches should utilize an 
osteoconductive (i.e., guiding bone ingrowth)                   
three-dimensional (3D) structure (e.g., scaffold, 
matrices), contain osteogenic (i.e., bone forming) cells 
and osteoinductive (i.e., inducing bone formation) 
factors, but must also have sufficient mechanical 
properties and promote vascularization. Since cells and 
osteoinductive factors do not contain CaPO4, let me 
discuss scaffolds only. 

 According to Wikipedia, the free encyclopedia, a 
term “scaffold” has several definitions depending on the 
specific application. For example, in construction, it is “a 
temporary structure that supports workers and 
equipment above the ground or floor”. In chemistry, it is 
“a structure that is used to hold up or support another 
material, such as a drug, crystal or protein”. In tissue 
engineering, it is “an artificial structure capable of 
supporting three-dimensional tissue formation” [20]. In 
spite of the differences, all these definitions contain the 
meaning on “a structure that supports”, which is the 
key. Since bone substitute materials are always 
implanted, the bone grafting scaffolds must be 
manufactured from the materials, which are well 
tolerated by the human bodies, among which CaPO4 
appear to be most promising candidates. 

Scaffolds and their Major Properties 

 Since the shortage of donor tissues or organs 
appears to be the biggest issue for organ                   
transplantation, it would be very convenient to both 
patients and physicians if devastated tissues or organs 
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Table 1. Existing calcium orthophosphates and their major properties [16, 17]. 

Ca/P              
molar             
ratio 

Compounds and their typical                        
abbreviations 

Chemical formula 

Solubility 
at 
25 ºC,                
-log(Ks) 

Solubility 
at 
25 ºC, g/L 

pH          
stability 
range in 
aqueous 
solutions 
at 25°C 

0.5 
Monocalcium phosphate monohy-
drate (MCPM) 

Ca(H2PO4)2·H2O 1.14 ~ 18 0.0 – 2.0 

0.5 
Monocalcium phosphate anhy-
drous (MCPA or MCP) 

Ca(H2PO4)2 1.14 ~ 17 
[c]

 

1.0 
Dicalcium phosphate dihydrate 
(DCPD), mineral brushite 

CaHPO4·2H2O 6.59 ~ 0.088 2.0 – 6.0 

1.0 
Dicalcium phosphate anhydrous 
(DCPA or DCP), mineral monetite 

CaHPO4 6.90 ~ 0.048 
[c]

 

1.33 Octacalcium phosphate (OCP) Ca8(HPO4)2(PO4)4·5H2O 96.6 ~ 0.0081 5.5 – 7.0 

1.5 α-Tricalcium phosphate (α-TCP) α-Ca3(PO4)2 25.5 ~ 0.0025 
[a]

 

1.5 β-Tricalcium phosphate (β-TCP) β-Ca3(PO4)2 28.9 ~ 0.0005 
[a]

 

1.2 – 2.2 
Amorphous calcium phosphates 
(ACP) 

CaxHy(PO4)z·nH2O, n = 3 
– 4.5; 15 – 20 % H2O 

[b]
 

[b]
 ~ 5 – 12 [d]

 

1.5 – 1.67 
Calcium-deficient hydroxyapatite 
(CDHA or Ca-def HA)[e]

 

Ca10-x(HPO4)x(PO4)6-x

(OH)2-x (0<x<1) 
~ 85 ~ 0.0094 6.5 – 9.5 

1.67 
Hydroxyapatite (HA, HAp or 
OHAp) 

Ca10(PO4)6(OH)2 116.8 ~ 0.0003 9.5 – 12 

1.67 Fluorapatite (FA or FAp) Ca10(PO4)6F2 120.0 ~ 0.0002 7 – 12 

1.67 
Oxyapatite (OA, OAp or OXA)[f], 
mineral voelckerite 

Ca10(PO4)6O ~ 69 ~ 0.087 
[a]

 

2.0 
Tetracalcium phosphate (TTCP or 
TetCP), mineral hilgenstockite 

Ca4(PO4)2O 38 – 44 ~ 0.0007 
[a]

 

[a] These compounds cannot be precipitated from aqueous solutions. 
[b] Cannot be measured precisely. However, the following values were found: 25.7±0.1 (pH = 7.40), 29.9±0.1 (pH 
= 6.00), 32.7±0.1 (pH = 5.28). The comparative extent of dissolution in acidic buffer is: ACP >> α-TCP >>                      
β-TCP > CDHA >> HA > FA. 
[c] Stable at temperatures above 100°C. 
[d] Always metastable. 
[e] Occasionally, it is called “precipitated HA (PHA)”. 
[f] Existence of OA remains questionable. 
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of patients can be regenerated by simple cell injections 
to the target sites. Unfortunately, such cases are rare. 
The majority of large-sized tissues and organs with 
distinct 3D form require a support for their formation 
from cells. The support is called scaffold, template and/
or artificial extracellular matrix [21-28]. The major 
function of scaffolds is to balance temporary mechanical 
functions with mass transport to aid biological delivery 
and tissue regeneration [12]. Thus, scaffolds play a role 
of temporary extracellular matrixes and assist 
proliferation, differentiation and biosynthesis of cells on 
the surface of their own. In addition, scaffolds placed at 
the regeneration sites prevent disturbing cells from 
invasion into the sites of action [29, 30]. However, for 
the future of tissue engineering, the term ‘template’ 
might become more suitable because, according to 
David F. Williams, the term scaffold “conveys an old 
fashioned meaning of an inert external structure                
that is temporarily used to assist in the construction               
or repair of inanimate objects such as buildings,               
taking no part in the characteristics of the finished                
product.” [31, p. 1129]. 

 Therefore, the idea behind tissue engineering is 
to create or engineer autografts by either expanding 
autologous cells in vitro guided by a scaffold or 
implanting an acellular template in vivo and allowing the 
patient’s cells to repair the tissue guided by the scaffold. 
The first phase is the in vitro formation of a tissue 
construct by placing the chosen cells and scaffolds in a 
metabolically and mechanically supportive environment 
with growth media (in a bioreactor), in which the cells 
proliferate and elaborate extracellular matrix. It is 
expected that cells infiltrate into the porous matrix and 
consequently proliferate and differentiate therein [32, 
33]. In the second phase, the construct is implanted in 
the appropriate anatomic location, where remodeling in 
vivo is intended to recapitulate the normal functional 
architecture of an organ or a tissue [34, 35]. The key 
processes occurring during both in vitro and in vivo 
phases of the tissue formation and maturation are: (1) 
cell proliferation, sorting and differentiation, (2) 
extracellular matrix production and organization, (3) 
biodegradation of the scaffold, (4) remodeling and 
potentially growth of the tissue [36]. 

 To achieve the goal of tissue reconstruction, the 

scaffolds (templates) must meet a number of the 
specific requirements [21, 27, 31]. First, for an 
appropriate use in the human body, all scaffolds need to 
be made from highly biocompatible materials that do not 
elicit any adverse permanent immune responses in the 
host tissue after local implantation. The potential group 
of biomaterials comprise bioceramics, biodegradable 
polymers and their biocomposites [37]. Further, a 
reasonable surface roughness is necessary to facilitate 
cell seeding and fixation [38-43]. In addition, artificial 
scaffolds must bond to the host tissues without 
formation of any type of scar tissues, creating a stable 
interface. A high porosity and an adequate pore 
dimensions (Table 2) are very important to allow cell 
migration, vascularization, as well as a diffusion of 
nutrients [44, 45]. A sufficient mechanical strength and 
stiffness are mandatory to oppose contraction forces 
and later for the remodeling of damaged                      
tissues [46, 47]. A French architect Robert le Ricolais 
(1894 – 1977) stated: “The art of structure is where to 
put the holes”. Therefore, to enable proper tissue 
ingrowth, vascularization and nutrient delivery, scaffolds 
should have a highly interconnected porous network, 
formed by a combination of macro- and micropores, in 
which more than ~ 60 % of the pores should have a 
size ranging from ~ 150 μm to ~ 400 μm and at least ~ 
20 % should be smaller than ~ 20 μm [44, 45, 48-56]. 
What’s more, the entire geometry of porous scaffolds 
appears to significantly influence the cellular response 
and the rate of bone tissue regeneration. Namely, rates 
of tissue generation were found to increase with 
curvature and appeared to be much larger on concave 
surfaces as compared to convex and planar ones [57]. 
In addition, scaffolds must be manufactured from the 
materials with controlled biodegradability and/or 
bioresorbability, such as CaPO4, so that a new bone will 
eventually replace the scaffold [23, 50, 58].         
Furthermore, the degradation by-products of scaffolds 
must be non-cytotoxic. More to the point, the resorption 
rate has to coincide as much as possible with the rate of 
bone formation (i.e., between a few months and about 2 
years) [59]. This means that while cells are fabricating 
their own natural matrix structure around themselves, 
the scaffold is able to provide a structural integrity 
within the body and eventually it will break down leaving 
the newly formed tissue that will take over the 
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Table 2. A hierarchical pore size distribution that an ideal scaffold should exhibit [45]. 

Pore sizes of a 3D scaffold A biochemical effect or function 

< 1 μm 

Interaction with proteins 

Responsible for bioactivity 

1 – 20 μm 

Type of cells attracted 

Cellular development 

Orientation and directionality of cellular ingrowth 

100 – 1000 μm 

Cellular growth 

Bone ingrowth 

Predominant function in the mechanical strength 

> 1000 μm 

Implant functionality 

Implant shape 

Implant esthetics 
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mechanical load. However, one should bear in mind that 
the scaffold’s architecture changes with the degradation 
process and the degradation by-products affect the 
biological response. Besides, scaffolds should be easily 
fabricated into a variety of shapes and sizes [60], be 
malleable to fit irregularly shaped defects, while the 
fabrication processes should be effortlessly scalable for 
mass production. In many cases, ease of processability, 
as well as easiness of conformation and injectability, 
such as self-setting CaPO4 formulations possess [61], 
can determine the choice of a certain biomaterial. 
Finally, sterilization with no loss of properties is a crucial 
step in scaffold production at both a laboratory and an 
industrial level [23-25]. Thus, each scaffold (template) 
should fulfill many functions before, during and after 
implantation. 

 In order to achieve the desired properties at the 
minimum expenses, the production process should be 
optimized [62]. The main goal is to develop a high 
potential synthetic bone substitute (so called “smart 
scaffold”) which will not only promote osteoconduction 
but also osteopromotion, i.e. the ability to enhance of 
osteoinduction [63]. In the case of CaPO4, a smart 
scaffold represents a biphasic (HA/β-TCP ratio of 20/80) 
formulation with a total porosity of ~ 73 %, constituted 
of macropores (> 100 µm), mesopores (10 – 100 µm) 
and a high content (~ 40 %) of micropores (< 10 µm) 
with the crystal dimensions within < 0.5 to 1 µm and the 
specific surface area ~ 6m2/g [64]. With the advent of 
CaPO4 in tissue engineering, the search is on for the 
ultimate option consisting of a synthetic smart scaffold 
impregnated with cells and growth factors. Fig. 1 
schematically depicts a possible fabrication process of 
such item that, afterwards, will be implanted into a living 
organism to induce bone regeneration [65]. 

 To finalize this topic, one should mention on 
fundamental unfeasibility to create so-called “ideal 
scaffold” for bone grafting. Since bones of human 
skeleton have very different dimensions, shapes and 
structures depending on their functions and locations, 
synthetic bone grafts of various sizes, shapes, porosity, 
mechanical strength, composition and resorbability 
appear to be necessary. Therefore, bioceramic scaffolds 
of 0 to 15 % porosity are used as both ilium and 
intervertebral spacers, where a high strength is required, 

those of 30 to 40 % porosity are useful as spinous 
process spacer for laminoplasty, where both bone 
formation and middle strength are necessary, while ones 
of 40 to 60 % porosity appear to be useful for the 
calvarias plate, where a fast bone formation is needed 
(Fig. 2) [66]. Furthermore, defining the optimum 
parameters for artificial scaffolds is in fact an attempt to 
find a reasonable compromise between various 
conflicting functional requirements. Namely, an 
increased mechanical strength of bone substitutes 
requires solid and dense structures, while colonization of 
their surfaces by cells requires interconnected porosity. 
Additional details and arguments on this subject are well 
described elsewhere [67], in which the authors 
concluded: “there is enough evidence to postulate that 
ideal scaffold architecture does not exist.” (p. 478). 

CaPO4 Bioceramics 

 Currently, CaPO4 bioceramics can be prepared 
from various sources [68-74]. Nevertheless, up to now, 
all attempts to synthesize bone replacement materials 
for clinical applications featuring the physiological 
tolerance, biocompatibility and a long-term stability have 
had only a relative success; this clearly demonstrates 
both the superiority and a complexity of the natural                 
structures [14]. 

 In general, a characterization of CaPO4 
bioceramics should be performed from various 
viewpoints such as the chemical composition (including 
stoichiometry and purity), homogeneity, phase 
distribution, morphology, grain sizes and shape, grain 
boundaries, crystallite size, crystallinity, pores, cracks, 
surface roughness, etc. Among the known types of 
CaPO4 (Table 1), the vast majority of CaPO4 bioceramics 
is based on HA [75-80], both types of TCP [75, 81-91] 
and various multiphasic formulations thereof [92]. 
Biphasic formulations (commonly abbreviated as BCP – 
biphasic calcium phosphate) are the simplest among the 
latter ones. They include β-TCP + HA [93-101], α-TCP + 
HA [102-104] and biphasic TCP (commonly abbreviated 
as BTCP) consisting of α-TCP and β-TCP [105-110]. In 
addition, triphasic formulations (HA + α-TCP + β-TCP) 
have been prepared as  well [111-114]. Further details 
on this topic might be found in a special review [92]. 
Leaving aside a big subject of DCPD-forming self-setting                  
formulations [61, 115], one should note that just a few 
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Fig. 1. A schematic view of a third generation biomaterial, in which porous CaPO4                  
bioceramics acts as a scaffold or a template for cells, growth factors, etc. Reprinted 
from Ref. [65] with permission. 

Fig. 2. A schematic drawing presenting the potential usage of bioceramic               
scaffolds with various degrees of porosity. Reprinted from Ref. [66] with                  
permission. 
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publications on bioceramics, prepared from other types 
of CaPO4, are available [116-124].  

 The preparation techniques of various CaPO4 
have been extensively reviewed in literature [125-129] 
where the interested readers are referred to. Briefly, 
when compared to both α- and β-TCP, HA is a more 
stable phase under the physiological conditions, as it has 
a lower solubility (Table 1) and, thus, slower resorption 
kinetics [130-132]. Therefore, the BCP concept is 
determined by the optimum balance of a more stable 
phase of HA and a more soluble TCP. Due to a higher 
biodegradability of the α- or β-TCP component, the 
reactivity of BCP increases with the TCP/HA ratio 
increasing. Thus, in vivo bioresorbability of BCP can be 
controlled through the phase composition [94]. Similar 
conclusions are also valid for the biphasic                    
TCP (in which α-TCP is a more soluble phase), as well as 
for both triphasic (HA, α-TCP and β-TCP) and yet more 
complex formulations [92]. 

 As implants made of sintered HA are found in 
bone defects for many years after implantation                 
(Fig. 3, bottom), bioceramics made of more soluble 
types of CaPO4 [75, 81-124, 133, 134] are preferable for 
the biomedical purposes (Fig. 3, top). Furthermore, the 
experimental results showed that BCP had a higher 
ability to adsorb fibrinogen, insulin or type I collagen 
than HA [135]. Thus, according to both observed and 
measured bone formation parameters, CaPO4 
bioceramics have been ranked as follows: low sintering 
temperature BCP (rough and smooth) ≈ medium 
sintering temperature BCP ≈ TCP > calcined low 
sintering temperature HA > non-calcined low sintering 
temperature HA > high sintering temperature BCP 
(rough and smooth) > high sintering temperature HA 
[136]. This sequence has been developed in year 2000 
and, thus, neither multiphase formulations, nor other 
CaPO4 have been included. 

Scaffolds from CaPO4 

Forming and Shaping 

 In order to fabricate scaffolds in progressively 
complex shapes, scientists are investigating the use of 
both old and new manufacturing techniques. These 
techniques range from an adaptation of the age-old 
pottery techniques to the newest manufacturing 

methods for high-temperature ceramic parts for airplane 
engines. Namely, reverse engineering [137, 138] and 
rapid prototyping [139-141] technologies have 
revolutionized a generation of physical models, allowing 
the engineers to efficiently and accurately produce 
physical models and customized implants with high 
levels of geometric intricacy. Combined with the 
computer-aided design and manufacturing (CAD/CAM), 
complex physical objects of the anatomical structure can 
be fabricated in a variety of shapes and sizes. In a 
typical application, an image of a bone defect in a 
patient can be taken and used to develop a 3D CAD 
computer model [142-146]. Then a computer can 
reduce the model to slices or layers. Afterwards, 3D 
objects and coatings are constructed layer-by-layer 
using rapid prototyping techniques. The examples 
comprise fused deposition modeling [147, 148], 
selective laser sintering [149-155], laser                      
cladding [156-159], 3D printing and/or                             
plotting [86, 160-174], solid freeform                              
fabrication [175-183] and stereolithography [184-187]. 
3D printing and/or plotting of the CaPO4 -based self-
setting formulations could be performed as                           
well [172, 173]. In the specific case of ceramic scaffolds, 
a sintering step is usually applied after printing the 
green bodies. Furthermore, a thermal printing process of 
melted CaPO4 has been proposed [188], while, in some 
cases, laser processing might be applied as well [189, 
190]. A schematic of 3D printing technique, as well as 
some 3D printed items are shown in Fig. 4 [10]. A 
custom-made implant of actual dimensions would reduce 
the time it takes to perform the medical implantation 
procedure and subsequently lower the risk to the 
patient. Another advantage of a pre-fabricated, exact-
fitting implant is that it can be used more effectively and 
applied directly to the damaged site rather than a 
replacement, which is formulated during surgery from a 
paste or granular                                   material [176, 
190-192]. 

 In addition to the aforementioned modern 
techniques, classical forming and shaping approaches 
are still widely used. The selection of the desired 
technique depends greatly on the ultimate application of 
scaffolds, e.g., whether they are for a hard-tissue 
replacement or an integration of the device within the 
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Fig. 3. Soft X-ray photographs of the operated portion of the rabbit femur. Four weeks (a), 12 weeks 
(b), 24 weeks (c) and 72 weeks (d) after implantation of CDHA; 4 weeks (e), 12 weeks (f), 24 weeks 
(g) and 72 weeks (h) after implantation of sintered HA. Reprinted from Ref. [133] with permission. 

Fig. 4. A schematic of 3D printing and some 3D printed parts (fabricated at Washington 
State University) showing the versatility of 3D printing technology for ceramic scaffolds 
fabrication with complex architectural features. Reprinted from Ref. [10] with permission. 
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surrounding tissues. In general, three types of the 
processing technologies might be used: (1) employment 
of a lubricant and a liquid binder with ceramic powders 
for shaping and subsequent firing; (2) application of self
-setting and self-hardening properties of water-wet 
molded powders; (3) materials are melted to form a 
liquid and are shaped during cooling and solidification 
[193-196]. Since CaPO4 are either thermally unstable 
(MCPM, MCPA, DCPA, DCPD, OCP, ACP, CDHA) or                
have a melting point at temperatures exceeding ~ 1400 
°C with a partial decomposition (α-TCP, β-TCP, HA, FA, 
TTCP), only the first and the second consolidation 
approaches are used to prepare bulk b                      
ioceramics and scaffolds. The methods include            
uniaxial compaction [197-199], isostatic pressing                                                 
(cold or hot) [100, 200-207], granulation [208-214], 
loose packing [215], slip casting [88, 216-221],                 
gel casting [184, 222-230], pressure mold                    
forming [231, 232], injection molding [233-235], 
polymer replication [236-243], ultrasonic               
machining [244], extrusion [245-251], slurry dipping 
and spraying [252]. Depending on the fabrication 
technique used, various parameters such as solid 
loading of the ceramic slurry, type and amount of 
additives (binders, surfactants, dispersants, etc.), 
temperature, etc. should be optimized to maximize the 
mechanical strength of the scaffolds. In addition, to 
form ceramic sheets from slurries, tape                                      
casting [225, 253-257], doctor blade [258] and colander 
methods can be employed [193-196]. Furthermore, 
flexible, ultrathin (of 1 to several microns thick), 
freestanding HA sheets were produced by a pulsed laser 
deposition technique, followed by thin film isolation 
technology [259]. Various combinations of several 
techniques are also possible [90, 225, 260-262]. More 
to the point, some of these processes might be 
performed under the electromagnetic field, which helps 
crystal aligning [217, 220, 263-266]. Finally, the 
prepared CaPO4 bioceramics might be subjected by 
additional treatments (e.g., chemical, thermal and/or 
hydrothermal ones) to convert one type of CaPO4 into 
another one [243]. 

 To prepare bulk bioceramics, powders are 
usually pressed damp in metal dies or dry in lubricated 
dies at pressures high enough to form sufficiently strong 
structures to hold together until they are sintered [267]. 

An organic binder, such as polyvinyl alcohol, helps to 
bind the powder particles altogether. Afterwards, the 
binder is removed by heating in air to oxidize the 
organic phases to carbon dioxide and water. Since many 
binders contain water, drying at ~ 100 °C is a critical 
step in preparing damp-formed pieces for firing. Too 
much or too little water in the compacts can lead to 
blowing apart the ware on heating or crumbling, 
respectively [193-196, 201]. Furthermore, removal of 
water during drying often results in subsequent 
shrinkage of the product. In addition, due to local 
variations in water content, warping and even cracks 
may be developed during drying. Dry pressing and 
hydrostatic molding can minimize these problems [196]. 
Finally, the manufactured green samples are sintered. 

 It is important to note that forming and shaping 
of any ceramic products require a proper selection of 
the raw materials in terms of particle sizes and size 
distribution. Namely, tough and strong scaffolds consist 
of pure, fine and homogeneous microstructures. To 
attain this, pure powders with small average size and 
high surface area must be used as the starting sources. 
However, for maximum packing and least shrinkage 
after firing, mixing of ~ 70 % coarse and ~ 30 % fine 
powders have been suggested [196]. Mixing is usually 
carried out in a ball mill for uniformity of properties and 
reaction during subsequent firing. Mechanical die 
forming or sometimes extrusion through a die orifice 
can be used to produce a fixed cross-section.  

 Finally, to produce the accurate shaping, 
necessary for the fine design of scaffolds, machine 
finishing might be essential [144, 193, 268, 269]. 
Unfortunately, cutting tools developed for metals are 
usually useless for bioceramics due to their fragility; 
therefore, grinding and polishing appear to be the 
convenient finishing techniques [144, 193]. In addition, 
the surface of scaffolds might be modified by various 
supplementary treatments [270]. 

Sintering and Firing 

 A sintering (or firing) procedure appears to be 
of a great importance to manufacture bioceramic 
scaffolds with the required mechanical properties. 
Usually, this stage is carried out according to controlled 
temperature programs of electric furnaces in adjusted 
ambience of air with necessary additional gasses; 
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however, always at temperatures below the melting 
points of the materials. The firing step can include 
temporary holds at intermediate temperatures to burn 
out organic binders [193-196]. The heating rate, 
sintering temperature and holding time depend on the 
starting materials. For example, in the case of HA, these 
values are in the ranges of 0.5 – 3 °C/min, 1000 – 1250 
°C and 2 – 5 h, respectively [271]. In the majority 
cases, sintering allows a structure to retain its shape. 
However, this process might be accompanied by a 
considerable degree of shrinkage [272-274], which 
must be accommodated in the fabrication process. For 
instance, in the case of FA sintering, a linear shrinkage 
was found to occur at ~ 715 °C and the material 
reached its final density at ~ 890 °C. Above this value, 
grain growth became important and induced an intra-

granular porosity, which was responsible for density 
decrease. At ~ 1180 °C, a liquid phase was formed due 
to formation of a binary eutectic between FA and 
fluorite contained in the powder as impurity. This liquid 
phase further promoted the coarsening process and 
induced formation of large pores at high temperatures 
[275]. 

 In general, sintering occurs only when the 
driving force is sufficiently high, while the latter relates 
to the decrease in surface and interfacial energies of 
the system by matter (molecules, atoms or ions) 
transport, which can proceed by solid, liquid or gaseous 
phase diffusion. Namely, when solids are heated to high 
temperatures, their constituents are driven to move to 
fill up pores and open channels between the grains of 
powders, as well as to compensate for the surface 
energy differences among their convex and concave 
surfaces (matter moves from convex to concave). At the 
initial stages, bottlenecks are formed and grow among 
the particles. Existing vacancies tend to flow away from 
the surfaces of sharply curved necks; this is an 
equivalent of a material flow towards the necks, which 
grow as the voids shrink. Small contact areas among 
the particles expand and, at the same time, a density of 
the compact increases and the total void volume 
decreases. As the pores and open channels are closed 
during a heat treatment, the particles become tightly 
bonded together and density, strength and fatigue 
resistance of the sintered object improve greatly. Grain-

boundary diffusion was identified as the dominant 

mechanism for densification [276]. Furthermore, strong 
chemical bonds are formed among the particles and 
loosely compacted green bodies are hardened to denser 
materials [193-196]. Further knowledge on the ceramic 
sintering process might be found elsewhere [277]. 

 In the case of CaPO4, the earliest paper on their 
sintering was published in 1971 [278]. Since then, 
numerous papers on this subject were published and 
several specific processes were found to occur during 
CaPO4 sintering. Firstly, moisture, carbonates and all 
other volatile chemicals remaining from the synthesis 
stage, such as ammonia, nitrates and any organic 
compounds, are removed as gaseous products. 
Secondly, unless powders are sintered, the removal of 
these gases facilitates production of denser ceramics 
with subsequent shrinkage of the samples. Thirdly, all 
chemical changes are accompanied by a concurrent 
increase in crystal size and a decrease in the specific 
surface area. Fourthly, a chemical decomposition of all 
acidic orthophosphates and their transformation into 
other phosphates (e.g., 2HPO4

2- → P2O7
4- + H2O↑) takes 

place. Besides, sintering causes toughening [79], 
densification [80, 279], partial dehydroxylation (in the 
case of HA) [80], grain growth [276, 280], as well as it 
increases the mechanical strength [281-283]. The latter 
events are due to presence of air and other gases filling 
gaps among the particles of un-sintered powders. At 
sintering, the gases move towards the outside of 
powders and green bodies shrink owing to               
decrease of distances among the particles. For example, 
sintering of a biologically formed apatites was 
investigated [284, 285] and the obtained products were                          
characterized [286, 287]. In all cases, the numerical 
value of Ca/P ratio in sintered apatites of biological 
origin was higher than that of the stoichiometric HA. 
One should mention that in the vast majority cases, 
CaPO4 with Ca/P ratio < 1.5 (Table 1) are not sintered, 
since these compounds are thermally unstable, while 
sintering of non-stoichiometric CaPO4 (CDHA and ACP) 
always leads to their transformation into various types 
of biphasic, triphasic and multiphase formulations [92]. 

 An extensive study on the effects of sintering 
temperature and time on the properties of HA 
bioceramics revealed a correlation between these 
parameters and density, porosity, grain size, chemical 
composition and strength of the scaffolds [288]. 
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Namely, sintering below ~ 1000 °C was found to result 
in initial particle coalescence, with little or no 
densification and a significant loss of the surface area 
and porosity. The degree of densification appeared to 
depend on the sintering temperature whereas the 
degree of ionic diffusion was governed by the period of 
sintering [288]. To enhance sinterability of CaPO4, a 
variety of sintering additives might be added [289-292]. 

 Solid-state pressureless sintering is the simplest 
procedure. For example, HA scaffolds can be 
pressurelessly sintered up to the theoretical density at 
1000 – 1200 °C. Processing at even higher temperatures 
usually lead to exaggerated grain growth and 
decomposition because HA becomes unstable at 
temperatures exceeding ~ 1300 °C [125-129, 293-296]. 
The decomposition temperature of HA is a function of 
the partial pressure of water vapor. Moreover, 
processing under vacuum leads to an earlier 
decomposition of HA, while processing under high partial 
pressure of water prevents from the decomposition. On 
the other hand, a presence of water in the sintering 
atmosphere was reported to inhibit densification of HA 
and accelerated grain growth [297]. Unexpectedly, an 
application of a magnetic field during sintering was 
found to influence the growth of HA grains [280]. A 
definite correlation between hardness, density and a 
grain size in sintered HA bioceramics was found: despite 
exhibiting high bulk density, hardness started to 
decrease at a certain critical grain size limit [298-300]. 

 Since grain growth occurs mainly during the 
final stage of sintering, to avoid this, a new method 
called ‘‘two-step sintering’’ (TSS) was proposed [301]. 
The method consists of suppressing grain boundary 
migration responsible for grain growth, while keeping 
grain boundary diffusion that promotes densification. 
The TSS approach was successfully applied to CaPO4 
bioceramics [91, 99, 302-306]. For example, HA 
compacts prepared from nanodimensional powders were 
two-step sintered. The average grain size of near full 
dense (> 98 %) HA bioceramics made via conventional 
sintering was found to be ~ 1.7 μm, while that for TSS 
HA bioceramics was ~ 190 nm (i.e., ~ 9 times less) with 
simultaneous increasing the fracture toughness of 
samples from 0.98 ± 0.12 to 1.92 ± 0.20 MPa m1/2. In 
addition, due to the lower second step sintering 
temperature, no HA phase decomposition was detected 

in TSS method [302]. 

 Hot pressing [300, 307-313], hot isostatic 
pressing [100, 200, 205, 207] or hot pressing                      
with post-sintering [314, 315] processes make it 
possible to decrease a temperature of the                
densification process, diminish the grain size, as               
well as achieve higher densities. This leads to finer                           
microstructures, higher thermal stability and 
subsequently better mechanical properties of CaPO4 
scaffolds. Both microwave [316-325] and spark                                            
plasma [82, 116, 326-335] sintering techniques are 
alternative methods to the conventional sintering, hot 
pressing and hot isostatic pressing. Both alternative 
methods were found to be time and energy efficient 
densification techniques. Further developments are still 
possible. For example, a hydrothermal hot pressing 
method has been developed to fabricate OCP [117], 
CDHA [336], HA/β-TCP [310] and HA [311-314, 337] 
bioceramics with neither thermal dehydration nor 
thermal decomposition. Further details on the sintering 
and firing processes of CaPO4 bioceramics are available 
in literature [127, 338, 339]. 

 To conclude this section, one should mention 
that the sintering stage is not always necessary. For 
example, CaPO4 -based scaffolds with the reasonable 
mechanical properties might be prepared by means of 
self-setting (self-hardening) formulations [61]. 
Furthermore, the reader’s attention is paid on an 
excellent review on various ceramic manufacturing 
techniques [340]. 

The Major Properties 

Mechanical Properties 
 The modern generation of biomedical materials 
should stimulate the body’s own self-repairing               
abilities [341]. Therefore, during healing, a mature bone 
should replace the modern grafts and this process must 
occur without transient loss of the mechanical support. 
Unluckily for material scientists, a human body provides 
one of the most inhospitable environments for the 
implanted biomaterials. It is warm, wet and both 
chemically and biologically active. For example, a 
diversity of body fluids in various tissues might have a 
solution pH varying from 1 to 9. In addition, a body is 
capable of generating quite massive force concentrations 
and the variance in such characteristics among 
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individuals might be enormous. Typically, bones are 
subjected to ~ 4 MPa loads, whereas tendons and 
ligaments experience peak stresses in the range of                        
40 – 80 MPa. The hip joints are subjected to an average 
load up to three times body weight (3,000 N) and peak 
loads experienced during jumping can be as high as 10 
times body weight. These stresses are repetitive and 
fluctuating depending on the nature of the activities, 
which can include standing, sitting, jogging, stretching 
and climbing. Therefore, all types of implants must 
sustain attacks of a great variety of aggressive 
conditions [342]. Regrettably, there is presently no 
artificial material fulfilling all these requirements. 

 Now it is important to mention, that the 
mechanical behavior of any ceramics is rather specific. 
Namely, ceramics is brittle, which is attributed to high 
strength ionic bonds. Thus, it is not possible for plastic 
deformation to happen prior to failure, as a slip cannot 
occur. Therefore, ceramics fail in a dramatic manner. 
Namely, if a crack is initiated, its progress will not be 
hindered by the deformation of material ahead of the 
crack, as would be the case in a ductile material (e.g., a 
metal). In ceramics, the crack will continue to 
propagate, rapidly resulting in a catastrophic breakdown. 
In addition, the mechanical data typically have a 
considerable amount of scatter [194]. Alas, all of these 
are applicable to CaPO4 bioceramics. 

 For dense bioceramics, the strength is a function 
of the grain sizes. Namely, finer grain size bioceramics 
have smaller flaws at the grain boundaries and thus are 
stronger than one with larger grain sizes. Thus, in 
general, the strength for ceramics is proportional to the 
inverse square root of the grain sizes [343]. In addition, 
the mechanical properties decrease significantly with 
increasing content of an amorphous phase,              
microporosity and grain sizes, while a high crystallinity, a 
low porosity and small grain sizes tend to give a higher 
stiffness, a higher compressive and tensile strength and 
a greater fracture toughness. Furthermore, ceramics 
strength appears to be very sensitive to a slow crack 
growth [344]. Accordingly, from the mechanical point of 
view, CaPO4 scaffolds appear to be brittle polycrystalline 
materials for which the mechanical properties are 
governed by crystallinity, grain size, grain boundaries, 
porosity and composition [345]. Thus, it possesses poor 
mechanical properties (for instance, a low impact and 

fracture resistances) that do not allow CaPO4 scaffolds 
to be used in load-bearing areas, such as artificial teeth 
or bones. For example, fracture toughness (this is a 
property, which describes the ability of a material 
containing a crack to resist fracture and is one of the 
most important properties of any material for virtually all 
design applications) of HA bioceramics does not exceed 
the value of ~ 1.2 MPa·m1/2 [346] (human bone: 2 – 12 
MPa·m1/2). It decreases exponentially with the porosity 
increasing [347]. Generally, fracture toughness increases 
with grain size decreasing. However, in some materials, 
especially non-cubic ceramics, fracture toughness 
reaches the maximum and rapidly drops with decreasing 
grain size. For example, a fracture toughness of pure hot 
pressed HA with grain sizes between 0.2 – 1.2 µm was 
investigated. The authors found two distinct trends, 
where fracture toughness decreased with increasing 
grain size above ~ 0.4 µm and subsequently decreased 
with decreasing grain size. The maximum fracture 
toughness measured was 1.20 ± 0.05 MPa·m1/2 at ~ 0.4 
µm [307]. Fracture energy of HA bioceramics is in the 
range of 2.3 – 20 J/m2, while the Weibull modulus (it is 
a measure of the spread or scatter in fracture strength) 
is low (~ 5 – 12) in wet environments, which means that 
HA behaves as a typical brittle ceramics and indicates to 
a low reliability of HA implants [348]. Porosity has a 
great influence on the Weibull modulus [349, 350]. In 
addition, that the reliability of HA scaffolds was found to 
depend on deformation mode (bending or compression), 
along with pore size and pore size distribution: a 
reliability was higher for smaller average pore sizes in 
bending but lower for smaller pore sizes in compression 
[351]. Interestingly that 3 peaks of internal friction were 
found at temperatures about –40, 80 and 130 °C for HA 
but no internal friction peaks were obtained for FA in the 
measured temperature range; this effect was attributed 
to the differences of F- and OH- positions in FA and HA, 
respectively [352]. The differences in internal friction 
values were also found between HA and TCP [353]. 

 Bending, compressive and tensile strengths of 
dense HA bioceramics are in the ranges of 38 – 250 
MPa, 120 – 900 MPa and 38 – 300 MPa, respectively. 
Similar values for porous HA scaffolds are substantially 
lower: 2 – 11 MPa, 2 – 100 MPa and ~ 3 MPa, 
respectively [348]. These wide variations in the 
properties are due to both structural variations (e.g., an 

http://www.openaccesspub.org/
http://openaccesspub.org/
http://openaccesspub.org/journals/jbbs
https://openaccesspub.org/journal/jbbs/copyright-license
https://doi.org/10.14302/issn.2576-6694.jbbs-18-2143


 

 

Freely Available  Online 

www.openaccesspub.org    JBBS                CC-license       DOI : 10.1302/issn.2576-6694.jbbs-18-2143              Vol-1 Issue 3 Pg. no.–  39  

influence of remaining microporosity, grain sizes, 
presence of impurities, etc.) and manufacturing 
processes, as well as they are caused by a statistical 
nature of the strength distribution. Strength was found 
to increase with Ca/P ratio increasing, reaching the 
maximum value around Ca/P ~ 1.67 (stoichiometric HA) 
and decreases suddenly when Ca/P > 1.67 [348]. 
Furthermore, strength decreases almost exponentially 
with porosity increasing [354, 355]. However, by 
changing the pore geometry, it is possible to influence 
the strength of porous bioceramics. It is also worth 
mentioning that porous CaPO4 scaffolds are           
considerably less fatigue resistant than dense 
bioceramics (in materials science, fatigue is the 
progressive and localized structural damage that occurs 
when a material is subjected to cyclic loading). Both 
grain sizes and porosity are reported to influence the 
fracture path, which itself has a little effect on the 
fracture toughness of CaPO4 bioceramics [345, 356]. 
However, no obvious decrease in mechanical properties 
was found after CaPO4 bioceramics had been aged in the 
various solutions during the different periods of                
time [357]. 

 Young’s (or elastic) modulus of dense HA 
bioceramics is in the range of 35 – 120 GPa [358, 359], 
which is more or less similar to those of the most 
resistant components of the natural calcified tissues 
(dental enamel: ~ 74 GPa, dentine: ~ 21 GPa, compact 
bone: ~ 18 – 22 GPa). This value depends on porosity 
[360]. Nevertheless, dense bulk compacts of HA have 
mechanical resistances of the order of 100 MPa versus ~ 
300 MPa of human bones, diminishing drastically their 
resistances in the case of porous bulk compacts [361]. 
Young’s modulus measured in bending is between 44 
and 88 GPa. To investigate the subject in more details, 
various types of modeling and calculations are 
increasingly used [362-366]. For example, the elastic 
properties of HA appeared to be significantly affected by 
the presence of vacancies, which softened HA via 
reducing its elastic modules [366]. In addition, a 
considerable anisotropy in the stress-strain behavior of 
the perfect HA crystals was found by ab initio 
calculations [363]. The crystals appeared to be brittle for 
tension along the z-axis with the maximum stress of ~ 
9.6 GPa at 10 % strain. Furthermore, the structural 
analysis of the HA crystal under various stages of tensile 

strain revealed that the deformation behavior 
manifested itself mainly in the rotation of PO4 
tetrahedrons with concomitant movements of both the 
columnar and axial Ca ions [363]. Data for single 
crystals are also available [367]. Vickers hardness (that 
is a measure of the resistance to permanent indentation) 
of dense HA bioceramics is within 3 – 7 GPa, while the 
Poisson’s ratio (that is the ratio of the contraction or 
transverse strain to the extension or axial strain) for HA 
is about 0.27, which is close to that of bones (~ 0.3). At 
temperatures within 1000 – 1100 °C, dense HA 
bioceramics was found to exhibit superplasticity with a 
deformation mechanism based on grain boundary     
sliding [332, 368, 369]. Furthermore, both wear 
resistance and friction coefficient of dense HA 
bioceramics are comparable to those of dental           
enamel [348]. 

 Due to a high brittleness (associated to a low 
crack resistance), the biomedical applications of CaPO4 
bioceramics are focused on production of                      
non-load-bearing implants, such as pieces for middle ear 
surgery, filling of bone defects in oral or orthopedic 
surgery, as well as coating of dental implants and 
metallic prosthesis (see below) [370, 371]. Therefore, 
ways are continuously sought to improve the reliability 
of CaPO4 bioceramics. Namely, the mechanical 
properties of sintered bioceramics might be improved by 
changing the morphology of the initial CaPO4 [372]. In 
addition, diverse reinforcements (ceramics, metals or 
polymers) have been applied to manufacture various 
biocomposites and hybrid biomaterials [373], but that is 
another story. However, successful hybrid formulations 
consisted of CaPO4 only [374-381] are within the scope 
of this review. Namely, bulk HA bioceramics                   
might be reinforced by HA whiskers [375-379]. 
Furthermore, various biphasic apatite/TCP formulations 
were tested [374, 380, 381] and, for example, a 
superior superplasticity of HA/β-TCP biocomposites to 
HA bioceramics was detected [380]. 

 Another approach to improve the mechanical 
properties of CaPO4 bioceramics is to cover the items by 
polymeric coatings [382-384] or infiltrate porous 
structures by polymers [385-387]; however, this is still 
other story. Further details on the mechanical properties 
of CaPO4 bioceramics are available elsewhere [347, 348, 
388], where the interested readers are referred to. 
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Porosity 

 Porosity is defined as a percentage of voids in 
solids and this morphological property is independent of 
the material. The surface area of porous bodies is much 
higher, which guarantees a good mechanical fixation in 
addition to providing sites on the surface that allow 
chemical bonding between the bioceramic scaffolds and 
bones [389]. Furthermore, a porous material may have 
both closed (isolated) pores and open (interconnected) 
pores. The latter look like tunnels, which are accessible 
by gases, liquids and particulate suspensions [390]. The 
open-cell nature of porous materials (also known as 
reticulated materials) is a unique characteristic essential 
in many applications. In addition, pore dimensions are 
also important. Namely, the dimensions of open pores 
are directly related to bone formation, since such pores 
grant both the surface and space for cell adhesion and 
bone ingrowth [391-393]. On the other hand, pore 
interconnection provides the ways for cell distribution 
and migration, as well as it allows an efficient in vivo 
blood vessel formation suitable for sustaining bone 
tissue neo-formation and possibly                                       
remodeling [135, 394-399]. Explicitly, porous CaPO4 
scaffolds are colonized easily by cells and bone tissues 
[394, 398, 400-407]. Therefore, interconnecting 
macroporosity (pore size > 100 μm) [97, 389, 394, 408, 
409] is intentionally introduced into solid scaffolds (Fig. 
5). Calcining of natural bones appears to be the simplest 
way to prepare porous CaPO4 scaffolds [68-74]. In 
addition, macroporosity might be formed artificially due 
to a release of various easily removable compounds and, 
for that reason, incorporation of pore-creating additives 
(porogens) is the most popular technique to create 
macroporosity. The porogens are crystals, particles or 
fibers of either volatile (they evolve gases at elevated 
temperatures) or soluble substances. The popular 
examples comprise paraffin [410-412],               
naphthalene [345, 413-415], sucrose [416, 417], 
NaHCO3 [418-420], NaCl [421, 422], polymethylmethac-
rylate [87, 423-425], hydrogen peroxide [426-431], 
cellulose derivatives [77]. Several other                       
compounds [338, 355, 432-443] might be used as 
porogens either. The ideal porogen should be nontoxic 
and be removed at ambient temperature, thereby 
allowing the bioceramic/porogen mixture to be injected 
directly into a defect site and allowing the scaffold to fit 

the defect [444]. Sintering particles, preferably spheres 
of equal size, is a similar way to generate porous 3D 
scaffolds of CaPO4. However, pores resulting from this 
method are often irregular in size and shape and not 
fully interconnected with one another. Schematic 
drawings of various types of the ceramic porosity are 
shown in Fig. 6 [445]. 

 Many other techniques, such as replication of 
polymer foams by impregnation [236-238, 241,                  
446-450] (Fig. 5), various types of casting [218, 219, 
225, 227, 431, 451-459], suspension foaming [114], 
surfactant washing [460], microemulsions [461, 462], 
ice templating [463-466], as well as many other                                       
approaches [12, 81, 84, 87, 88, 154, 467-501] have 
been applied to fabricate porous CaPO4 scaffolds. Some 
of them have been summarized in Table 3 [444]. In 
addition, both natural CaCO3 porous materials, such as 
coral skeletons [502, 503] or shells [503, 504], and 
artificially prepared ones [505] can be                               
converted into porous CaPO4 under the hydrothermal 
conditions (250 °C, 24 – 48 h) with the microstructure 
undamaged. Porous HA scaffolds can also be obtained 
by hydrothermal hot pressing. This technique allows 
solidification of the HA powder at 100 – 300 °C (30 MPa, 
2 h) [337]. In another approach, bi-continuous                
water-filled microemulsions have been used as                      
pre-organized systems for the fabrication of needle-like 
frameworks of crystalline HA (2 °C, 3 weeks) [461, 462]. 
Besides, porous CaPO4 might be prepared by a 
combination of gel casting and foam burn out methods 
[260, 262], as well as by hardening of the self-setting                              
formulations [411, 412, 419, 420, 422, 432, 433, 490]. 
Lithography was used to print a polymeric material, 
followed by packing with HA and sintering [471]. Hot 
pressing was applied as well [308, 309]. More to the 
point, a HA suspension can be cast into a porous CaCO3 
skeleton, which is then dissolved, leaving a porous 
network [467]. 3D periodic macroporous frame of HA 
has been fabricated via a template-assisted colloidal 
processing technique [472, 473]. In addition, porous HA 
scaffolds might be prepared by using different starting 
HA powders and sintering at various temperatures by a 
pressureless sintering [469]. Porous scaffolds with an 
improved strength might be fabricated from CaPO4 fibers 
or whiskers. In general, fibrous porous materials are 
known to exhibit an improved strength due to fiber 
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Fig. 5. Photographs of a commercially available porous CaPO4 scaffolds with different po-
rosity (top) and a method of their production (bottom). For photos, the horizontal field 
width is 20 mm. 
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Fig. 6. Schematic drawings of various types               
of the ceramic porosity: A – non-porous,                               
B – microporous, C – macroporous (spherical),            
D – macroporous (spherical) + micropores,              
E – macroporous (3D-printing), F – macroporous 
(3D-printing) + micropores. Reprinted from            
Ref. [445] with permission. 

Fig. 7. SEM pictures of HA bioceramics sintered at (A) 1050 °C and (B) 1200 °C. Note the presence of 
microporosity in A and not in B. Reprinted from Ref. [516] with permission. 
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interlocking, crack deflection and/or pullout [27]. 
Namely, porous scaffolds with well-controlled open 
pores was processed by sintering of fibrous HA particles 
[468]. In another approach, porosity was achieved by 
firing apatite-fiber compacts mixed with carbon beads 
and agar. By varying the compaction pressure, firing 
temperature and carbon/HA ratio, the total porosity was 
controlled in the ranges from ~ 40 % to ~ 85 % [77]. 
Finally, a superporous (~ 85 % porosity) HA scaffolds 
was developed as well [60, 487, 488]. Additional 
information on the processing routes to produce porous 
ceramics might be found in literature [506, 507]. 

 Scaffold microporosity (pore size < 10 μm), 
which is defined by its capacity to be impregnated by 
biological fluids [508], results from the sintering process, 
while the pore dimensions mainly depend on the 
material composition, thermal cycle and sintering time. 
The microporosity provides both a greater surface area 
for protein adsorption and increased ionic solubility. For 
example, embedded osteocytes distributed throughout 
microporous rods might form a mechanosensory 
network, which would not be possible in scaffolds 
without microporosity [509, 510]. CaPO4 scaffolds with 
nanodimensional (< 100 nm) pores might be fabricated 
as well [195, 511-515]. It is important to stress, that 
differences in porogens usually influence the scaffolds’ 
macroporosity, while differences in sintering tempera-
tures and conditions affect the percentage of 
microporosity. Usually, the higher the sintering 
temperature, the lower both the microporosity content 
and the specific surface area of the scaffolds. Namely, 
HA bioceramics sintered at ~ 1200 °C shows 
significantly less microporosity and a dramatic change in 
crystal sizes, if compared with that sintered at ~ 1050 °
C (Fig. 7) [516]. Furthermore, the average shape of 
pores was found to transform from strongly oblate to 
round at higher sintering temperatures [517]. The total 
porosity (macroporosity + microporosity) of CaPO4 
scaffolds was reported to be ~ 70 % [518] or even ~ 85 
% [60, 487, 488] of the entire volume. In the case of 
coralline HA or bovine-derived apatites, the porosity of 
the original biologic material (coral or bovine bone) is 
usually preserved during processing [519]. To finalize 
the production topic, creation of the desired porosity in 
CaPO4 scaffolds is a rather complicated engineering task 

and the interested readers are referred to the additional 
publications on the subject [355, 393, 489, 520-528]. 

 Regarding the biomedical importance of 
porosity, studies revealed that increasing of both the 
specific surface area and pore volume of scaffolds might 
greatly accelerate the in vivo process of apatite 
deposition and, therefore, enhance the bone-forming 
bioactivity. More importantly, a precise control over the 
porosity, pore dimensions and internal pore architecture 
of the scaffolds on different length scales is essential for 
understanding of the structure-bioactivity relationship 
and the rational design of better bone-forming 
biomaterials [526, 529, 530]. Namely, in antibiotic 
charging experiments, CaPO4 scaffolds with nanodimen-
sional (< 100 nm) pores showed a much higher charging 
capacity (1621 μg/g) than that of commercially available 
CaPO4 (100 μg/g), which did not contain nanodimen-
sional porosity [522]. In other experiments, porous 
blocks of HA were found to be viable carriers with 
sustained release profiles for drugs [531] and antibiotics 
over 12 days [532] and 12 weeks [533], respectively. 
Unfortunately, porosity significantly decreases the 
strength of implants [348, 356, 388]. Thus, porous 
CaPO4 implants cannot be loaded and are used to fill 
only small bone defects. However, their strength 
increases gradually when bones ingrow into the porous 
network of CaPO4 implants [131, 534-537]. For example, 
bending strengths of 40 – 60 MPa for porous HA 
implants filled with 50 – 60 % of cortical bone were 
reported [534], while in another study an ingrown bone 
increased strength of porous HA scaffolds by a factor of 
3 to 4 [536]. 

 Unfortunately, the biomedical effects of 
scaffolds’ porosity are not straightforward. For example, 
the in vivo response of CaPO4 of different porosity was 
investigated and a hardly any effect of macropore 
dimensions (~ 150, ~ 260, ~ 510 and ~ 1220 μm) was 
observed [538]. In another study, a greater         
differentiation of mesenchymal stem cells was observed 
when cultured on ~ 200 μm pore size HA scaffolds when 
compared to those on ~ 500 μm pore size HA [539]. 
The latter finding was attributed to the fact that a higher 
pore volume in ~ 500 μm macropore scaffolds might 
contribute to a lack of cell confluency leading to the cells 
proliferating before beginning differentiation. Besides, 
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the authors hypothesized that scaffolds with a less than 
the optimal pore dimensions induced quiescence in 
differentiated osteoblasts due to reduced cell 
confluences [539]. In still another study, the use of BCP 
(HA/TCP = 65/35 wt. %) scaffolds with cubic pores of ~ 
500 μm resulted in the highest bone formation 
compared with the scaffold with lower (~ 100 μm) or 
higher (~ 1000 μm) pore sizes [540]. Furthermore, 
CaPO4 scaffolds with greater strut porosity appeared to 
be more osteoinductive [541]. Already in 1979, Holmes 
suggested that the optimal pore range was 200 – 400 
μm with the average human osteon size of ~ 223 μm 
[542]. In 1997, Tsurga and coworkers implied that the 
optimal pore size of scaffolds that supported ectopic 
bone formation was 300 – 400 μm [543]. Thus,                 
there is no need to create CaPO4 scaffolds with                  
very big pores; however, the pores must be                                    
interconnected [42, 408, 409, 544]. Interconnectivity 
governs a depth of cells or tissue penetration into the 
porous scaffolds, as well as it allows development of 
blood vessels required for new bone nourishing and 
wastes removal [508, 545]. Nevertheless, the total 
porosity of implanted scaffolds appears to be important. 
For example, 60 % porous β-TCP granules achieved a 
higher bone fusion rate than 75 % porous β-TCP 
granules in lumbar posterolateral fusion [509]. 

Loading by Bioactive Compounds, Drugs and Cells 

 After being prepared, porous CaPO4 scaffolds 
are frequently loaded by various types of biomolecules, 
bioactive compounds, drugs and other therapeutic 
agents, as well as by genes and/or cells. All of them are 
added to the scaffolds in hopes that they will match a 
functionality of the native tissues, provide remodeling to 
the construct to aid in host integration, and/or be able 
to spur the host tissue to perform desired actions [546]. 

 Various techniques to incorporate the bioactive 
compounds and/or cells into pores of the scaffolds, as 
well as onto the scaffolds’ surface have been reported. 
The examples comprise blending, surface modification, 
adsorption, impregnation, centrifugation and vacuum 
based-techniques [547, 548]. Among them, adsorption 
and impregnation allow these moieties to be 
incorporated onto the surface of the scaffolds, while 
centrifugation and vacuum based-techniques enable 
them to enter into the pores [548]. Generally, bioactive 

compounds, such as growth factors, are incorporated by 
simple impregnation followed by drying, and the type of 
bonding with the substrate and the release rate are 
often undetermined [549]. Such associations do not 
allow chemical bonding between growth factors CaPO4 

scaffolds. In such cases, the release rates are difficult to 
control. For example, precipitation and clustering of the 
bioactive molecules may occur and the release is only 
determined by local dissolution and diffusion rules. 

 An uncontrolled release of bioactive compounds 
has been related to an accelerated resorption of bone 
tissue and of the implant. Since bioactive compounds 
can stimulate the degradation as well as the formation 
of bone (depending on their local concentrations), they 
could impair the surface osteoconductivity [550]. 
Namely, bisphosphonates, well established molecules as 
successful antiresorptive agents for the prevention and 
treatment of post-menopausal osteoporosis [551], by 
affecting bone remodeling, could also block the bone 
repair process: the drug at too high concentration could 
have detrimental effects on the fixation of the implant 
over longer periods of time. On the contrary, adsorption 
leads to stable association and control of the amount of 
bioactive molecules contained in the solid implant and, 
thus, of the dose released. Generally, the release is 
rather low because most of the bioactive molecules 
adsorbed are irreversibly bound and they are not 
spontaneously released in a cell culture media [552]. 

Functionally Graded CaPO4 Scaffolds 

 Generally, functionally gradient materials (FGMs) 
are defined as materials, having either compositional or 
structural gradient from their surface to the interior. The 
idea of FGMs allows one device to possess two different 
properties. One of the most important combinations for 
the biomedical field is that of a mechanical strength and 
biocompatibility. Namely, only surface properties govern 
a biocompatibility of the entire device. In contrast, the 
strongest material determines the mechanical strength 
of the entire device. 

 Within the scope of this review, functionally 
graded CaPO4 scaffolds are considered and discussed 
only. Such formulations have been developed [87, 455, 
458, 524, 553-565]. For example, dense sintered bodies 
with gradual compositional changes from α-TCP to HA 
were prepared by sintering a diamond-coated HA 
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compacts at 1280 °C under a reduced pressure, followed 
by heating under the atmospheric conditions [553]. The 
content of α-TCP gradually decreased, while the content 
of HA increased with increasing depth from the surface. 
These functionally gradient scaffolds consisting of HA 
core and α-TCP surface showed a potential value as 
bone-substituting biomaterials [553]. Two types of 
functionally gradient FA/β-TCP biocomposites were 
prepared in another study [554]. As shown in Fig. 8, one 
of the graded biocomposites was in the shape of a disk 
and contained four different layers of about 1 mm thick. 
The other graded biocomposite was also in the shape of 
a disk but contained two sets of the four layers, each 
layer being 0.5 mm thick controlled by using a certain 
amount of the mixed powders. The final FA/β-TCP 
graded structures were formed at 100 MPa and sintered 
at 1300 °C for 2 h [554]. The same approach was used 
in still another study, but HA was used instead of FA and 
CDHA was used instead of β-TCP [565]. CaPO4 coatings 
with graded crystallinity were prepared as well [560]. 

 Besides, it is well known that a bone                     
cross-section from cancellous to cortical bone is                 
non-uniform in porosity and pore dimensions. Thus, in 
various attempts to mimic the porous structure of bones, 
CaPO4 bioceramics with graded porosity have been 
fabricated [87, 390, 455, 458, 524, 553-558]. For 
example, graded porous CaPO4 scaffolds can be 
produced by means of tape casting and lamination (Fig. 
9, top). Other manufacturing techniques, such as a 
compression molding process (Fig. 9, bottom) followed 
by impregnation and firing, are known as well [390]. In 
the first method, a HA slurry was mixed with a pore 
former. The mixed slurry was then cast into a tape. 
Using the same method, different tapes with different 
pore former sizes were prepared individually. The 
different tape layers were then laminated together. 
Firing was then done to remove the pore formers and 
sinter the HA particle compacts, resulting in scaffolds 
with graded porosity [557]. This method was also used 
to prepare graded porous HA with a dense part (core or 
layer) in order to improve the mechanical strength, as 
dense ceramics are much stronger than porous 
ceramics. However, as in the pressure infiltration of 
mixed particles, this multiple tape casting also has the 
problem of poor connectivity of pores, although the pore 
size and the porosity are relatively easy to control. 

Furthermore, the lamination step also introduces 
additional discontinuity of the porosity on the interfaces 
between the stacked layers. 

 Since diverse biomedical applications require 
different configurations and shapes, the                          
graded (or gradient) porous scaffolds can be grouped 
according to both the overall shape and the structural 
configuration [390]. The basic shapes include 
rectangular blocks and cylinders (or disks). For the 
cylindrical shape, there are configurations of dense core 
– porous layer, less porous core – more porous layer, 
dense layer – porous core and less porous layer – more 
porous core. For the rectangular shape, in the gradient 
direction i.e., the direction with varying porosity, pore 
size or composition, there are configurations of porous 
top – dense bottom (same as porous bottom – dense 
top), porous top – dense center – porous bottom, dense 
top – porous center – dense bottom, etc. Concerning 
biomedical applications, a dense core – porous layer 
structure is suitable for implants of a high mechanical 
strength and with bone ingrowth for stabilization, 
whereas a less porous layer – more porous core 
configuration can be used for drug delivery systems. 
Furthermore, a porous top – dense bottom structure can 
be shaped into implants of articulate surfaces for wear 
resistance and with porous ends for bone ingrowth 
fixation; while a dense top – porous center – dense 
bottom arrangement mimics the structure of head skull. 
Further details on scaffolds with graded porosity might 
be found in literature [390]. 

Biological Properties and the in Vivo Behavior 

 The most important differences between 
bioactive scaffolds and all other implanted materials 
comprise inclusion in the metabolic processes of the 
organism, adaptation of either surface or the entire 
material to the biomedium, integration of a bioactive 
implant with bone tissues at the molecular level or the 
complete replacement of a resorbable bioceramics by 
healthy bone tissues. All of the enumerated processes 
are related to the effect of an organism on the implant. 
Nevertheless, another aspect of implantation is also 
important – the effect of the implant on the organism. 
For example, using of bone implants from corpses or 
animals, even after they have been treated in various 
ways, provokes a substantially negative immune 
reactions in the organism, which substantially limits the 
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Fig. 8. A schematic diagram showing the arrangement of the           
FA/β-TCP biocomposite layers. (a) A non-symmetric                     
functionally gradient material (FGM); (b) symmetric FGM.                 
Reprinted from Ref. [554] with permission. 

Fig. 9. Schematic illustrations of fabrication of pore-graded bioceramics: 
top – lamination of individual tapes, manufactured by tape casting;               
bottom – a compression molding process. Reprinted from Ref. [390] 
with permission 
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application of such implants. In this connection, it is 
useful to dwell on the biological properties of bioceramic 
scaffolds, particularly those of CaPO4, which in the 
course of time may be resorbed completely [566]. 

Interactions with the Surrounding Tissues and the Host 
Responses 
 All interactions between implants and the 
surrounding tissues are dynamic processes. Water, 
dissolved ions, various biomolecules and cells surround 
the implant surface within initial few seconds after the 
implantation. It has been accepted that no foreign 
material placed inside a living body is completely 
compatible. The only substances that conform 
completely are those manufactured by the body itself 
(autogenous), while any other substance, which is 
recognized as foreign, initiates some types of reactions 
(a host-tissue response). The reactions occurring at the 
biomaterial/tissue interfaces lead to time-dependent 
changes in the surface characteristics of both the 
implanted biomaterials and the surrounding                     
tissues [567]. 

 In order to develop new scaffolds, it is 
necessary to understand the in vivo host responses. Like 
any other species, biomaterials and bioceramics react 
chemically with their environment and, ideally, they 
should neither induce any changes nor provoke 
undesired reactions in the neighboring or distant tissues. 
In general, living organisms can treat artificial implants 
as biotoxic (or bioincompatible [568]), bioinert (or 
biostable [59]), biotolerant (or biocompatible [568]), 
bioactive and bioresorbable materials [566-569]. Biotoxic 
(e.g., alloys containing cadmium, vanadium, lead and 
other toxic elements) materials release to the body 
substances in toxic concentrations and/or trigger the 
formation of antigens that may cause immune reactions 
ranging from simple allergies to inflammation to septic 
rejection with the associated severe health                 
consequences. They cause atrophy, pathological change 
or rejection of living tissue near the material as a result 
of chemical, galvanic or other processes. Bioinert (this 
term should be used with care, since it is clear that any 
material introduced into the physiological environment 
will induce a response. However, for the purposes of 
biomedical implants, the term can be defined as a 
minimal level of response from the host tissue), such as 
zirconia, alumina, carbon and titanium, as well as 

biotolerant (e.g., polymethylmethacrylate, titanium and 
Co-Cr alloy) materials do not release any toxic 
constituents but also do not show positive interaction 
with living tissue. They evoke a physiological response 
to form a fibrous capsule, thus, isolating the material 
from the body. In such cases, thickness of the layer of 
fibrous tissue separating the material from other tissues 
of an organism can serve as a measure of bioinertness. 
Generally, both bioactivity and bioresorbability 
phenomena are fine examples of chemical reactivity and 
CaPO4 (both non-substituted and ion-substituted ones) 
fall into these two categories of bioceramics [566-569]. 
A bioactive material will dissolve slightly but promote 
formation of a surface layer of biological apatite before 
interfacing directly with the tissue at the atomic level, 
that result in formation of a direct chemical bonds to 
bones. Such implants provide a good stabilization for 
materials that are subject to mechanical loading. A 
bioresorbable material will dissolve over time (regardless 
of the mechanism leading to the material removal) and 
allow a newly formed tissue to grow into any surface 
irregularities but may not necessarily interface directly 
with the material. Consequently, the functions of 
bioresorbable materials are to participate in dynamic 
processes of formation and re-absorption occurring in 
bone tissues; thus, bioresorbable materials are used as 
scaffolds or filling spacers allowing to the tissues their 
infiltration and substitution [193, 338, 570-572]. 

 It is important to stress, that a distinction 
between the bioactive and bioresorbable bioceramics 
might be associated with structural factors only. Namely, 
bioceramics made from non-porous, dense and highly 
crystalline HA behaves as a bioinert (but a bioactive) 
material and is retained in an organism for at least 5 – 7 
years without noticeable changes (Fig. 3 bottom), while 
a highly porous bioceramics of the same composition 
can be resorbed approximately within a year. 
Furthermore, submicron-sized HA powders are 
biodegraded even faster than the highly porous HA 
scaffolds. Other examples of bioresorbable materials 
comprise porous bioceramic scaffolds made of biphasic, 
triphasic or multiphasic CaPO4 formulations [92] or bone 
grafts (dense or porous) made of CDHA [133], TCP [87, 
573, 574] and/or ACP [434, 575]. One must stress that 
at the beginning of 2000-s the concepts of bioactive and 
bioresorbable materials have been converged and 
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bioactive materials are made bioresorbable, while 
bioresorbable ones are made bioactive [576]. 

 Although in certain in vivo experiments 
inflammatory reactions were observed after implantation 
or injection of CaPO4 [577-586], the general conclusion 
on using CaPO4 with Ca/P ionic ratio within 1.0 – 1.7 is 
that all types of implants (scaffolds of various porosities 
and structures, as well as, powders or granules) are not 
only nontoxic but also induce neither inflammatory nor 
foreign-body reactions [120, 587, 588]. The biological 
response to implanted CaPO4 scaffolds follows a similar 
cascade observed in fracture healing. This cascade 
includes a hematoma formation, inflammation, 
neovascularization, osteoclastic resorption and a new 
bone formation. An intermediate layer of fibrous tissue 
between the implants and bones has been never 
detected. Furthermore, CaPO4 implants display the 
ability to directly bond to bones [566-569]. For further 
details, the interested readers are referred to a good 
review on cellular perspectives of bioceramic scaffolds 
for bone tissue engineering [444]. 

 One should note that the aforementioned rare 
cases of the inflammatory reactions to CaPO4 scaffolds 
were often caused by “other” reasons. For example, a 
high rate of wound inflammation occurred when highly 
porous HA scaffolds were used. In that particular case, 
the inflammation was explained by sharp implant edges, 
which irritated surrounding soft tissues [578]. To avoid 
this, only rounded material should be used for 
implantation (Fig. 10) [589]. Another reason for 
inflammation produced by HA scaffolds could be due to 
micro movements of the implants, leading to 
simultaneous disruption of a large number of                  
micro-vessels, which grow into the pores of scaffolds. 
This would immediately produce an inflammatory 
reaction. Additionally, problems could arise in clinical 
tests connected with migration of granules used for 
alveolar ridge augmentation, because it might be 
difficult to achieve a mechanical stability of implants at 
the implantation sites [578]. Besides, presence of 
calcium pyrophosphate impurity might be the reason of 
inflammation [581]. Additional details on inflammatory 
cell responses to CaPO4 might be found in a special 
review on this topic [582]. 

Osteoinduction 

 Before recently, it was generally considered, 
that alone, any type of synthetic scaffolds possessed 
neither osteogenic (osteogenesis is the process of laying 
down new bone material by osteoblasts [590]) nor 
osteoinductive (is the property of the material to induce 
bone formation de novo or ectopically (i.e., in non-bone 
forming sites) [590]) properties and demonstrated a 
minimal immediate structural support. However, a 
number of reports have already shown the               
osteoinductive properties of certain types of CaPO4 
bioceramics [164, 516, 541, 591-610] and the amount of 
such publications rapidly increases. For example, bone 
formation was found to occur in dog muscle inside 
porous CaPO4 scaffolds with surface microporosity, while 
bone was not observed on the surface of dense 
bioceramics [595]. Furthermore, implantation of porous 
β-TCP scaffolds appeared to induce bone formation in 
soft tissues of dogs, while no bone formation was 
detected in any α-TCP ones [592]. More to the point, 
titanium implants coated by a microporous layer of OCP 
were found to induce ectopic bone formation in goat 
muscles, while a smooth layer of carbonated apatite on 
the same implants was not able to induce bone 
formation there [593, 594]. In another study, β-TCP 
powder, biphasic (HA + β-TCP) powder and intact 
biphasic (HA + β-TCP) rods were implanted into leg 
muscles of mice and dorsal muscles of rabbits [601]. 
One month and three months after implantation, 
samples were harvested for biological and histological 
analysis. New bone tissues were observed in 10 of 10 
samples for β-TCP powder, 3 of 10 samples biphasic 
powder and 9 of 10 samples for intact biphasic rods at 
3rd month in mice, but not in rabbits. The authors 
concluded that the chemical composition was the 
prerequisite in osteoinduction, while porosity contributed 
to more bone formation [601]. Therefore, researchers 
have already discovered the ways to prepare 
osteoinductive CaPO4 scaffolds. 

 Unfortunately, the underlying mechanism(s) 
leading to bone induction by synthetic materials remains 
largely unknown. Nevertheless, besides the specific 
genetic factors [599] and chosen animals [601], the 
dissolution/precipitation behavior of CaPO4 [611], their 
particle size [609], microporosity [597, 601, 612, 613], 
physicochemical properties [595, 597],                         
composition [601], the specific surface area [613], 
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nanostructure [600], as well as the surface topography 
and geometry [596, 614-618] have been pointed out as 
the relevant parameters. A positive effect of increased 
microporosity on the ectopic bone formation could be 
both direct and indirect. Firstly, an increased 
microporosity is directly related to the changes in 
surface topography, i.e. increases a surface roughness, 
which affects the cellular differentiation [618]. Secondly, 
an increased microporosity indirectly means a larger 
surface that is exposed to the body fluids leading to 
elevated dissolution/precipitation phenomena as 
compared to non-microporous surfaces. In addition, 
other hypotheses are also available. Namely, Reddi 
explained the apparent osteoinductive properties as an 
ability of particular bioceramics to concentrate bone 
growth factors, which are circulating in biological fluids, 
and those growth factors induce bone formation [614]. 
Other researchers proposed a similar hypothesis that the 
intrinsic osteoinduction by CaPO4 scaffolds was a result 
of adsorption of osteoinductive substances on their 
surface [596]. Moreover, Ripamonti [615] and Kuboki et 
al., [616] independently postulated that the geometry of 

CaPO4 bioceramics is a critical parameter in bone 
induction. Specifically, bone induction by CaPO4 was 
never observed on flat surfaces. All osteoinductive cases 
were observed on either porous scaffolds or structures 
contained well-defined concavities. What’s more, bone 
formation was never observed on the peripheries of 
porous scaffolds and was always found inside the pores 
or concavities, aligning the surface [193]. Some 
researchers speculated that a low oxygen tension in the 
central region of implants might provoke a                  
dedifferentiation of pericytes from blood micro-vessels 
into osteoblasts [619]. Finally but yet importantly, both 
nano-structured rough surfaces and a surface charge on 
implants were found to cause an asymmetrical division 
of the stem cells into osteoblasts, which is important for 
osteoinduction [612]. 

 Nevertheless, to finalize this topic, it is worth 
citing a conclusion made by Boyan and Schwartz [620]: 
“Synthetic materials are presently used routinely as 
osteoconductive bone graft substitutes, but before 
purely synthetic materials can be used to treat bone 
defects in humans where an osteoinductive agent is 

Fig. 10. Rounded β-TCP granules of 
2.6 – 4.8 mm in size, providing no 
sharp edges for combination with bone 
cement. Reprinted from Ref. [589] 
with permission. 
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required, a more complete appreciation of the biology of 
bone regeneration is needed. An understanding is 
needed of how synthetic materials modulate the 
migration, attachment, proliferation and differentiation 
of mesenchymal stem cells, how cells on the surface of a 
material affect other progenitor cells in the peri-implant 
tissue, how vascular progenitors can be recruited and a 
neovasculature maintained, and how remodeling of 
newly formed bone can be controlled.” (p. 9). 

Biodegradation 

 Shortly after implantation, a healing process is 
initiated by compositional changes of the surrounding 
bio-fluids and adsorption of biomolecules. Following this, 
various types of cells reach the surface of CaPO4 
scaffolds and the adsorbed layer dictates the ways the 
cells respond. Further, a biodegradation (which can be 
envisioned as an in vivo process by which an implanted 
material breaks down into either simpler components or 
components of the smaller dimensions) of the implanted 
CaPO4 scaffolds begin. This process can occur by three 
possible ways: 1) physical: due to abrasion, fracture 
and/or disintegration, 2) chemical: due to                   
physicochemical dissolution of the implanted phases of 
CaPO4 with a possibility of phase transformations into 
other phases of CaPO4, as well as their precipitation and 
3) biological: due to cellular activity (so called, 
bioresorption). In biological systems, all these processes 
take place simultaneously and/or in competition with 
each other. Since the existing CaPO4 are differentiated 
by Ca/P ratio, basicity/acidity and solubility (Table 1), in 
the first instance, their degradation kinetics and 
mechanisms depend on the chosen type of CaPO4 [621, 
622]. Since dissolution is a physical chemistry process, it 
is controlled by some factors, such as CaPO4 solubility, 
surface area to volume ratio, local acidity, fluid 
convection and temperature. For HA and FA, the 
dissolution mechanism in acids has been described by a 
sequence of four successive chemical equations, in 
which several other CaPO4, such as TCP, DCPD/DCPA 
and MCPM/MCPA, appear as virtual intermediate                   
phases [623, 624]. 

 With a few exceptions, dissolution rates of 
CaPO4 are inversely proportional to the Ca/P ratio 
(except of TTCP), phase purity and crystalline size, as 
well as it is directly related to both the porosity and the 

surface area. In addition, phase transformations might 
occur with DCPA, DCPD, OCP, α-TCP, β-TCP and ACP 
because they are unstable in aqueous environment 
under the physiological conditions [625].  Bioresorption 
is a biological process mediated by cells                             
(mainly, osteoclasts and, in a lesser extent,                  
macrophages) [626, 627]. It depends on the response of 
cells to their environment. Osteoclasts attach firmly to 
the implant and dissolve CaPO4 by secreting an enzyme 
carbonic anhydrase or any other acid, leading to a local 
pH drop to ~ 4 – 5 [628]. Formation of multiple              
spine-like crystals at the exposed areas of β-TCP was                 
discovered [629]. Furthermore, nanodimensional 
particles of CaPO4 can also be phagocytosed by cells, i.e. 
they are incorporated into cytoplasm and thereafter 
dissolved by acid attack and/or enzymatic                   
processes [630]. A study is available [631], in which a 
comparison was made between the solubility and 
osteoclastic resorbability of 3 types of CaPO4 (DCPA, 
ACP and HA) + β-calcium pyrophosphate (β-CPP) 
powders having the monodisperse particle size 
distributions. The authors discovered that with the 
exception of β-CPP, the difference in solubility among 
different calcium phosphates became neither mitigated 
nor reversed but augmented in the resorptive 
osteoclastic milieu. Namely, DCPA (the phase with the 
highest solubility) was resorbed more intensely than any 
other calcium phosphate, whereas HA (the phase with 
the lowest solubility) was resorbed the least. β-CPP 
became retained inside the cells for the longest period of 
time, indicating hindered digestion of only this particular 
type of calcium phosphate. Genesis of osteoclasts was 
found to be mildly hindered in the presence of HA, ACP 
and DCPA, but not in the presence of β-CPP. HA 
appeared to be the most viable compound with respect 
to the mitochondrial succinic dehydrogenase activity. 
The authors concluded that chemistry did have a direct 
effect on biology, while biology neither overrode nor 
reversed the chemical propensities of calcium 
phosphates with which it interacted, but rather 
augmented and took a direct advantage of them [631]. 
Similar conclusions on both the resorbability and 
dissolution behavior of OCP, β-TCP and HA were made 
in another study [625]. In addition, in vivo                     
biodegradation of MCPA was found to be faster than 
that of bovine HA [632]. Thus, one can conclude that in 
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vivo biodegradation kinetics of CaPO4 seems to correlate 
well with their solubility. Nevertheless, one must keep in 
mind that this is a very complicated combination of 
various non-equilibrium processes, occurring 
simultaneously and/or in competition with each                
other [633]. 

 Strictly speaking, the processes happen in vitro 
do not necessarily represent the ones occurring in vivo 
and vice versa; nevertheless, in vitro experiments are 
widely performed. Usually, an in vitro biodegradation of 
CaPO4 scaffolds is simulated by suspending them in a 
slightly acidic (pH ~ 4) buffer and monitoring the release 
of major ions with time [622, 634-637]. An acidic buffer, 
to some extent, mimics the acidic environment during 
osteoclastic activity. In one study, an in vivo behavior of 
porous β-TCP scaffolds prepared from rod-shaped 
particles and that prepared from non-rod-shaped 
particles in the rabbit femur was compared. Although 
the porosities of both types of β-TCP scaffolds were 
almost the same, a more active osteogenesis was 
preserved in the region where rod-shaped ones were 
implanted [638]. Furthermore, the dimensions of both 
the particles [609] and the surface microstructure [604] 
were found to influence the osteoinductive potential. 
These results implied that the microstructure affected 
the activity of bone cells and subsequent bone 
replacement. 

Cellular Response 

 Fixation of any implants in the body is a 
complex dynamic process that remodels the interface 
between the implants and living tissues at all 
dimensional levels, from the molecular up to the cell and 
tissue morphology level, and at all time scales, from the 
first second up to several years after implantation. 
Immediately following the implantation, a space filled 
with biological fluids appears next to the implant 
surface. With time, cells are adsorbed at the implant 
surface that will give rise to their proliferation and 
differentiation towards bone cells, followed by 
revascularisation and eventual gap closing. Ideally, a 
strong bond is formed between the implants and 
surrounding tissues [568]. An interesting study on the 
interfacial interactions between calcined HA and 
substrates has been performed [639], where the 
interested readers are referred for further details. 

 The aforementioned paragraph clearly 
demonstrates an importance of studies on cellular 
responses to CaPO4 scaffolds. Therefore, such 
investigations have been performed extensively for 
several decades [582, 640-655]. For example, 
bioceramic discs made of 7 different types of CaPO4 
(TTCP, HA, carbonate apatite, β-TCP, α-TCP, OCP and 
DCPD) were incubated in osteoclastic cell cultures for 2 
days. In all cases, similar cell morphologies and good 
cell viability were observed; hoverer, different levels of 
resorbability of various types of CaPO4 were                  
detected [643]. Similar results were found for 
fluoridated HA coatings [645]. Experiments performed 
with human osteoblasts revealed that nanostructured 
bioceramics prepared from nano-sized HA showed 
significant enhancement in mineralization compared to 
microstructured HA bioceramics [644]. In addition, the 
influence of lengths and surface areas of rod-shaped HA 
on cellular response were studied. Again, similar cell 
morphologies and good cell viability were observed; 
however, it was concluded that high surface area could 
increase cell-particle interaction [648]. Nevertheless, 
another study with cellular response to rod-shaped HA 
bioceramics, revealed that some types of crystals might 
trigger a severe inflammatory response [651]. In 
addition, CaPO4-based sealers appeared to show less 
cytotoxicity and inflammatory mediators compared with 
other sealers [646]. More examples are available in 
literature. 

 Cellular biodegradation of CaPO4 scaffolds is 
known to depend on its phases. For example, a higher 
solubility of β-TCP was shown to prevent L-929 
fibroblast cell adhesion, thereby leading to damage and 
rupture of the cells [656]. A mouse ectopic model study 
indicated the maximal bone growth for the 80 : 20                    
β-TCP : HA biphasic formulations preloaded with human 
mesenchymal stem cells when compared to other       
CaPO4 [657]. The effects of substrate microstructure and 
crystallinity have been corroborated with an in vivo 
rabbit femur model, where rod-like crystalline β-TCP was 
reported to enhance osteogenesis when compared to 
non-rod like crystalline β-TCP [638]. Additionally, using a 
dog mandibular defect model, a higher bone formation 
on a scaffold surface coated by nanodimensional HA was 
observed when compared to that coated by a                     
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micro-dimensional HA [658]. Furthermore, studies 
revealed a stronger stress signaling response by 
osteoblast precursor cells in 3D scaffolds when 
compared to 2D surfaces [659]. 

 Mesenchymal stem cells are one of the most 
attractive cellular lines for application as bone grafts 
[660, 661]. Early investigations by Okumura, et al. 
indicated an adhesion, proliferation and differentiation, 
which ultimately became new bone and integrated with 
HA scaffolds [641]. Later, a sustained co-culture of 
endothelial cells and osteoblasts on HA scaffolds for up 
to 6 weeks was demonstrated [662]. Furthermore, a 
release of factors by endothelial and osteoblast cells in 
co-culture supported proliferation and differentiation was 
suggested to ultimately result in microcapillary-like 
vessel formation and supported a neo-tissue growth 
within the scaffold [444]. More to the point,      
investigation of rat calvaria osteoblasts cultured on 
transparent HA bioceramics, as well as the analysis of 
osteogenic-induced human bone marrow stromal cells at 
different time points of culturing indicated to a good 
cytocompatibility of HA bioceramics and revealed 
favorable cell proliferation. The positive results for other 
types of cells have been obtained in other                         
studies [202, 403-405, 663-665]. 

 Interestingly that HA scaffolds with marrow 
stromal cells in a perfused environment were reported to 
result in ~ 85 % increase in mean core strength, a ~ 
130 % increase in failure energy and a ~ 355 % 
increase in post-failure strength. The increase in mineral 
quantity and promotion of the uniform mineral 
distribution in that study was suggested to attribute to 
the perfusion effect [535]. Additionally, other 
investigators indicated to mechanical properties 
increasing for other CaPO4 scaffolds after induced 
osteogenesis [534, 537]. 

 To finalize this section, one should             
mention on the recent developments to influence the 
cellular response. First, to facilitate interactions with 
cells, the surface of CaPO4 scaffolds can be   
functionalized [666-670]. Second, it appears that 
crystals of biological apatite of calcified tissues exhibit 
different orientations depending on the tissue. Namely, 
in vertebrate bones and tooth enamel surfaces, the 
respective a, b-planes and c-planes of the apatite 

crystals are preferentially exposed. Therefore, ideally, 
this should be taken into account in artificial bone grafts. 
Recently, a novel process to fabricate dense HA 
bioceramics with highly preferred orientation to the              
a,b-plane was developed.  

 The results revealed that increasing the                    
a,b-plane orientation degree shifted the surface charge 
from negative to positive and decreased the surface 
wettability with simultaneous decreasing of cell 
attachment efficiency [671-673]. The latter finding 
resulted in further developments on preparation of 
oriented CaPO4 compounds [674-676]. 

Future Developments 

 Philosophically, the increase in life expectancy 
requires biological solutions to all biomedical problems, 
including orthopedic ones, which previously were 
managed with mechanical solutions. Therefore, since the 
end of 1990’s, the biomaterials research focuses on 
tissue regeneration instead of tissue replacement [677].  

 The alternatives include use hierarchical 
bioactive scaffolds to engineer in vitro living cellular 
constructs for transplantation or use bioresorbable 
bioactive particulates or porous networks to activate in 
vivo the mechanisms of tissue regeneration [678, 679]. 
Thus, the aim of CaPO4 is to prepare artificial porous 
scaffolds able to provide the physical and chemical cues 
to guide cell seeding, differentiation and assembly into 
3D tissues of a newly formed bone. Particle sizes, shape 
and surface roughness of the scaffolds are                    
known to affect cellular adhesion, proliferation and 
phenotype [33-39]. Additionally, the surface energy 
might play a role in attracting particular proteins to the 
CaPO4 surface and, in turn, this will affect the cells 
affinity to the material. More to the point, cells are 
exceedingly sensitive to the chemical composition and 
their bone-forming functions can be dependent on grain 
morphology of the scaffolds. For example, osteoblast 
functions were found to increase on nanodimensional 
fibers if compared to nanodimensional spheres because 
the former more closely approximated the shape of 
biological apatite in bones [680]. Besides, a significantly 
higher osteoblast proliferation on HA bioceramics 
sintered at 1200 °C as compared to that on HA 
bioceramics sintered at 800 °C and 1000 °C was 
reported [681]. Furthermore, since ions of calcium and 
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orthophosphate are known to regulate bone metabolism, 
CaPO4 appear to be among the few bone graft substitute 
materials, which can be considered as a drug. A 
schematic drawing of the key scaffold properties 
affecting a cascade of biological processes occurring 
after CaPO4 implantation is shown in Fig. 11 [682]. 

 Thus, to meet the tissue engineering 
requirements, much attention is devoted to further 
improvements of CaPO4 scaffolds [683-685]. From the 
chemical point of view, the developments include 
synthesis of novel ion-substituted CaPO4 [686-690]. 
From the material point of view, the major research 
topics include nanodimensional and nanocrystalline 
structures [691-694], amorphous compounds [695, 
696], (bio)organic/CaPO4 biocomposites and hybrid 
formulations [373, 697, 698], biphasic, triphasic and 
multiphasic formulations [92], as well as various types of 
structures, forms and shapes. The latter comprise fibers, 
whiskers and filaments [699-712], macro-, micro- and 
nano-sized spheres, beads and granules [711-731], 
micro- and nano-sized tubes [732-736], porous 3D 
scaffolds made of ACP [737], TCP [81, 84, 738-741],  
HA [56, 742-746] and biphasic formulations [716, 728, 
741, 747-752], structures with graded porosity [87, 390, 
455, 458, 524, 553-558] and hierarchically organized 
ones [753, 754]. Furthermore, an addition of defects 
through an intensive milling [755, 756] or their removal 
by a thermal treatment [757] can be used to modify a 
chemical reactivity of CaPO4. Besides, more attention 
should be paid to a crystallographically aligned CaPO4 

bioceramics [758]. 

Clinical Applications 

 To date, there are just a few publications on 
clinical application of cell-seeded CaPO4 scaffolds for 
bone tissue engineering of humans. Namely, Quarto et 
al., [759] were the first to report a treatment of large                  
(4 – 7 cm) bone defects of the tibia, ulna and humerus 
in three patients from 16 to 41 years old, where the 
conventional surgical therapies had failed. The authors 
implanted a custom-made unresorbable porous HA 
scaffolds seeded with in vitro expanded autologous bone 
marrow stromal cells. In all three patients, radiographs 
and computed tomographic scans revealed abundant 
callus formation along the implants and good integration 
at the interfaces with the host bones by the second 

month after surgery [759]. In the same year, Vacanti et 
al., [760] reported the case of a man who had a 
traumatic avulsion of the distal phalanx of a thumb. The 
phalanx was replaced with a specially treated natural 
coral (porous HA; 500-pore ProOsteon) implant that was 
previously seeded with in vitro expanded autologous 
periosteal cells. The procedure resulted in the functional 
restoration of a stable and biomechanically sound thumb 
of normal length, without the pain and complications 
that are usually associated with harvesting a bone graft. 

 Morishita et al., [761] treated a defect resulting 
from surgery of benign bone tumors in three patients 
using HA scaffolds seeded with in vitro expanded 
autologous bone marrow stromal cells after osteogenic 
differentiation of the cells. Two bone defects in a tibia 
and one defect in a femur were treated. Although 
ectopic implants in nude mice were mentioned to show 
the osteogenicity of the cells, details such as the 
percentage of the implants containing bone and at what 
quantities were not reported. Furthermore, cell-seeded 
CaPO4 scaffolds were found to be superior to autograft, 
allograft or cell-seeded allograft in terms of bone 
formation at ectopic implantation sites [762]. 

 An innovative appliance named the stem cell 
screen-enrich-combine(-biomaterials) circulating system 
(SECCS) was designed in another study [763]. In that 
study, 42 patients who required bone graft underwent 
SECCS-based treatment. Their bone marrow samples 
and β-TCP granules were processed in the SECCS for 10-

15 minutes, to produce MSC/β-TCP composites. These 
composites were grafted back into bone defect sites. 
The results showed 85.53% ± 7.95% autologous 
mesenchymal stem cells were successfully screened, 
enriched, and seeded on the β-TCP scaffolds 
synchronously. Clinically, all patients obtained 
satisfactory bone healing [763]. 

 Besides, it has been hypothesized that dental 
follicle cells combined with β-TCP scaffolds might 
become a novel therapeutic strategy to restore 
periodontal defects [764]. In still another study, the 
behavior of human periodontal ligament stem cells on a 
HA-coated genipin-chitosan scaffold in vitro was studied 
followed by evaluation on bone repair in vivo [765]. The 
study demonstrated the potential of this formulation for 
bone regeneration. 
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 To finalize this section, one must mention that 
CaPO4 scaffolds are also used in veterinary orthopedics 
for favoring animal bone healing in areas, in which bony 
defects exist [766, 767]. 

Conclusions 

 The field of bone tissue engineering has 
experienced exponential growth over the last 30 years, 
however the disconnect between research and the clinic, 
with a pull towards complexity in academia and a push 
back towards simplicity and in the clinical setting, looms 
to hinder further progress in the field. From a clinical 
point of view, bone defects and fractures vary in its 
specific cause e.g., fracture (single- vs. multi-
fragmentary), non-unions, tumor, etc. and each patient 
has an  naturally  personalized  endogenous healing 
pattern based on their physical status, age, relevant 
comorbidities, compliance and loading patterns, and life 
style choices such as smoking, diet, etc. Therefore, a 
“one concept fits all” solution is unlikely to be successful 
in any therapy concept rooted in regenerative medicine. 
In addition, researchers also need to take into account 
the end user of the products, namely the surgeons. Over 
complicated engineering designs can hinder the overall 

adoption rate of new technologies and treatment 
options, emphasis should be placed on product usability 
and technical feasibility. Moreover, due to the innate 
regenerative potential of bones, researchers should 
place less emphasis on precisely mimicking the physical 
properties of the tissue to be regenerated and more on 
facilitating and leverage the guidance of the endogenous 
regenerative capabilities of the host tissues [768]. 

 To conclude, one should mention that despite 
the remarkable scientific progress over the last decades, 
we are still far away from “pulling a newly engineered 
organ out of the Petri dish”. Therefore, a variety of 
scaffolds have been already developed for bone tissue 
engineering to be used as spacemakers, biodegradable 
substitutes for transplanting to the new bones, matrices 
for drug delivery system, as well as supporting 
structures enhancing adhesion, proliferation and 
production of seeded cells according to the circumstanc-
es of the bone defects. Nevertheless, scaffolds to be 
clinically completely satisfied have not been developed 
yet. Therefore, development of more functional scaffolds 
is required [768]. 
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